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Generalized permutative representation of Cuntz algebra. I
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Abstract

We consider a kind of generalization of permutative representation with cycle by Bratteli and
Jorgensen. We show their properties, existence, irreducibility and equivalence by using parameter
of representation. !

1 Introduction

We define a class of representations of Cuntz algebra which is a kind of generalization of permutative
representation by [5, 6, 7]. Let N > 2 and sy,...,sy generators of Cuntz algebra Oy. For an
element

w = w(l) R R /w(k) c (CN)‘X”‘:’

lwD||=1,5=1,...,k k>1, let
. N .
s(w) = s(wV) - s(w®), s(w?)) = szmsi. -(1.1)
: i=1 :

We consider a cyclic representation (H, ) of O with the cyclic vector 2 which satisfies an eigen
equation: :
w(s(w))Q = Q. (1.2)

Our main results are 1)existence 2)uniqueness 3)equivalence 4)irreducibility about this kind of
representations. The remarkable points are followings:

(i) This class is completely reducible, and the uniqueness of irreducible decomposition about
this class holds. The uniqueness of irreducible decomposition is very rare in the theory of
operator algebra and it has been already stated in [6, 7] for the case of ordinary permutative
representation.

!This is a version without proof. For the complete version, see [8].



(ii) This representation is derived from the second class gauge transformation of representation of
Cuntz algebra. Correct explanation about this statement is shown in [11]. In subsection 3.2,
we show such method by constructing generalized permutative representation from ordinary
permutative representation. In this point of view, it is easy to understand actions of several
group on the set of representations of Op.

(iii) This class is properly larger than former class by [5, 6, 7] with “cycle”. For example, the fol-
lowing example of representation of Oy is included in neither the class of ordinary permutative
representation nor that which is rotated by U(2)-action on Os:

1
—ﬁvr (s1(s1+52)) Q2 =0 (1.3)
where w = €1 ® 2=(e1 + £2) € (C?)®? in the equation (1.2), €1, are the canonical basis of
V2

C2. The cyclic representation with the cyclic vector ) which satisfies equation (1.3) is unique
up to unitary equivalence and irreducible. This result is shown in subsection 3.3 and 6.2.

This paper is the first of our series of articles. In the succeeding paper [9, 10, 11}, we treat 1)
periodic case and its irreducible decomposition, (the notion of “periodicity” is explained in the
next section), 2) the class of generalization of the case of “chain” in [5, 6, 7], 3) the second class
gauge transformation of representation of Cuntz algebra.

2 Preparation

In this section, we prepare several notions and lemmata in order to consider generalized permutative
representation of Cuntz algebra. We consider a semigroup which consists of all monomials of tensor
algebra over a finite dimensional Hilbert space. Our strategy is a characterization of a class of
representations with parameter by property of elements in the parameter space.

Let Z; be the cyclic group of order k, k > 1. Assume that Z; acts on a set {1,...,k} of numbers
and o : {1,...,k} = {1,...,k} is the generator of Z; which is defined by
oc(l)=2,...,0(k=1)=k, o(k)=1. (2.1)

We call o the shift.
Let V be a Hilbert space over C and V®* k-times tensor space of V for k > 1. For p € Z,

define an operator
P Vo V®k; ]3(,0(1) R ® U(k)) =P g ... g k), (2.2)

Then ° is a unitary action of cyclic group Z; on V®*,



Fix N > 2. Let
s ={zeCV: |zl =1}

be the unit complex sphere. Denote

TS(CN) =[] s(c™)®=*,

E>1

S(CN)®k = {Zu) ®--® 2% ¢ (CN)®k Jz(f f S(CII:)7 }

When w € S(C)®*, we call k the length of w. Remark that the description of w € TS(CV) by
tensor product is not unique. For example w = (cw™) ® w® = wM @ (cw(?).
TS(CY) is a semigroup by the following operation:

TS(CN) x TS(CN) 5 (z,y) — Q@ y € TS(CN).

The action of Z; on (CY)®* in (2.2) induces an action of Z; on S(CV)® c (CN)®k naturally.
We denote id the unit of Z;.

Definition 2.1 (i) w € S(CV)®* is periodic if there is p € Zy, \ {id} such that p(w) = w.
(i) w € S(CN)®k is non periodic if w is not periodic.

(i) For w,w' € S(CN)®* w ~ w' if there is p € Zy such that p(w) = w'. We call ~ the cyclic
equivalence by Zy.

(iv) For w,w' € TS(CVN), w ~w' if the lengths of w and w' coincide and w ~ w .

Specially, if £ = 1, then any element in S(C”) is non periodic. w in (1.3) is non periodic. For
example, a set
Sp(CH®? = {v®v € S(C?)%®%: v € S(C?)}

is the set of all periodic elements in S(C?)%®2.
Note that there is an action of U(1) = {c € C : |c| = 1} on S(CV)®* by scalar multiple:

S(CM)®* 5w +— cw € S(CN)®F  (ce U(1)).
Lemma 2.2 If w € S(CY)®k is periodic, then cw is periodic for each c € C, |c| = L.

Note that S(CV)®* has a map < -|- >: S(CV)® x S(CN)® — C which is the restriction of
the inner product of (CV)®*. Furthermore we use the notion of orthogonality for S(CV)®* with
respect to < -|- >.

Lemma 2.3 For w,w € S(CN)®"’, the followings are equivalent:



(i) There is c € C such that w = cw.

(i) | < wlw' >|=1.
(iii) w and w' are linearly dependent in (CNV)®*,
By this lemma, we can use a notion of linearly dependence for T'S(CY).
Lemma 2.4 Let w,w € S(CN)®*. Then the following equivalence holds:

<ww >=1 & w=w

Proposition 2.5 (i) If w is non periodic, then | < wi|p(w) > | <1 (p € Z \ {id}).

(i) If w € S(CN)®* and v € S(CN)® are non periodic and | # k, then | < w®|v®* > | < 1.

(i) If w,v € S(CN)®* satisfy | < wlv > | <1, then | <w®p® > | <1 (I>1).

Note: For the aim of our theory, we consider the quotient space S(CV)®%/ ~ as the set of
invariants of representations of Oy in subsection 6.3. An element of S(CV)®*/ ~ is regarded as
a set of elements in S(CY) which has a cyclic order. In our theory, TS(C") has two roles. The
first is a parameter space of a class of representations of Cuntz algebra which is defined in section
3. The second is that some subset of T'S(CN) is an index set of some complete orthonormal basis
of representation of Cuntz algebra which is treated in section 4. This accidental coincidence is
interesting. Although we do not know that reason. On the other hand, the theory in [5], the
corresponded object with TS(CY) is

{ereTS(CN): Te{1,...,N}F k> 1}.
where {e;}., is the canonical basis of CV and ¢; = ¢;; ® --- ® 5, when I = (i1,...,ix). This
correspondence is explained in subsection 3.3.
3 GP representation with cycle

In this paper, a word “representation” always means a unital *-representation.

3.1 Definition of generalized permutative representation with cycle

Let N > 2 and Oy the Cuntz algebra with generators si,...,sy which satisfy the following
relations

N
S:Sj = (51;j1, z sis’{ = 1. (3.1)
1=1



Recall an equation (1.1) for w = w) @ .- @ w*) € S(CN)®*. We summarize the simple formulae
about s(w) here.

s(w)* = s(w®)*. .. s(wD)* | (3.2)

If {&;}, is the canonical orthonormal basis of CV, then
S(E[) = 84, "' Sig (3.3)

when ef = ¢;, ® -~ ®¢;, and I = (iy,...,%) € {1,...,N}*, k > 1. We often write sy as s(eg).
Then s} = s(eg)* = s}, _---sj,. Specially, s; = s(g;), i =1,...,N. If w,w € S(CV)®* then

s(w)*s(w) =< wjw > 1. (3.4)
In general,
s(w)s(v) = s(w ® v) (3.5)

for w,v € TS(CN). Let Iso(On) = {z € On : z*z = I} be the semigroup of all isometries in On.
Lemma 3.1 A map s: TS(CY) = Iso(Oy) is an injective semigroup homomorphism.

In this way, we have a family of isometries in Oy which are parameterized by T'S (CM). By this
parameterization, we define a representation of Oy by w € T'S (CV) as follows.

Definition 3.2 (H,n,Q) is the GP(= generalized permutative) representation of On with cycle
by w € S(CNY®* if (H,n) is a cyclic representation of On with the cyclic unit vector 2 which
satisfies the following equation: _

(s(w))Q2 = Q. (3.6)

We denote GP(w) = (H,n,9Q) or (w) simply. the equation (3.6), m(s(w)), and vector ) are called
GP equation, GP operator and GP vector, respectively. k is called the length of cycle of (H,m, Q).

The assumption of ||2|| =1 is used in section 4.

Definition 3.3 (i) A representation (H, =) of Oy is GP(= generalized permutative) with cycle
if there are w € TS(CY) and a (cyclic)vector Q@ € H such that (H,m,Q) = GP(w), that is,
they satisfy the condition (3.6).

(i) For w,w € TS(CV), GP(w) ~ GP(w') if when GP(w) = (H,m,9Q) and GP(w') =
(H ,7',Q), then (H,n) and (H , 7 ) are unitarily equivalent.

(iii) For a representation (M, ) of On and w € TS(CVN), (H,n) = GP(w) if there is Q@ € H such
that 7(s(w)) and Q satisfy (3.6).



Note that there is no assumption of cyclicity for Q in Definition 3.3 (iii).
We identify 7(s;) and s; from here when there is no confusion. By using this convention, we
often use s(w)2 = Q instead of the equation (3.6). The notion of “cycle” is taken from [5].

A naive meaning of cycle is the following relation between vectors and operators: for w =
w @ @ wk e S(CN)®F,

o 5w
s(ur)(—k—_)l)) s(w*=D)s(w*))Q S(ulﬁk—_)z)) e sgw—)@)) (s(w(2)) “e s(w(k))) Q
sw) (s(w(l)) e s(w(k))) Q

s(wW e ewk)Q  (by(35)
s(w)2
- Q ( by (3.6)).

In this way, a couple of families which consist same number of operators and vectors is a “cycle”.
Remark that a representation 7 of Oy on a Hilbert space H is one-to-one corresponded to a
family of operators {t1,...,tn} on H which satisfies the relations (3.1) by the relation

ti=mn(s;) (i=1,...,N). (3.7

Therefore we often identify a representation 7 of Oy and a family {¢;,...,tx} of operators in this
paper. For example, we often use the symbol for the GP representation (H, {¢1,...,tn}, Q) instead
of (H,m,§2) in the sense of (3.7).

Note: In [6, 7], they treat the free semigroup and its algebra in order to consider representations of
Cuntz algebra. On the other hand, T'S(C") itself is not a free semigroup because the phase factor
of tensor decomposition of w € S(CY)®* brings a freedom of description of w. A subsemigroup

{6[ :Ie{l,...,N}Y k> 1} of TS(CY) is the free semigroup.

3.2 Existence of GP representation

Fix N > 2. We show the existence of GP(w) by any w € TS(CY). The proof is given by
constructing a concrete representation of Oy on l3(IN).

Proposition 3.4 For each w € TS(CY), there is the GP representation of On by w.

Proof. Fix w € S(CN)®. We construct the GP representation by w. Assume that w = w(!) ®
e @uwh® wl) e §(CVN), j=1,...,k Let f = {fi}), be a branching function system ([5]) on N
which is defined by

fi:NoN (i=1,...,N),



o~ l(n) (1<n<k),
fi(n) =

Nn—-1)+1 (n>k+1),

(N-1)(n=1)+i-1+k (1<n<k),
fi(n) =

N(n—1)+i (n>k+1)

where 2 < i < N and o € Z, is a shift in (2.1). This function system is represented as follows:

n | fim) | fon) |- fn(n)

1 k k+ 1 ] E+N—1
1 k+N || k+2N—-2

k—1| k-2 |N(k—2)+3]| - | N(k—1) +1

k | k=1 |[N(k—=1)+2]--- Nk

k+1|Nk+1| Nk+2 |---| N(k+1)

Note that the value of f; is quite different in other f;, i =2,..., N when 1 < n < k. We can check
easily the following properties:

N
fi is injective, fi(N)N f;(N) =0 (i #4), [[f(N)=N. (3.8)
=1

By the column of fi(n) in the above tabular,
fFy =1 (3.9)
where ff = fi0---0 fj. The permutative representation (lo(N), 7) of Oy by f is defined by
N e
k

m(si)en =efm (i=1,...,N,n€N).

Note that (I2(N), ) is not irreducible when k& > 2 ([5]). (I2(IN), 7) satisfies 7(s1)en = €5-1(n) for
1 < n < k. By the equation (3.9), w(s1)¥e; = e;. Denote t; = 7(s;).
Choose a family {g(n)}£_; C U(N) of unitary matrices which satisfy

o~ l(n .
gj1(n)=w§- (m)) j=1,...,N,n=1,...,k)



(n)

where w; is the j-th component of vector w(™ € S(CV), j =1,..., N. Rewrite {s;}N, a family
of operators on l3(IN) which is defined by

for:=1,...,N.

sentation of Oy.

fori=1,...,N.

N
> ghiln)tien  (1<n<k),
j=1

Siénp =

Then {s;}}Y, satisfies the relation (3.1). Hence (Io(N), {s;},) is a new repre-
;From this, we have

N
gji(n)sjen (1<n<k),
tie, = ¢ J=1

Sien (n>k+1)
Since tien = €,-1(n), 1 <n <k,
€s-1(n) = ti€n
N

= > gji(n)sjen

=1

N -1
7=1

= s (w(a-l(n») en.

Hence s(w("))eg(n) =e, for 1 <n < k. jFrom this,

s(wer = s(wV) - s(w®)e, )
S(w(l)) [ s(w(k-l))ek
s(w®) - s(wkF)e gy

s(wM)ey
s(wM)e, (1)
= e].

Therefore s(w)e; = e;. Hence a representation (I2(IN), {s1, ..., sn}) satisfies the equation (3.6) with
respect to w for = e;. We finish to construct the GP representation (I3(IN), {s1,...,sn},e1) of



Note: The proof of existence of GP representation is the method of the second class gauge trans-
formation of representations of Cuntz algebra. The relation between (3.6) and the second class
gauge transformation of representation is explained in the next paper [11].

3.3 Relation with permutative representation

We show the relation between GP representation and ordinary permutative representation by [5].
Let {£;}{Y, be the canonical orthonormal basis of CN. f w = e = &5, ®--- ®¢;, € S(CN)®k,
then the equation (3.6) becomes
™ (S I)Q =.

where sy = s;, - - - 54,. On the other hand, the permutative representation (I2(N), r¢) with cycle by
[5] is given by a branching function system f = {f;}Y,, that is, f is a family which satisfies (3.8).
Furthermore the condition of cycle is corresponded to the relation for an element ng € N

fr(no) = no

where f; = f;) o---o f;, when I = (i,...,ix). Let {en}nen be the canonical basis of lo(N) and
2 = ey, € I2(N). By definition of the permutative representation

()= mp(siy) - mr(8iy)eng
= €f(no)

eno

= .

Hence (I3(N),7s, Q) is the GP representation of Oy by w = e7. Consequently, any ordinary

permutative representation with cycle is included in the class of GP representation with cycle.
We show the case of chain [5, 6, 7] and decomposition of them in the succeeding paper [9, 10].

The structure of basis and action of generator of Oy on them are discussed in subsection 4.4.

4 Structure and canonical basis of GP representation

We construct the basis of the representation space of GP representation by the canonical way
here. In the original definition of permutative representation [5], it is defined by using a branching
function system and the action of Ox on a complete orthonormal basis(=CONB) of a Hilbert
space. In this sense, it is assumed that the existence of such CONB to define a permutative
representation. On the other hand, our definition of generalized permutative representation is not
assumed the existence of such suitable CONB at the statement of definition. It is shown that such



CONB is automatically derived from the equation (3.6). Such CONB is divided into two kinds,
“cycle” and “tree”. This is an analogy that a graph which consists of vertices = CONB, and edges
= operators, looks like trees on roots which are cyclicly connected each other. The meaning of this
analogy is cleared in the following subsections.
4.1 Construction of cycle basis
Let w € S(CN)®k, Fix a tensor decomposition of w:

w=uvVg. . . uwhk (4.1)
for w® € S(CN),j=1,...,k. Let

wj =67 w) (G=1,...,k).

For example, w; = w, wp =wP @ - ® w® @ w), Let GP(w) = (H,{s1,--.,5n5},1) be the
GP representation of Oy by w. By deﬁmtlon, s(w)Q2 = Q. Let

ej =s(w) - s(whQ (j=1,...,k). (4.2)

Since s(w(¥)) is an isometry for each j = 1,...,k and [|Q|| = 1, |lej[| = 1 for each j = 1,...,k.
Note that there is a freedom of the choice of phase factor of tensor decomposition (4.1). Hence
(4.2) depends on the choice of phase of tensor factor w(?, i = 1,..., k. We check this freedom at
several stages in our paper.

Lemma 4.1 (i) s(w(j—l))ej =ej_1 forj=2,...,k and s(wke; = ey.

(i) s(wj)ej =e; forj=1,....k.

(iii) s(w®)*Q =< wO|w® > e,.

(iv) Ifv e S(CN)®2, 0 < a < k, then there is ¢ € C such that s(v)*Q = c- eq41.

(v) Ifv e S(CN)®Uk+a) | > 1, 0< a<k, then there is c € C such that s(v)*Q = c- eg41.

Note e; = (s(’w(l)) e s(w(k))) Q=s(w)=Q.

Corollary 4.2 (i) s('w(j))e,(j) =e; forj=1,...,k.
(i) If (H,m, Q) is the GP representation of ON by w € S(CN)®k | then for each p € Zy, there is
a cyclic vector @ € H such that s(p(w N =0

Proposﬂnon 4.3 (Cyclic symmetry of GP representation) If (H,m,Q) is the GP representation
of On by w € S(CN)®*, then for each p € Zy, there is Q' € H such that (H,7,Q') is the GP
representation of On by p(w), too. '

10



11

Recall Definition 3.3.

Corollary 4.4 Let w € S(CM)®*. If a representation (H,n) of Oy is GP(w), then (H,m) is
GP(p(w)) for each p € Zy, too.

The equivalence of two GP representations is discussed in subsection 5.3.

So far, we do not assume the non periodicity of w. {From now, we treat only non periodic case.
We treat about the periodic case in the succeeding our paper.

Lemma 4.5 If w € S(CN)®k is non periodic, then < ejley >=08;y for j.i=1,... k.

Definition 4.6 For a non periodic element w € S (CN)Y®E and its tensor decomposition
{'w(J)}f:1 c S(Cch), {ej}f:l is called the cycle basis of GP(w) with respect to {w(J)};?:l.

By definition of cycle basis, if {w(j)};?:1 and {v(?) }%_, are two tensor decompositions of w, then
associated cycle basis of them are equal up to phase factor. In this sense, the cycle basis of GP(w)
is canonically defined from w with phase freedom.

Note: The orthogonality of cycle basis is automatically induced from the equation (3.6) and the
relations (3.1). This shows the importance of condition (3.6) for representation of Oy.

Lemma 4.7 Let w € S(CV)®* and (H, {s1,...,5n},Q) the GP representation of On by w. Fiz
{w®YE_ the tensor decomposition of w Assume that {ej}fﬂ the cycle basis of w with respect to
{w(i)}i"::l'

Ifw € S(CV)®knta) 5 > 0 and 0 < a < k, then s(w')*Q =< w'|pna > eqy1 where
bna € S(CN)BEN+a) which is defined by

w®n (a=0)
¢’n.,a =
v @uV ®. .. @w® (0 < a<k).

Note that the right hand side in the equation of Lemma 4.7 is independent in the choice of tensor

decomposition of w.
Let
Vw=Lin<{ej:j=1,...,k} >.

Then V,, is a subspace of X and its definition is independent in the difference of phase factor of
cycle basis of GP(w).

Lemma 4.8 For each I € U,Ql{l, oo, N} 51V C Vi



Corollary 4.9

OnVw=Lin< {s;Q, Q: T €{1,... N} k>1} >. (4.3)

Corollary 4.10 H =Lin < {s;Q, Q: T €{l,...,N}*, k> 1} >.

(From this, we can consider the GP representation space as the right hand side in the state-
ment in Corollary 4.10. The characteristic property of generalized permutative representation with
cycle is the existence of a finite dimensional subspace V,,. In the case of “chain” in [5], there is no
such V,, which satisfies the property in Lemma 4.8. In the analogy of tree and root, then V,, is
associated with root.

4.2 Property of cycle basis

Assume that w € S(CN)®* is non periodic, {w¥)}%_, is a tensor decomposition of w and {e;}¥_,
is the cycle basis of GP(w) with respect to {w(j)};?ﬂ.
For j € {1,...,k}, let

Nj(w) = {z € S(CV) :< 2jw) >=0}. (4.4)

Lemma 4.11 Let j,jl =1,...,k

(i) Ifj # i, then < s(z)ejle; >=0 for each z € Ng-1(j(w).

(i) Ifj # 7, then < s(v)s(z)ejley >=0 for each v € TS(CN) and z € Ny-1(j)(w).

(iii) If j # 7, then < s('v)s(z)ej|s(z')ejf >= 0 for each v € TS(CV), z € Ny-1¢;)(w) and 7 €
No-r(jy ().

(iv) Ifj # 7, then < s(v)s(z)ej-ls(v')s(z’)ejf >=0 for each v,v € TS(CN), z € Ny-1(5)(w) and
Z, € Na‘l(j')(w)'

Assume that w € S(CV)®* is non periodic. For GP(w) = (H, {s1,...,5n}, ), define a family
of subspaces of H by

7;(w) = Lin < {s(v)s(z)ej, s(2)ej, e : v € TS(CN), z € Ny—1(5y(w)} >.

forj=1,...,k.
Theorem 4.12 If H is the GP representation of On by non periodic w € S(CN)®*, then the

following decomposition holds:

k
H =P Tj(w)

Jj=1

Note that a decomposition in Theorem 4.12 is independent in the choice of tensor decomposition

12
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4.3 Tree subspace of GP representation

Assume that w € S(CV)®F is non periodic and we use symbols 7;(w), 7 = 1,...,k, Nj(w) in
subsection 4.2. We consider T;(w), j =1,...,k.

Lemma 4.13 Fiz j € {1,...,k}.
(i) < s(2)ejlej >=0 for z € Ny-1(;(w).
(ii) < s(v)s(2)ejlej >=0 for z € N,-1(;)(w) and v € TS(C).
(iii) < s(v)s(2)e;]s(z')ej >=0 for z, 7 € Ng-10)(w) and v € TS(CN).

(iv) < s(v)s(z)eﬂs(v')s(z’)e,- >=0forzz € Ny-1(;y(w) when v € TS(CN) and v’ € TS(CN) are
different in length.

Theorem 4.14 For each j = 1,...,k, we have the following decomposition:

Ti(w) = D 7 (w)

1>0
where

FOw) = Cej,

f;l)(w) = Lin < {s(2)ej: 2z € Na_1(j)(w)} >,

f;l)(w) = Lin < {s(v)s(z)e; : 2 € Ny-1(jy(w), v € s(cNyet-1y >
forl > 2.
Note

s(2)F 0 (w) < Fi(w) (2 € Np-r(y(w)),

sFw) ¢ A (=1..,N121)

foreach j =1,...,k.

Theorem 4.15 Let GP(w) = (H,{s1,..-,n}, Q) for non periodic w € S(CM)® . Then the
following decomposition holds: :

k
"= PP w)

j=11>0
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N
Fw) = P snFPw) =2V e FDw) (12 1),

m=1
FO(w) 2 Ny (w) © FOw) = V1 @ FO (w)
for 3 =1,...,k. Furthermore

s(w(j))f(o)

o(j

yw) = FOw). (G=1,....k).

We use this decomposition in subsection 4.4.
The following illustration is the decomposition in Theorem 4.15:

tree ) f}z)(w)
part
Lin<{s1,....,sN}>®
7 (w)

No-1(5)(w)®

s(w(J)) ‘ s(w(j—l))
FO (w)
-‘7:3(1)1 (w) ]_.](0_)1 (w)
cycle ) .
part . .
FO (w) F3 (w)
F (w)

s(w(k)) @ s(w®)
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Note: By definition of ]:j(l)(w), the decomposition in Theorem 4.15 is independent in the choice
of tensor decomposition of w. It is remarkable that only one equation (3.6) induces a direct
sum decomposition of the representation space and the meaning of decomposition is clear as the
statement in Theorem 4.15.

4.4 Construction of tree basis

The aim of this subsection is to construct a complete orthonormal basis of the GP representation
by non periodic w € TS(C") according to the direct sum decomposition in Theorem 4.15. Our

strategy is to construct an orthonormal basis of fj(l)(w) for each 7 =1,...,k, 1 > 0. By definition

of fjw, it seems that the structure of H is similar to the full Fock space over CV. The precise

answer of this analogy is obtained by showing the form of basis of H from here.

Assume that w € S(CV)®¥ is non periodic, GP(w) = (H,{s1,...,s~5},) and {e,-};?:1 is the
cycle basis of GP(w) with respect to a tensor decomposition {w(j)};?:1 in Definition 4.6.

Fix j € {1,...,k}. For a component w), choose an orthogonal family {wD[):1=1,...,N}
in S(CN) such that w?[1] = w). By definition, {w[l]: 1 =2,...,N} C Nj(w) in (4.4).

Define a subset A(w) of T'S(C") by

k
Aw) = T I AT (w)

J=1m>0
where
AOw)= {wP g ouw®]},
Aw)= {w®]: 1=2,...,N },
Agl)(w)E {,w(_]—l)[l]®,w(3)®®w(k) l=2,,N } (]:2,,]6),
APw) = {aosioe AV w), Te(l,..., Ny}
for m > 2 where {&; : i = 1,..., N} is the canonical basis of C¥ and ¢ = &;; ® --- ® &;,, when

I=(i1,...,im) € {1,..., N}™. Specially, ASO) = {w}. The cardinality of these sets are followings
#0Pw) =1, #AP(w)=N-1, #A (W)= N -1N"

form>2andj=1,...,k.
Define a family {e; € H : z € A(w)} of unit vectors in H by

er = s(7)Q  (z € A(w)).
We distinguish {e; : = € A(w)} and the cycle basis in (4.2) by the kind of suffix.
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Proposition 4.16 For non periodicw € TS(CV), {e; € H : x € A(w)} is a complete orthonormal
basis of the GP representation of Oy by w.

We illustrate this basis by the following figure:

swU=D[2)e; s(wl=D[N])e;

s(w(j—l)[2]) ..... s(w(j—l)[N])

s(wW1])=s(w))

s(w(i —-1) [1])=s(w(i - 1))

€j+1 €i-1

Recall Corollary 4.2 (i). In this figure, a vertex and an edge mean a vector and an operator on the
representation space, respectively.
We check the action of Op on this basis. If m > 1, then

sieg = 8i8(x)Q = s(e; @ )N = e¢, @2 (4.5)
fori=1,...,N,z € A( ™) (w). Hence s; moves tree basis to tree basis except cycle. This action
is 51m11ar to ordmary permutwe representation ([5]). The case m = 0 is complicated rather than

that of m # 0. Define a family {g(n)}*_, of unitaries in U(N) by

gij(n) = wz(.a—l(n))[j] (7'7.7 =1...,N,n= laak)

Then o=1(n in
g A TRl M

o~ (n o (n
g(n) — Wy . [1] Tt Wy . [N]
w(ﬂ_l.(n))[l] w(ff—l("’l))[N]

for n =1,...,k. By choice of {w@ (™[]}, g(n) is a unitary matrix. By this,

s(w™[i]) = Zw"”[z Zgﬂ(o(n»s, = Qg(o(m)) (5i)

Jj= Jj=1

fori,j=1,...,N,n=1,...,k where a is the natural U(/N) action on Oy. Hence

8i = Qg(g(n))* (s(w(”) [z])) .
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By using this equation, compute action of s;:

S'L'e(v(,(m) = S‘iew(7n)®...®w(k)
= SiS(’w(m) Q& w(k))Q
=  S8;€m
= ag(m), (S('u)(tf_l(m))[z])> em
N -1
= Y (g(m)*)jis(wl ™ j])en,
j=1
= g(m)us@ " ™ [Wem + zg<m s M e

N
= g(m)yeo—1im + g(m)ijs(w("_l(m))[j] uw™ @ @uwk)n

j=2

Il
gl

a=(m i o Y(m
e + 3w M i]s(y3m)0
i=2

— ‘1(m))emm Z 1(m)) [fley; ..

where

z; = w®, T Ew(a_l(m))@)...@w(’f)’
(4.6)
Yia = w® [, Yim = (m))[ 1® WM™ e...0wk

for j=2,...,N,m=2,...,k. Note z,,, € A(_)l(m)(w), Yjm € A(_)l(m)(w) form=1,...,k and
j=1,...,N.

Lemma 4.17 Under the assumption in Proposition 4.16 and symbols (4.6), the following equation
holds:

o~ Ym T 0’ -1

form=1,...,kandi=1,...,N.
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Corollary 4.18 (Ordinary cycle basis notation) Under the assumption in Proposition 4.16, the
following equation holds:

N
o~ (m (o~ Y(m . o~ -
siem =B egmigmy + S W M jls(w M j)e,
7=2

form=1,...,kandj=1,...,N.

By Lemma, 4.17, the action of generators of O on the cycle basis is clarified. For s; action, the first
term in the right hand side is a cycle basis, again. On the other hand, other term is in fi(l)(w) and
- N
this is “outside” cycle. By checking matrix element of g(m), it is known that ('LTJZ(U 1(m))[l])l_l e CVN
is a unit vector. Hence it seems that an operator s; is arisen from a branching function system([5])
-1 N

with weight (u')z(” (m))[l])t—l' In this point of view, GP representation is regarded as a permutative
representation by “a quantﬂm branching function system”.

Note: The definition of the basis in Proposition 4.16 depends on the choice of orthonormal families
{{w(”) [:1=1,...,N}:n=1,..., k} Although, the choice of these families is independent in
GP representation by w. In the same way, the formula in Lemma 4.17 is determined by only the
choice of w and orthonormal families. Conversely, if we define a family {s1,...,sny} of operators
on a Hilbert space H by Lemma 4.17 and equations (4.5), then we have a representation of Oy.
This style of definition of representation is a generalization of permutative representation ([5]).

5 Uniqueness, irreducibility and equivalence

5.1 Uniqueness of GP representation

Lemma 5.1 Let (H,{s1,...,sn},Q) be the GP representation of On by non periodic w €
S(CN)® and {e, : z € A(w)} the canonical basis in Proposition 4.16. For x € A(w) N S(CNy®e,
there are m € N and ¢ € C such that

c-e (a =0 mod k),

(s(w)")™Meg = Iy a#0 modk
c- (< wlwj >)Ye; (j-z-k—a+1modk>

for each M 2 1

Lemma 5.2 Let (H,m,9) be the GP representation of Oy by non periodic w € S(CN)®*. If
v € H satisfies < v| >=0, then

: *\M,, —
77}1_1;1100(5(10) )Mv =0.
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Corollary 5.3 (Uniqueness of GP vector) Assume that (M, ) is a representation of Oy. IfQ,Q' €
H are cyclic vectors by m(On) and satisfy the condition (3.6) with respect to common non periodic
w € S(CN)Y®k  then there is ¢ € C such that Q = ).

Recall the equivalence of GP representations in Definition 3.3 (ii).

Proposition 5.4 (Uniqueness of GP representation) If w € TS(CYN) is non periodic, then any
two GP representations of On by w are equivalent each other.

5.2 Irreducibility

Proposition 5.5 If w € S(CY)®* is non periodic, then the GP representation of On by w is
irreducible.

In [5], the non periodicity is necessary and sufficient condition of irreducibility of permutative
representation. Although, in Definition 3.2, there is an irreducible case for periodic case, too. This
difference occurs because of that of definition of permutative representation and GP representation.
Under some additional condition, such necessary and sufficient condition holds. We explain the
periodic case in the succeeding our paper.

5.3 Equivalence of GP representation

For two representations (H1, ) and (Hz, ms) of O, (H1,m1) ~ (H2,m2) means that (Hy,m) and
(Hz,m2) are unitarily equivalent.

Lemma 5.6 Assume that (H, ) and (H ,n') are representations of On and there are z € Oy and
Q' €M such that ' (z)Q = Q. If (H,n) ~ (H,7), then 7(z) has eigen value 1.

Corollary 5.7 Let (M, 7) and (H ,7 ) be representations of On and z € On. Assume that m(z)
has an eigen vector on H. If there is no eigen vector of 7 (x) on H', then (H,m) # (H',w’).

Recall the notation ~ in TS(CY) and GP(w) for w € TS(C") in Definition 2.1 and 3.2.
Lemma 5.8 Let w,v € TS(CY) be non periodic. If w ~ v, then GP(w) ~ GP(v).

Lemma 5.9 Assume that v,w € TS(C") are non periodic and v 4 w. Let (H,{s1,...,5n}) be a
representation of On. If Q,Q € H satisfy s(w)Q = Q and s(v)Q = Q', then < Q0" >=0.

Lemma 5.10 Assume that v,w € TS(C") are non periodic. If v # w, then GP(w) # GP(v).

By combining Lemma 5.8 and 5.10, we have the following statement.

Proposition 5.11 (Equivalence of GP representation with cycle) Let w,v € TS(CV) be non pe-
riodic. There is the following equivalence:

GP(w) ~GPv) & w~w.
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6 Application

6.1 GP state

In usual theory of operator algebra, the notion of state is often treated rather than representation
of algebra. We show the relation between GP representation and state of Cuntz algebra.

Proposition 6.1 (Representation and state) Let w € S(CN)®* be non periodic.
The GP representation of On by w is equivalent to the GNS representation by a state p of
On which satisfies the following equation:

w(I) - w(J) (II| = |J| = 0 mod k),
p(s1sy) = (6.1)
0 (otherwise)

for each I,J € Uppo{l, ..., N}™ where

T (e9=1(1)
w(l) = H w;;
j=1

for I = (i1,...,im) € {1,...,N}™, m > 1, o is the shift in Zy under the following convention:

sy (I=0),
srsh = wr= 1 (I=0).
81 (J = w)a

We call the GP state of Oy by w a state which is defined by (6.1).

Corollary 6.2 Let N > 2 and w € S(CN)®*. Assume that p,, is a state of Oy which satisfies the
condition (6.1).

(1) If w is non periodic, then py is pure.

(ii) Assume that w, w are non periodic. Then the GNS reprsentations associated with p, and P
are equivalent if and only if w ~ w'.

(iii) If k = 1, then py, is always pure.

iv) Ifk =1, then for any two w, w', associated GNS representations by p,, and p,/ are inequivalent
’ w
when w # w .

In this way, we obtain many concrete pure states of O from non periodic w € T'S (cM).
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6.2 Example

Example 6.3 (i) Recall an example which is defined by an equation (1.3) in section 1. By

(ii)

(i)

Proposition 5.5, the GP representation in (1.3) is irreducible because w € S(C?)®? in (1.3)
is non periodic. Since any permutative representation of Oy with cycle is given by the case
w = g7, I € {1,2}*, (1.3) is not equivalent to any permutative representation with cycle
by Proposition 5.11. Furthermore, if a4 is a natural automorphism of O associated with
g = (9ij) € U(2), then the permutative representation GP(e;) associated with ¢; is changed
to GP(v) by a, as following v € S(CV)®*;

v= U(l) Q- ® v(k)’ 'U(j) = g{ijal + g;'ij62 (.7 = 17 B k)
when I = (iy,...,%). Since (1.3) has the length 2, it is sufficient to consider the case
v=v@v®, v =gk i+ g8 ea, VP =gl 1+ gii 62
for I = (41,42). If w in (1.3) and v are equivalent, then g3, = 0 or g3, = 0. Then
* C1 0 0 C1
g—(o Cz) r(cz 0)'

Hence v is one of the followings:
ac1 ® €y, aE1QEr, aEa QEY, GEx DEY

where a € U(1). Hence v is not equivalent to w. Therefore, GP(w) is not equivalent to any
permutative representation with cycle which is rotated U(2)-action by Proposition 5.11.

Because any w € S(C") is non periodic, a cyclic representation of Oy with the cyclic vector
which satisfies s(w)Q2 = Q is irreducible by Proposition 5.5. Because any two different elements
in S(CN) are not equivalent, GP representations associated with them are not equivalent each
other by Proposition 5.11.

For k > 1, a cyclic representation of Oy with the cyclic vector Q which satisfies
(s1 4 52)(s1 + £s2) (51 + €282) - -« (51 + £ 1) = 2¥/%Q

is irreducible where ¢ = 2mV=1/k,

6.3 Spectrum of Oy

We summarize our result by the word “spectrum” of Oy. Let SpecOpy be the set of all unitary
equivalence classes of irreducible representations of Oy, that is

SpecOpn = IrtRepOn/ ~ .
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On the other hand, denote
TSp(CY) = {w e TS(CN) : wis periodic }.

Then
TSp(CY) = {v®* € TS(CY) : v € TS(CY), k > 2}.

For example, £] ®¢€1, 61 Q&1 Qel, €1 Q2@ 61 ®eg, 61 ®e ®eEr e ® e ®eg are in TSp(CN). If
TSnp(CV) is the set of all non periodic elements in T'S(C"), then

TSnp(CN) =TS(CN)\ TSp(CN)

by definition of non periodicity. Recall the equivalence relation ~ on T'S(C") in Definition 2.1
(iv).

Theorem 6.4 There is an injective map
GP: TSNP(CN)/N —  SpecOp.

Here we try to explain a part of TSyp(C) by using geometric realization. Because any
element in S(CY) is non periodic and any two different elements in S(CV) are inequivalent, we
can identify S(CV) and Syp(CY)/~ = (S(CN) N TSNP(CN)) / ~. Hence GP([w]) and GP(w)
can be identified for each w € S(CY). Therefore S(CV) can be regarded as a (complex)sphere
which consists of spectrums of Op. In other word, S(C¥) is embedded into SpecOy.

Although, this can be obtained from ordinary permutative representations ([5]) by rotation
of U(N). Furthermore by U(N) action on SpecOy, S(CV) is an orbit of spectrums. {e1} x
(S(CN )\ {61}) is regarded as a subset of SpecOy in the similar reason.

This study is shown in succeeding our paper([11]).

Note: In this paper, we don’t treat the case “chain”. Hence there are many elements in the
spectrum of Oy except TSyp(C¥Y)/ ~. Our ultimate aim is to describe any element in SpecOy
by this way.

6.4 Other topics

There are several applications of permutative representation in quantum field theory [1, 2, 3, 4].

By restricting permutative representation of O; on CAR = OU(I)
representation of CAR and its irreducible decomposition formulae.

Furthermore we have a class of endomorphisms of Cuntz algebra by combinatrix method In
order to analyze them, the permutative representation and its theory are useful. We treat this
work in the succeeding our papar.

, we have many formulae of
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