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1 Introductidn |

For a linear code over a finite field, Helleseth, Klove and Mykkeltveit [9] introduced the
generalized Hamming weights while studying the weight distribution of irreducible cyclic
codes and later Wei ([18]) rediscoveredthe idea of generalized Hamming weights. After that
a lot of papers dealing with the weights have been published (cf. [17] etc.). Recently, the
generalized Hamming weights for codes over Z4 have been defined and studied, see [1], [19],
[20], [3] and [10] for example. |

In this note, we shall define a type of generalized Lee welghts for codes over Z, and give
some fundamental results.

A linear code of length n over Z, is a Zs-submodule of Z§. For a linear code C of length n
over Z,, we define the rank of C, denoted by rank(C), by the minimum number of generators
of C. It is known that a linear code C of length n over Z, is permutation-equivalent to a
linear code with generator matrix of the form

(1) ( Ikl X Y ) )
0 2L, 2Z

where X and Z are binary matrices and Y is a Zs-matrix. In this case, it finds that
|C| = 4512% and rank(C) = k; + k;. We shall define a code with a generator matrix of the
form in 1 as being of type {ki, k2}.

For a vector z € Zj, we denote the Hamming weight and Lee weight by wt(z) and
L-wt(x), respectively.

For a linear code C of length n over Z,, let A(C) be the |C| x n array of all codewords in
C. It is well-known that each column of A(C) corresponds to the following three cases: (i)

*This work is jointed with Steven T. Dougherty and Manish Gupta.



52

the column contains only 0 (ii) the column contains 0 and 2 equally often (iii) the column
contains all elements of Z, equally often (cf. [20]). For the three columns (i), (ii) and (i),
we define the Lee weights of these columns by 0, 2 and 1 respectively. Thus we define the
Lee weight wt1(C) of C by the sum of the Lee weights of all columns of A(C). For example,
if

¢ ={(9,0,0),(1,0,1),(2,0,2),(3,0,3),(0,2,2),(1,2,3), (2,2,0), (3,2,1)},

then wt;(C) =142+ 1 = 4. We remark that if C is generated by only one vector x, then
the Lee weight wt;(C) corresponds to the original Lee weight L-wt(x) of . Then we have
the following theorem.

Theorem 1.1 Let C be a linear code C of length n over Z, with type 451252, Then we have
1

wtr(C) = WQZ:C(L'W““’) — wi(z))
1 .
= sze:cl{z . Xy = 2}'
Now, for 1 < r < rank(C), we define the r-th generalized Lee weight with respect to rank
(GLWR) d%(C) of C as follows:
df(C) := min{wt. (D) : D is a Zs;-submodule of C with rank(D) = r}.

We note that d¥(C) corresponds to the minimum Lee weight of C.

2 Bounds for GLWR

In this section, we give some bounds for GLWR of linear codes over Z,.

Lemma 2.1 If C is a linear code of length n over Z, with rank(C) = 2, then there ezists a
codeword 0 # v € C such that L-wt(v) < wtz(C).

Using the above lemma, we have the following result.

Theorem 2.2 Let C be a linear code of length n over Zy with rank(C) > 2. Then we have
1 < df(C) < d3(0).

In [11], the rth generalized Hamming weight with respect to rank (GHWR) of a linear
code C is defined by

df(C) := min{|Supp(D)| : D is a Zs-submodule of C with rank(D) = r},
where Supp(D) := Ugcpsupp(x). We remark that
@ d(C) < 24¥(C).

The following lemma is called the generalized Singleton bound for linear codes over Z4 (see
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Lemma 2.3 Let C be a linear code of length n over Zy. Then, for any r, 1 < r < rank(C),
d¥(C) < n — rank(C) + .
Now, we give a similar type bound for GLWR.

Theorem 2.4 For a linear code C of length n over Zy and any v, 1 < r < rank(C),

ld,L(C) —2r+1

5 J < n — rank(C).

Remark 2.5 In [7] and [15], it is shown that for a linear code C of length n over Z, with
minimum Lee weight dy, :

2

Since dj, = df(C), the bound in Theorem 2.4 is a generalization of the above bound.

[dL — 1J < n — rank(C).

If a linear code C of length n over Z, meets the bound in Theorem 2.4 for r, that is,
l(df‘(C) —2r+1) /2J = n — rank(C), then we shall call the code C as r-th mazimum Lee
distance separable with respect to rank (r-th MLDR) code. Similarly if a linear code C of
length n over Z; meets the bound in Lemma 2.3 for r, that is, d¥(C) = n — rank(C) +r,
then the code C is called r-th mazimum Hamming distance separable with respect to rank
(r-th MHDR) code. Now we shall give a connection between r-th MLDR codes and r-th
MHDR codes.

Lemma 2.6 If C is an r-th MLDR code, then dX(C) = 2d¥(C) — 1 or 2dH#(C).

Theorem 2.7 Let C be a linear code C of length n over Zy. If C is an r-th MLDR code,
then C is an r-th MHDR code.

Theorem 2.8 Let C be an r-th MHDR code of length n over Zy. C is an r-th MLDR code
if and only if dX(C) = 2dF (C) — 1 or 2dH(C).

It is known that if C is a linear code of length n over Z4 with minimum Hamming weight
dy and minimum Lee weight dz, then

(3) dg > [%L—]

(cf. [14]). In [16], they have proved the following Griesmer type bound for linear codes over
finite quasi-Frobenius rings.
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Lemma 2.9 Let C be a linear code of length n over Z4 with rank(C) = k and minimum
Hamming weight dg. Then

Using (3) and Lemma 2.9, we have the following Griesmer type bound for minimum Lee
weights of linear codes over Zj.

Proposition 2.10 Let C be a linear code of length n over Z, with rank(C) = k and mini-
mum Lee weight d. Then
n> Z PdL/z].l .
=0

Now we have a generalized Griesmer type bound for GLWR.
Theorem 2.11 For a linear code C of length n over Zy and any r, 1 < r < rank(C), we

have .
di(C) > Z M )

=0

Let C be a linear code C of length n over Z4. From the definitions of GLWR and GHWR,
we have

dL
(@ i = | %]
for any r. We define the socle of C' as follows:
Soc(C) :={x € C | 2= = 0}.

It is known that if C is a linear code C of length n over Z; with rank(C) = k and minimum
hamming weight dy, then Soc(C) is isomorphic to a binary [n, k, d] code (cf. [11]).

Lemma 2.12 ([11)) For any r, 1 < r < rank(C), we have
dy (C) = dff (Soc(C)).
Using the above lemma and Theorem 3.19 (p. 35 in [5]), the lemma follows:

Lemma 2.13 Let C be a linear code C of length n over Z, with rank(C) = k. Then

k~r H
n>d”0)+2[-2,%,(—§)1—)1,

foranyr, 1<r<k.
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Now we have a generalized Griesmer type bound for GLWR.

Theorem 2.14 Let C be a linear code C of length n over Zy with rank(C) = k. Then

dt(C)] k= [[dE(©)/2]
2 [E2] X 5|

=1

foranyr,1<r<k.
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