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1. Introduction.
Iwould like to thank Professor Hiroyoshi Yamaki and the Department of Math-

ematics of Kumamoto University for their support.
The following description of afinite translation plane is due to Andre (1954). A

finite translation plane is avector space of dimension $2d$ over afield of $q$ elements
of characteristic $p$ , equipped with aspread. This is aset of $q^{d}+1$ , dimension $\mathrm{a}1$

subspaces such that each non zero vector lies in exactly one of these subspaces.
Each one of these subspaces is called afiber, which is aline incident with the zero
vector. (We use the term fiber instead of component because of the term component
has special meaning in the finite group theory.)

In this article atranslation plane is afinite translation plane. One of the main
problem in the Theory of Translation Planes is the following. (See, for example,
[8].)
Main Problem. Which non abelian finite simple groups can be collineation groups
for atranslation plane.

For brevity, we use the term simple group to mean non abelian simple group. In
the study of collineation groups of atranslation plane, we can apply representation
theory to the action of the group on the affine points, and permutation group the-
ory to the action of the group on the points on the line of infinity. The collineation
group of atranslation plane is asemi-direct product of the translation group and the
translation complement. The translation group is anormal elementary subgroup
of order $q^{2d}$ . The translation complement is asemi-linear transformation group.
This shows that in order to understand acollineation group, one has to study the
translation complement. The subgroup of all linear transformations in the transla-
tion complement is called the linear complement. Note that perfect subgroups of
the translation complement are in the linear complement.

Two types of collineations: affine perspectivities (the set of fixed points is a
fiber of the spread) and Baer elements (the set of fixed points is asubplane which
is also a $d$-dimensional subspace)attract most attention. These collineations occur
in asimple collineation group of atranslation plane in the following way. Being
simple, the group is in the linear complement and it does not contain any central
homology. Thus perspectivities are affine perspectivities. If the characteristic is
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odd, then involutions are Baer. (See, for example, [5].) If characteristic is even,
then an involution is either aBaer involution or an elation with its axis afiber. Thus
in both cases, the dimension of the set of fixed points of any of these collineations is
half the dimension of the underlying vector space. This leads to the following project
in the study of linear groups: classify all finite groups of linear transformations of
avector space such that the dimension of the set of fixed points of anon identity
element is aconstant. The following Theorem Aof [6] is aresult under aweaker
condition.

(We use the following notation. For afinite group $G$ , $m_{2}(G)$ denotes the 2-rank
of $G$ , i.e., $2^{m_{2}(G)}$ is the largest order of an elementary abelian 2-subgroup of $G$ ;
$O(G)$ denotes the normal subgroup of maximal odd order; and $C_{G}(i)$ denotes the
centralizer of $i$ in $G$ . The two dimensional projective linear group over afield of $s$

elements is denoted by $L_{2}(s)$ ;the dihedral group of order $2s$ is denoted by $D_{2s}$ ; The
cyclic group of order $s$ is denoted by $C_{s}$ . We use quaternion to mean aquaternion
group of order 8or ageneral quaternion.)

Theorem A. Let $V$ be a finite dimensional vector space over a finite field $F$ of
characteristic $p$ and $G\leq GL(V)$ . Assume $|G|$ is even and for each involution $i$ in
$G$ and each $1\neq x\in C_{G}(i)$ , $dim(C_{V}(x))=dim(Cv(i))$ . Then one of the following
holds:

(1) $G$ is the split extension of an elementary abelian 2-group $N$ by a group $X$

of odd order semiregular on N. $F(X)$ and $X/F(X)$ are cyclic.
(2) $G\cong \mathrm{L}2(2\mathrm{a})$ for some $a\geq 2$ .
(3) $p$ is odd and $G$ is a dihedral group.
(4) $G=O(G)<t>_{f}$ where $t$ is an involution mverting the abelian group $O(G)$ .
(5) $m_{2}(G)=1$ , $p$ is odd, and $G$ is a Frobenius group with Frobenius Kernel

$O_{p}(G)$ and Frobenius complement $C_{G}(i)_{f}$ where $i$ is an involution.
(6) $p$ is odd and $G$ is semiregular on $[V, i]$ for $i$ the unique involution in $G$ .
(7) $G\cong L_{2}(t)$ or $PGL_{2}(t)$ , $t$ is a power of the odd prime $p_{f}V=Cv(G)\oplus[V, G]$ ,

and if $F$ is a splitting field for $G$ then each noncentral chief factor for $G$ on
$V$ is of dimension 3.

(8) $p$ is odd, $G\cong L_{2}(7)$ , $V=CV\{G$) $\oplus[V, G]$ , and $[V, G]$ is the sum of S-
dimensional irreducibles for $G$ .

Some remarks of Theorem Aare in order. In the case in which $m_{2}(G)\geq 3$ ,
we prove that the centralizer of any involution of $G$ is a2-subgroup. In an earlier
version of [6] we use this fact to apply the famous results of Suzuki on $(\mathrm{C}\mathrm{I}\mathrm{T})-$

groups. It is interesting to note the following from Suzuki [13, p. 1612]: ”We just
mentioned that an idea of Thompson $[3,7]$ is used with great advantage and the
theory of characters is needed together with an idea similar to the one in ref. [5].”
(The references 3, 5, 7here are respectively 4, 12, 15 in our references. )Note
also that Suzuki proves that the incidence structure created is aprojective plane
of order 4at the end of the proof of Theorem 4of [12, Lemma 15 p.467].

The structure of $C_{G}(i)$ in (5) and (6) can be found, for example, in [11, p.198
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for $C_{G}(i)$ solvable, and [11, p.204] for $Cc(i)$ nonsolvable.
Theorem Aseems to hold when we allow char(F) to be zero. Aconsequence of

Theorem Ais the following result on non abelian simple collineation groups.

Theorem $\mathrm{B}[6]$ . If $G$ is a non abelian simple collineation group in the translation
complement of a finite translation plane $V$ of order $n$ such that each non involutory
element in the centralizer of any involution is a perspectivity or a Baer element,
then one of the following holds.

(1) $G\cong L_{2}(2^{a})$ with $a\geq 2$ .
(2) $G\cong L_{2}(7)$ with $n=m^{4}$ prime to 2;3, 7, $m\equiv 1$ mod 4, and $m^{3}\equiv 1$ mod 7.

Further $Cv(G)$ is a subplane of order $m$ , elements of order 2or 3in $G$

are Baer elements, and $V=Cv(G)\oplus[V, G]$ , where $[V, G]$ is a sum of 3-
dimensional irreducible modules.

The following is an application of Theorem Ato the collineation groups of a
translation plane.

Theorem $\mathrm{C}[6]$ . Let $G$ be a collineation group in the linear complement of a finite
translation plane, which is identified with a vector space $V$ over a field $F$ with $a$

spread. Suppose each non identity element in the centralizer of any involution $i$ is
an affine perspectivity or a Baer element if $i$ is not the central homology, otherwise
the zero vector is the only fixed point. Then one of the conclusions except (7) of
Theorem A holds.

Remark. Note that in aHall plane of order $q^{2}$ . There is acollineation group
of order $q(q$ –1) which fixes the points of aBaer subplane.

2. Sketch of the proof of Theorem A.
Other notation and terminology in group theory is taken from [1, 3, 9, 14], and

in the theory of translation planes, from $[2, 10]$ . All objects considered here are of
finite cardinalities.

For aset of non singular linear transformations $X$ on avector space $W$ , we write
$W(X)$ for $Cw(X)$ .

First we assume the following Hypothesis.
Hypothesis Hyl. Let $V$ be a finite dimensional vector space over a finite field

$F$ of characteristic $p$ and $G\leq GL(V)$ . Let $\Gamma$ be the set of subgroups $H$ of $G$ such
that $dimV(h)=\delta=\mathrm{S}(\mathrm{H})$ is a constant for all $h\in H\#$ .

2.1. If p $=2$ and H is a 2-group, then H is elementary abelian.

2.2. If $p$ is odd and $H$ is a 2-group, then $H$ is elementary abelian, cyclic, quaternion
or dihedral.

The next lemma treats the case in which $p=2$ .
2.3. Assume $Hyl$ . If $p=2$ and $C_{G}(i)\in\Gamma$ for each involution $i$ $i$ $G$ , then one of
the following holds:

(1) $G$ is of odd order
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(2) $G$ is the extension of an elementary abelian 2-group $N$ by a group $X$ of odd
order acting semiregularly on $N$ with $F(X)$ and $X/F(X)$ cyclic.

(3) $G\cong L_{2}(^{\underline{\eta}a})$ for some $a>1$ .
(4) $G=O(G)<t>_{\rangle}$ where $t$ is an involution inverting the abelian group $O(G)$ .

$B$ ecause of 2.3, ate may assume from now on that in addition to Hypothesis $Hyl$ ,

$p$ is odd. For the next several lemmas we study a subgroup $H\in\Gamma$ such that $Z(H)$

has an involution $i$ .

2.4. $H$ is a $p’$ -group. If $j$ is an involution in $H$ but not $in<i>then$ either

(1) $Ch\{J$ ) is an elementary abelian Sylow 2-subgroup of $H$ or
(2) $C_{H}(j)=<i,j>\cong E_{4}$ and $H$ has dihedral Sylow 2-subgroup$s$ .

2.5. If $m_{2}(H)=1$ , then $V(i)=V(h)$ for each $h\in H\#$ . So $H$ is a Frobenius
complement semiregular on $[V, i]$ .

2.6. If $m_{2}(H)>2$ , then H is an elementary abelian 2-gr0up.

2.7. If $\mathrm{m}2\{\mathrm{H}$ ) $=2$ , then $H$ is a dihedral group.

2.8. Assume H $=C_{G}(i)$ , $m_{2}(G)=1$ , and i $\not\in Z(G)$ . Then either

$(1)(2)GisaFroben.iusgroupwithKernelO_{p}(G)ann.dcomplementtHG=O(G)<>,whereeO(G)isabeelianandsinvertedbyi$.
’ or

Because of 2.3, 2.5 and 2.8, which say one of the conclusions (4), (5), (6) of
Theorem Aholds when $m_{2}(G)=1$ , we may assume in the rest that the following
Hypothesis holds.

Hypothesis Hy2. In addition to Hypothesis $Hyl$ , we assume that $G$ is of even
order, $p$ is odd, $m_{2}(G)>1$ , and $Cc(j)\in\Gamma$ for each involution $j\in G$ .

2.9. If Hypothesis Hy2 holds, then one of the following holds:

(1) $G$ is a split extension of an elementary abelian $\mathit{2}$-group $N$ by a group $X$

of odd order acting semiregularly on N. Further, $F(X)$ and $X/F(X)$ are
cyclic.

(2) $G\cong L_{2}(2^{a})$ for some $a\geq 2$ .
(3) $G$ is a dihedral group.
(4) $G\cong L_{2}(t)$ or $PGL_{2}(t)$ with $t$ odd.

In the rest of the proof, we study the structure of the modules of the groups
listed in conclusion (4) of 3.11 and show that conclusions (7) or (8) of Theorem A

holds. The proof of Theorem Ais then complete.

3. Collineations and proofs of Theorems B and C.
We now consider collineations in the translation complement of atranslation

plane, which is identified with avector space $V$ of dimension $2d$ over afield $F$

together with aspread $S$ .
For asubset $W$ of $V$ , we deffne $S(W):=\{X\in S : |X\cap W|>1\}$ , and

$S_{W}:=\{X\cap W : X\in S(W)\}$ .
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Acollineation which is in alinear transformation is called alinear collineation.
The set of fixed points of acollineation carries tremendous information. We gener-
alize some of the results concerning the set of fixed points to the eigenspaces.

3.1. Proposition. Suppose $W$ is an eigenspace of a linear collineation $\tau$ . Then
any fiber intersecting $W$ non trivially is $\tau$ invariant. An eigenspace is either $a$

subplane or is contained in a fiber.
3.2. Theorem. Suppose $\tau$ is a linear collineation. Assume $V=U+W_{f}$ where
$U$, $W$ are eigenspaces of $\tau$ with different eigenvalues. Then either $U$, $W$ both are
fibers, or they are both Baer subplanes and $S(W)=\mathrm{S}(\mathrm{W})$ .

We use 3.1 and 3.2, to prove the next three lemmas concern translation planes
of odd order. These results are then used to proof of Theorems $\mathrm{B}$ and C.

3.3. If $\sigma_{1}$ and $\sigma_{2}$ are two distinct involutions in an elementary abelian group $S$ of
order 4such that each mvolution is Baer. then the following conclusions hold.

(1) $V(S)=V(\sigma_{1})\cap V(\sigma_{2})$ is a Baer subplane of $V(\sigma_{1})$ , and $n=m^{4}$ , where $m^{4}$

is the order of the subplane $V(S)$ .
(2) The subspaces $V(S)$ , $[V(\sigma_{1}), \sigma_{2}]=C[V,\sigma_{2}]$ (1) $[V(\sigma_{2}), \sigma_{1}]_{f}[V(\sigma_{1}\sigma_{2}), \sigma_{1}]$

are subplanes of order $m_{f}$ and $S(V(S))=(X)$ for any subplane $X$ from
these four subplanes.

(3) $m\equiv 1$ mod 4

3.4. Suppose $V$ is a translation plane of odd order $n=q^{d}$ , which is identified as $a$

vector space over a field $F$ of characteristic $p$ . Let $G$ be a collineation group in the
linear complement, and $G\cong A_{4}$ or $G\cong S_{4}$ with $V(s)=V(s^{2})$ for an element $s$ of
order 4. Let $Q:=O_{2}(G)$ . Then the following conclusions hold.

(1) $V=V(Q)\oplus[V, Q]$ , where $U:=[V, Q]$ is a direct sum of 3-dimensional Q-
irreducible modules. Involutions in $Q$ are Baer. The subspaces $V(Q)$ , $\mathrm{U}(\mathrm{a})$

for $\sigma\in Q^{\#}$ are subplanes of orde $r$
$n^{\frac{1}{4}}$ such that $S(V(Q))=S(U(\sigma))$ .

(2) If $G\cong S_{4}$ , then $V(Q)=V(G)_{f}$ every element in $G\#$ is Baer, $p\neq 3$ , and
$[V, G]$ is the direct sum of the irreducible modules described in 3.12. For $g\in$

$G\#_{f}U(g)$ is a subplane with same order as $V(Q)$ and $S(U(g))=S(V(Q))$ .

3.5. Assume $G\cong L_{2}(t)$ with $t$ odd and $t>5$ is a collineation group of a translation
plane $V$ of odd order, then $t=7$ and $p\neq 3,7$ . Further $n=m^{4}$ with $m\equiv 1$ mod 4,
and $m^{3}\equiv 1$ mod 7.

We now apply Theorem Ato prove Theorems $\mathrm{B}$ and C. An involution has two
possibilities as acollineation of afinite translation plane of order $n=q^{d}$ . It is
either aperspectivity or aBaer element. The dimension of the set of fixed points
is half the dimension of the underlying vector space $V$ , except in the case in which
it is the central homology, i.e., $-I$ on the vector space and $n$ is odd.

The condition (on the linear group)that the dimension of the eigenspace
corresponding to the eigenvalue 1is aconstant on the set of non identity element $\mathrm{s}$
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of acentralizer of an involution becomes the following. If the involution is the
central homology, then $n$ is odd and each non identity in its centralizer acts fixed-
point-freely on $V$ . In this case $G$ is aFrobenius compliment with $m_{2}(G)=1$ . If
the involution is an affine perspectivity, then each non identity element is either an
affine perspectivity or aBaer element.

We now prove Theorem B. In the rest of this proof, simple means non abelian
simple. Being simple, $G$ is in the linear complement of the collineation group. As
asimple group, $G$ does not contain any central homology. Thus perspectivities in
$G$ are affine perspectivities. If char(F) is odd, then involutions in $G$ are Baer by
[5]. If char(F) $=2$ , then an involution is either aBaer involution or an elation
with its axis aline incident with the zero vector. Thus in both cases the dimension
of the fixed point space of an involution in $G$ equals to half the dimension of the
underlying vector space. Therefore the hypothesis of Theorem $\mathrm{B}$ implies that the
dimension of fixed point space of each non identity element of the centralizer of
an involution is aconstant, namely, half the dimension of the underlying vector
space. Theorem $\mathrm{B}$ follows from Theorem Aand 3.4. Theorem $\mathrm{C}$ now follows from
Theorems Aand B.

4. Further development.
In asimple collineation group of atranslation plane, an element $h$ of order 4

acts on the Baer subplane fixed by $h^{2}$ . The action of $h$ on this subplane could be
an involution or trivial. To classify asimple collineation group, thus it is natural
to study first the case in which $h$ induces the identity on the Baer subplane fixed
by $h^{2}$ . In alinear group this condition corresponds to the following condition: The
dimension of the set of fixed points is aconstant on the set of elements of order 2or
4. We are able to improve the result in 2.1 and 2.2 in [7] to the following theorem.

4.1. Theorem. Suppose the dimension of the set of fixed points is a constant on
the set of elements of order 4or 2for a linear group G. Then a Sylow -subgroup

of $G$ is a cyclic, an elementary abelian, a dihedral, a quaternion, or a semidihedral
group. If the characteristic is 2, then a Sylow 2-subgroup is an elementary abelian.

This enables us to classify the simple linear groups. Surprisingly, asemidihedral
group cannot occur as aSylow 2-subgroup of asimple collineation group. During
my visit at the Kumamoto University, Iwas able to eliminate $A_{7}$ as apossibility
for alinear group. Iam working on the $M_{11}$ currently. These and related results
will be in the upcoming article [7].
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