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(Correction to a theorem of McEliece on convolution codes)
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1 Introduction

Let F':= GF(q). All vectors and matrices are assumed to be those on F. Let F((D)) be
the ring of formal Laurent series with variable D, and F'(D) the rational ring field viewed
as a subring of F((D)) by a standard way:

F((D)) := {X(D) = inDi MeZ, z; € F for all z} y
i>M

F0) = {53 PO). Q) < FIDL QD) #0} < F(D)),

where F[D] is a ring of polynomials.

We shall start with the definition of a convolutional code. A convolutional code is a func-
tion which maps a sequence of k-dimensional vectors (information words) w(0),u(1),...
to a sequence of n-dimensional vectors (codewords) x(0),x(1),.... A convolutional code
is equipped with a register s, which takes an m-dimensional vector(state vector) s(%) at a
time 7. When a vector (%) at a time 4 is input, the convolutional code with a state vector
(%) put out a vector = (%) and the state of the encoder turns to s(z +1). The encoder for
a convolution code is formally described by

s(i+1) = s(i)A+u(i)B, s(0) =0,
z(i) = s(i)C+u()D,

where four matrices A, B, C, D have the sizes

A mxm,

B : kxm,
C : mxn,
D : kxn.

We furthermore assume that D is of rank k.
Now we define three vectors X (D), D(D), S(D) on F((D)) by

X(D) =Y =(i)D}, U(D) =) u(i)D, S(D)=_ s(:)D".
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Furthermore define a k xn matrix G(D) called a generator matriz on the rational function
field F(D) by

G(D) := D+B< Im—A>—IC.

D

Then
X(D)=U(D)G(D)

and the rank of G(D) is k. Since G(D) has entries from F(D), nothing essential is lost
by considering the rational subcode of the code. Thus we shall adopt the following as the
definition of a convolutional code:

Definition 1.1 C is said to be an (n,k) convolutional code for 1 < k < n,if Cisa
k-dimensional subspace of F'(D)".

If G(D) is generator matrix for C, then rank G(D) = k and C is F(D)-row space of
G(D). In other words, an information word u(D) € F(D)* is encoded as the codeword
(D) € F(D)" by

‘ z(D) = u(D)G(D).

Example 1.2 Consider the following state space realization (A, B,C, D) for a convolu-
tional code over F = GF(2) with (n,k,m) = (2, 1,2) whose encoding matrices are given

by
01 10
.A=(OO),B=(10),C=(11>,D=(11).
The generating matrix of this code has the following form:
G(D)=(1+D+D* 1+D?).

This code is physically realized by the following circuit:

s1(1) s2(%)

> MV | > 931(7')
- (%)

Y
4

u1(7)

Example 1.3 Consider the following state space realization (A, B,C, D) for a convolu-
tional code over F' = GF(2) with (n,k,m) = (4,3,2). Then the encoding matrices are

given by
01
A_<1 1)’3'_'(
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Then we have

1 00 D + D?
_| 1+D+D? 1+ D+ D?
G(D) = 0 10 1
0 01 1
This code is realized by the following circuit:
L 5:(0) -] 5:0) |4

ul(z) ~—> 1.'1(1,)
us(%) - 25(4)
Ug(Z) ! ‘ | > 333(7‘)
~d 4 :( > :1:4(z)

Definition 1.4 The weight of a formal Laurant series X (D) = )_
defined to be the number of non-zero coefficients:

wt(X(D)) :=}{i; z: #0}.

Clearly, the weight of X (D) is finite if and only if X(D) is a Laurant polynomial. The
weight of a vector X (D) = (X1(D), ..., X.(D)) € F(D)" is defined to be the sum of the
weights of its constituent X;(D).

z:D* € F((D)) is

i>m

wt(X (D)) = Zwt(X,-(D)).

Furthermore, the weight of a matrix K (D) = (k;;(D)) over F(D) is defined to be the sum
of the weights of its constituent k;;(D):

wt(K(D)) = Zwt(ku’(D))-

Example 1.5 Let F = GF(2). The weight of 1/(1 + D) = 1+ D + D? 4 - .- is infinity.
The weight of (14 D3)/D? = D%+ D is 2.

Definition 1.6 A generator matrix G(D) of a convolutional code is said to be catas-
trophic if there is a vector u(D) € F(D)* of infinite weight while the corresponding
codeword (D) = u(D)G(D) has a finite weight.

In 1968 Massey and Sain [1] proved the following theorem, which allows us to tell
whether a given polynomial generator matrix is catastrophic or not.

Theorem 1.7 (Massey-Sain theorem, [1], [2, Theorem 6.3]) Let G(D)

be a polynomial generator matriz of an (n, k) convolutional code and let Ax(D) the greatest
common divisor of the k x k minors of G(D). Then the following three conditions are
equivalent: _
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(a) G(D) is non-catastrophic.
(b) Ax(D) is a power of D.
(c) G(D) has a right inverse matriz, all of whose entries are of finite weight.

The Massey-Sain theorem can not be directly applied to arbitrary generator matrices,
i.e. those which may have non-polynomial entries. In 1998 R. J. McEliece [2] stated the
following theorem, where the condition (b) was replaced by a weaker condition (b’).

Theorem 1.8 (McEliece theorem, [2, Theorem 6.6]) Let G(D) is an arbitrary gen-
erator matriz for an (n, k) convolutional code. Let 3(D) be the least common multiple of
the denominators in G(D), let G'(D) be the matriz obtained from G(D) by multiplying
each entry by B(D). And let a(D) be the greatest common divisor of the k X k minors of
G'(D), and the ratio a(D)/B(D) is reduced to lowest terms, say o/(D)/B'(D). Then the
following three conditions are equivalent.

(a) G(D) is non-catastrophic.
(b") /(D) is a power of D.
(c) G(D) has a right inverse matriz, all of whose entries are of finite weight.

Unfortunately, this important theorem does not hold in this form. The condition looks
too weak as is shown in the following section.

2 A proof of McEliece theorem

In this section, we give a proof of Theorem 1.8 (McEliece theorem) in a little improved
form. We first show that the original McEliece theorem does not hold (Example 2.1).
Next we prove McEliece theorem in a revised form (Theorem 2.2).

Example 2.1 Consider the following generator matrix for the (4, 3,2) convolutional code

over GF(2).
1 1+D

- - 00 —
1+D+ D? 1+ D+ D?
G(D)= + 0+ 10 + 1+
0 01 1

The least common multiple of the denominators is S(D) = 1+ D + D?, and the matrix
obtained by multiplying each of the entries of G(D) by B(D) is

1 0 0 1+D
G'(D)=[ 0 1+D+D? 0 1+D+D? |.
0 0 1+ D+D?* 1+D+D?

The greatest common divisor of the 3 x 3 minors of G'(D) is (D) = (1 + D + D?)?, so
that the ratio a/f is

ao(D) (1+D+D»* 1+D+D*>_ d(D)

B(D)  (1+D+D?% 1 g (D)
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Thus o/ (D) = 1+ D + D?, which is not a power of D. We see that (b’) fails.
But if now we define

1+4D+D? 0 0
0 10
K(D)_ 0 0 1 9
0 00
it follows that

1 0 0 1+D 1+D+D* 0 0
‘ 1+D+ D2 1+ D+ D? 0 10
G(D)K(D) = * 0+ 10 * 1+ 0 0 1
0 01 1 0 0 0

100\
001

Thus G(D) has a right inverse matrix, all of whose entries are of finite weight. We see
that (c) holds. Therefore, the McEliece theorem does not hold.

According to this observation, we must replace (b’). Our replacement is stated as
follows;

Theorem 2.2 (Main theorem) Let G(D) be an arbitrary generator matriz for an (n, k)
convolutional code. Let B(D) be the least common multiple of the denominators in G(D),
let G'(D) be the matriz obtained from G(D) by multiplying each entry by B(D). And
let (m(D),...,v(D)) be the elementary divisor for G'(D), and the ratio ~v(D)/B(D)
be reduced to lowest terms, say v, (D)/B' (D). Then the following three conditions are
equivalent.

(a) G(D) is non-catastrophic.
(b”") v(D) is a power of D.
(c) G(D) has a right inverse matriz, all of whose entries are of finite weight.

In order to prove Theorem 2.2 (main theorem), we need to quote the following well-
known fact.

Lemma 2.3 Let R be a principal ideal domain. If G is a k X n matriz over R, then
there erists a k x k non-singular matriz X, an n X n non-singular matrizY and a k xn
diagonal matriz I' = diag(y1, 72, - - -, W) such that XGY =T, v|vip1 (1 <i <), 7 #0,
rank G =r. And (71,72, ---,7) 1S unique up to multiplication by a unit.

Definition 2.4 (v1,7s,...,7.) referred to in Lemma 2.3 is said to be an elementary
divisor for G.
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Corollary 2.5 If G(D) is an arbitrary generator matriz for an (n, k) convolutional code,
then there ezists a k xk non-singular matriz X (D), an nxn non-singular matriz Y (D) and
a diagonal matriz I'(D) = diag(v1(D), ..., (D)) such that X(D)G'(D)Y (D) = I'(D),
Y(D)|Yig1(D) (1 < i < k), (D) # 0 where G'(D) = B(D)G(D) and B(D) is the least
common multiple of the denominators in G(D). And (71(D),v2(D), ..., (D)) is unique
up to multiplication by a unit.

Proof. Since G'(D) is a k x n matrix over a principal ideal domain F[D] (polynomial
ring) with rank G’'(D) = k, this result follows immediately from Lemma 2.3. o

Proof of main theorem.
The proof is proceeded as follows: (a)=(b")=>(c)=>(a).

(a)=>(b") Suppose that v, (D) is not a power of D. We show that G(D) is a catastrophic
generator matrix. We define

u(D) := ( 0 ...0 5;((?) >X(D).

Since X (D) is a non-singular matrix and (D) is not a unit, we have that (D) dose
not divide a k-th row of X (D). Since 7,(D) is not a power of D, we have that

wt(u(D)) = +oo.
And it follows that

u(D)X(D)~'I'(D)

ﬂ(D)
_ B'(D)
= ( 0 0 5@ )F (D)
= 0 “en 0 — '.' O
( ’Yk(D) ) 0 ’)’k(D)

(0...010 ..0),

z(D) = u(D)G(D)

= D)u(D)G’(D)

1 -1 ! -1
_ _ﬂ_(_D_)u(D)X(D) X(D)G'(D)Y (D)Y (D)
_ (1 u(D)X(D) T(D)Y (D)™

= (0..010 ..0)Y(D™*

Since Y'(D) is a non-singular matrix, Y'(D)~! is a matrix over F[D]. So,

wt(z(D)) < +o0.
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Thus G(D) is a catastrophic generator matrix.
(b”")=(c) Suppose that v/, (D) is a power of D. Let K'(D) be an n X k matrix as follows:

(D) 0
71(D)
(D) = di %(D) (D) (D) —
' Ye(D

.0

Since 7;(D) divides y;+1(D) for 1 < i < k, we have that y;(D) divides v (D) for 1 <1 < k.
So, K'(D) is a matrix over F[D]. We define

g'(D)
Y'(D)

Since v/, (D) is a power of D, we have that

K(D) :=

Y(D)K'(D)X (D).

wt(K (D)) < +o0.

And it follows that

(D)
r(D)K'(D) = 0 -
(D)
0 'Yk(D) \ 0 ')’k(D)}
= 7k(D)Ik’
G(D)K(D) = %%G(D)Y(D)K’(D)X(D)
_ B ’
= 3 (?)v’k ) G'(D)Y(D)K'(D)X(D)
= WX(D)"lX(D)G’(D)Y(D)K’(D)X(D)
1 -1 '
= WX(D) I'(D)K'(D)X (D)
= X(D)'I,X(D)
= Ika

where i, is a k X k identity matrix. Thus G(D) has a right inverse matrix, all of whose
entries are of finite weight. :

(c)=(a) Suppose that K(D) is a right inverse matrix for G(D), all of whose entries are
of finite weight. If G(D) is a catastrophic generator matrix, there exists u(D) € F(D)*
such that

wt(u(D)) = +o00, wt(u(D)G(D)) < +00.
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But since G(D)K (D) = I} and wt(K (D)) < +00, we have that

wt(u(D)) = wt(u(D)I}) = wt(u(D)G(D)K (D)) < +oo.

Thus G(D) is a non-catastrophic generator matrix. g
Example 2.6
1 00 1+D
_| 1+D+ D? 1+ D+ D?
G(D) = 0 10 1
0 01 1

in Example 2.1 is a non-catastrophic generator matrix.

Example 2.7 Consider the following generator matrix for the (3,2, 2) convolutional code

over GF(2).
1
¢oy=| ¥ ° L )
0 1+D 1+D

The least common multiple of the denominators is 3(D) = 1+ D, and the matrix obtained
by multiplying each of the entries of G(D) by B(D) is

, 1 0 1+D
G(D)=<o (1+ D)? (1+D)2>

The elementary divisor of G'(D) is (m1(D), 12(D)) = (1, (1 + D)?), so that the ratio 72/8
is

(D) _(1+D) 1+D _x%(D)

B(D) 1+D 1 g (D)
Thus 4(D) = 1 + D, which is not a power of D. So, G(D) is a catastrophic generator
matrix. Indeed, there exists '

1

u(D) = ( 0 5D ) € F(D)?

such that
wt(u(D)) = +o0o,

wt(z(D)) = wt(u(D)G(D)) =wt (( 0 1 1)) =2 < +oo.

And the encoding matrices are given by

10 10 100 (101
Az(o o)’Bz(o 1)’C=(o 1 1>"D‘(o 1 1>'
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This code is realized by the following circuit:

s1(%) ;f\ >~ z1(7)
u1 ()
$2(8) =4 = T(4)
us(1) |
~D— z3(%)

Finally, Theorem 2.2 (Main theorem) is an extension of Theorem 1.7 (Massey-Sain
theorem). We prove that (b) and (b”) are equivalent if G(D) is a polynomial generator
matrix.

Definition 2.8 Let A; be the greatest common divisor of the ¢ X ¢ minors of G.
(Aq,4,,...,4,) is said to be a determinantal divisor for G.

Lemma 2.9 If (71,72,-..,7) i an elementary divisor and (4;, A,,...,A4,) is a deter-
minantal divisor for G, then Ay = m, 42 = 1y2, -y Ar = MY2" Y, Qs = 0 for
1>,

Remark 2.10 If G(D) is a polynomial generator matriz for an (n, k) convolutional code,
then the condition (b) of Theorem 1.7 and the condition (b"”) of Theorem 2.2 are equiva-
lent. '

Proof. Since G(D) is a polynomial generator matrix, we have §(D) = 1. So, G'(D) =
G(D) and (D) = 7(D). |

(b)=>(b") Suppose that A.(D) is a power of D. Since 7,(D) divides Ax(D), we have
that vx(D) is a power of D, too.

(b")=>(b) Suppose that (D) is a power of D. Since ~v;(D) divides v;11(D), we have
that v;(D) divides (D) for 1 < i < k. So, (D) is a power of D for 1 < i < k, too.
Since Ax(D) = 71(D) - - - v(D), we have that A(D) is a power of D. O
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