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1. PREPARATION

We assume that all von Neumann algebras in this paper have sepa-
rable preduals.

Let (X, B, 1) be a standard Borel space, we call that R is a discrete
measured equivalence relation on (X, B, i) if R is an equivalence rela-
tion which is a Borel subset of X x X such that for almost all z € X,
the equivalent class

R(z):={ye X : (z,9) € R}
is countable. For each countable group G which acts on (X, p) as a
Borel automorphism, we obtain a discrete measured equivalence rela-
tion R which is defined by the following:
Re :={(z,9z) : T€ X, g€ G}.

By [4, Theorem 1], any discrete measured equivalence relation R is
equal to R for some countable group G.
Let R := R¢ be a discrete measured equivalence relation on (X, p).
We say that the measure p is quasi-invariant for R if i1 is quasi-invariant
for G.
In the discussion that follows, we fix a discrete measured equivalence
relation Rg on (X, u), where p is quasi-invariant.
We denote the full group of R by [R] and the groupoid of R by [R].,
le.,
[R] := {¢ : ¢ is a bimeasurable nonsingular transformation on X
such that (z,¢(z)) € R up to a p-null set},

[R]. := {¢: ¢ is a bimeasurable nonsingular map from a measurable
subset Dom(¢) of X onto a measurable subset Im(¢) of X
such that (z,¢(z)) € R up to a p-null set}.

For each p € [R]., we write I'(p) for the graph of p:
L(p) :={(z, p(x)) | € Dom(p)}.
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The map m; into the first coordinate is a projection from R into
X (i.e., m(z,y) = x). The left counting measure yy; of p is defined by
the following:

0)= [ |77 (@) " Cldte).

where | - | stands for the cardinality. We can also define the right
counting measure p, on R by the projection into the second coordinate.
Since R is a countable equivalence relation, p; and u, are equivalence.
We write D, for the Radon-Nikodym derivative dp;/dp,.

For each n € N, we define a subset R™ of X! by the following:

R™ := {(xo, x1,...,2,) € X" : z; € R(z) for all 7}.

By the same manner as g on R! = R, we define a measure p
R™.

If a Borel map ¢ from R? to the one-dimensional torus T satisfies

the followings for almost all (z,y, z,w) in R®, we call o a normalized
2-cocycle on R:

o(z,y,2)o(z, 2,w) = o(z,y, w)o(y, 2, w),
o(z,y,2) =1 if two of z,y, z are equal.
Definition 1. (1) Let f be a Borel function on R. We call f a left

finite function if D}/ % f is a finite function and f satisfies the following:

sup {[{z:2~=, f(2,2) # 0} +Hz:2~y, f(zy) #0}} <co.

(z.9)€ER

n+1 on

(2) We define a von Neumann algebra W*(R, o) which act on L*(R, p)

by the following:
W*(R,0) := {L°(f) : f is a left finite function}”,
where L°(f) is defined by
(L (HEY=,2) = Y f(z,9)E(y, 2)o(z,y,2).
(y,v)ER

We regard L>®(X, i) as functions on the diagonal of R, and define a
von Neumann subalgebra W*(X) of W*(R, o) by the following:

W*(X) = {L(a) : a € L*(X, w)}",
where L(a) is defined by
{L(a)¢}(z, 2) == a(z)¢(z, 2)-

By [5], for each element T in W*(R, o), there exists a square inte-
grable function fr on R such that

(Té. z, Z) ZfT Yy E(y, ) (x,y,z)

y~z
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for any £ € L*(R, ;). We denote T by L?(fr).

For each L?(f), L7(g) € W*(R, o), we have L7(f)* = L°(f*) and
Lo(f)L°(g) = L°(f * g), where f* and f % g are square integrable
functions on R which are defined by

f*(x,2) .= DNz, 2) f(2,2),
(f*9)(=,2) = f(z,9)9(y, 2)o(z,y,2).

y~T
(3) Let M be a von Neumann algebra and A be a subalgebra of M.
We call A is a Cartan subalgebra of M if A satisfies the following:

(i) A is maximal abelian in M,
(ii) A is regular in M, i.e., the normalizer

Nu(A) := {u € M : v is unitary and vAu* = A}

generates M,
(iii) there exists a faithful normal conditional expectation E4 from
M onto A.

It is easy to check that W*(X) is a Cartan subalgebra of W*(R, o).
Indeed, the conditional expectation E is defined by the restriction R
to the diagonal:

E(L°(f)) == L?(f]x)-
Furthermore, by [5, Proposition 2.9], each element of full group [R]
define a normalizer. So W*(X) is regular in W*(R, o).
Conversely, Feldman and Moore also show that each inclusion of a
von Neumann algebra and a Cartan subalgebra arises from an equiva-
lence relation and a 2-cocycle on it.

Theorem: 2 ([5, Theorem 1]). For each inclusion of a von Neumann
algebra M and a Cartan subalgebra A of M, there erists a standard
Borel space (X, 1) and a discrete measured equivalence relation R on
X with a normalized 2-cocycle o such that (A C M) is isomorphic to
(W*(X) € W*(R,0)).

2. MAIN THEOREM

Our main purpose is to characterize intermediate von Neumann sub-
algebras between an inclusion of a von Neumann algebra and a Cartan
subalgebra. For this, we use the following proposition.

Proposition 3 ([6, Remark 2.4]). Let A C M be a von Neumann
algebra and a Cartan subalgebra. For each A C N C M, the following
assertions are equivalent.

(1) There exists a (unique) faithful normal conditional ezpectation
from M onto N.




(2) A is also a Cartan subalgebra of N, i.e., there exists a subrela-
tion S of R. such that N = W*(S, ols).

Indeed, if EY is a faithful normal conditional expectation, from Af
onto N, then we have

N = Ey/(M) = Eff (Nu(4)")
= EN(Nu(A))”  (since EY is normal)
C NMn(4)" C N,

and conclude Ny (A4)" = N.
Conversely, for each subrelation S of R, a conditional expectation
from W*(R, o) onto W*(S,0|s) is defined by restricting R to S:

E(L7(f)) == L(fls)-

By [2, Theorem 1.5.5], this is the unique conditional expectation.
Our main theorem is the following(cf. [8, Theorem 1.1]).

Theorem 4 ([1, Theorem 1.1]). Let M be a von Neumann algebra and
A be a Cartan subalgebra of M. If N is a von Neumann subalgebra of
M such that A C N C M, then there ezists a unique faithful normal
conditional expectation from M onto N.

So we get a “Galois correspondence” for a inclusion of a von Neu-
mann algebra and a Cartan subalgebra.

Corollary 5 (cf. [3, Proposition 6.1]). Suppose M is a von Neumann
algebra with a Cartan subalgebra A of M such that M = W*(R,0)
and A = W*(X), where R is an equivalence relation on (X, p) with a
2-cocycle 0. Then there exists a bijective correspondence between the
set of Borel subrelations S of R on (X, 1) and the set of von Neumann
subalgebras N of M which contain A:

NP——)SNQR, «SI——)W*(S,ULS')QM

3. PrROOF OF MAIN THEOREM

This section will be devoted to the proof of the main theorem. In the
discussion that follows, we fix a von Neumann algebra M and a Cartan
subalgebra A of M with a equivalence relation R on (X, u) such that

(AC M) = (W*(X) S W*(R,0)).

To prove our main theorem, we construct an equivalence subrelation
of R for each intermediate subalgebra A C N C M.

Lemma 6. There exists a countable subset {pn}ner of [R]x such that
R is a disjoint union of graphs {T'(p.) }ner up to null sets.
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Proof. By [4, Theorem 1], there exists a countable group G of Borel
automorphisms of X such that

R =Rg:={(z,92):z € X,g € G}.
Since G is countable, there exists | € N U {oo} such that J := {n €
Z:|n| <1} and
G={gn.:n€eJ}, g=id, g-n=g, foreachne J.
For each n € J, we define a Borel subsets E, by the following:
X, n =0,
E,=¢{reX:(z,9.(z)) & ?:_in+1 T'(g;)}, | n >0,
{z € X : (2,9n(2)) € UjZni1 T(95)} = 9-n(E-p), n<0.

Now, we may assume that X is a Borel subset of [0,1]. Let us denote
by “<” the usual order on [0,1]. For each n € J, we define a Borel
subset F,, of F, N E_, by the following:

F .= {r € ExNE_p: gu(z) = g-n(z) and z < gu(z)}, n 20,

" Mz € ExNE_;: gn(T) = g-n(z) and z > gu(z)}, n <O0.
By the definition of {F, C E,}nes, we obtain that R is a disjoint
union of {T'(gx|E,\F.)}nes up to a p-null set. Weset I := {n € J:
w(E,\F,) > 0} and py, := gnlg,\F, for each n € I. Since p,(E, \ Fy) =
E_, \ F_, up to a p-null set, we have p_, = p;! for each n € I
and R = [J,e;T'(on) up to null sets. By relabeling I, we get the
conclusion. g

We denote the normalizing groupoid of A in M by GN y(4) , i.e.,
GN s (A) := {v is a partial isometry of M and satisfies

v*v, vv* € A, vAV* = Avv*}.
For each n € I, we set v, := LU(D;l/ZX[‘(pn)). It is easy to check that
vy, is in GN p(A).

Lemma 7. For each T € Ny(A), T = ,.c; Ea(Tv};)vn in the sense
of the strong operator topology.

Proof. For each n € I, we define T,, € M by the following:
T, := E4(Tv})v,.

Suppose T' = L°(f) and T,, = L°(f,). A direct computation shows
that

f(=z,y), if (z,y) € L(pn),
0, otherwise

fn(@,9) = (Xe(om f) (2, 9) = {
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for almost all (z,y) € R. So we have T,, = L(xr,)Tn, where F, :=
{z € Dom(p,) : f(z,pu(z)) # 0}. Since T is in Ny (A), by [5,
Proposition 2.9], f comes from the graph of an element of [R], i.e.,
{Fn}ner is a partition of X. So, we have

TE = Z T 8o,
nel

where & is a characteristic function of the diagonal. On the other hand,
since || 25__, Toll < |IT|| = 1 for each k € N, SF__ T, strongly
converges to T . Indeed, suppose £ € L2(R, ;). Since & is cyclic for
M', for each € > 0, there exists 7" € M’ such that ||T"¢, — &|| < /3.
By the above argument there exists ng € N such that

IT'Té - T' Z Tnéoll = ITT'é ~ Z T.T'&|| < .

n=-k n=-—k

for each k > ng. So we have || SF__, T,¢ — T¢|| < ¢, and get the
conclusion. g

The following lemma is crucial in our argument.

Lemma 8. For each v € GN p(A), Ea(Nv*) is equal to Avv* N Nv*.
In particular, EAo(Sv*)v is in N for each S € N.

Proof. 1t suffices to show E4(Nv*) C Nv*. For each S € N, we have
E4(Sv*) € conv{uSv*u* : u is unitary in A}~
= conv{uSv*vv*u* : u is unitary in A}~**8
= conv{uSv*u*vv* : u is unitary in A}~%8 (since vv* € A)
C conv{Sv*: Sisin N} 8 (since v*u*v € N)
= Nv*.
So we get the conclusion. a

By this lemma, for each n € I, there exists a projection e, in A such
that e, < v,v} and Ae, := EA(N v}). For each e,, we obtain a Borel
subset E, of Dom(p,) such that e, = L(xg,)-

We define a subset Sy of R by the following:

So = U F(pnlEn)'

nel

Moreover, we define S as a subset of R which is constructed by I'(p,|E£,)’s,

i.e.,
= (So) = U U Fly,

kél Iyl €1
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El,...,lk = P(plkplk_l' TPy |E’l”pz"ll(Elz)”"'ﬂ/’fll“'Pfkl_l(Etk))'

Lemma 9. The subset S defined above is a Borel equivalence subrela-
tion of R.

Proof. Since p; € [R]. and Ej is a Borel subset of X for each { € I, §
is a Borel subset of R. So it suffices to prove that S is an equivalence
relation.

Since pp = id and Ey = X up to a p-null set, S contains the diagonal
D. If (z,y) € S, then there exist I1,...,ly € I such that (z,y) €
F,...1.- So we conclude that (y,z) isin F_, . _;, € S. Finally, if (y, 2)
is also in S, then (y, 2) € Fin,,....m; for some my,...,m; € I and we get
(z,2) € .. 1o mi,..,m; ©S. Therefore we complete the proof. O

Lemma 10. The above subrelation S coincides with Sy up to a p-null
set, 1.e., m(S\ Sp) =0.

Proof. If (S \ Sp) > 0, then there exist ly,...,l; € I such that

“I(El,...,lk \\‘SO) > 0

We set F:= F}, ;. \ So and define measurable functions {f;}*_; on R
and w € GN 'y (A) by the following:

o PL/2
fi = Dll/ XF(pli|Pli_1...,,,1(",(F))))
w = LI(fy % * fi).

It is easy to see that supp(fi * -+ x fx) = F and E4(wv}e,) = 0 for
each n € I.

On the other hand, since L7(f;) € Aej,v;, C N foreachi=1,...,k,
we get w € N. In particular, by Lemma 8, Fa(wv})e, = Es(wv};) for
each n € I. So Es(wv}) = 0 for each n € I. By Lemma 7, we obtain
w =0, i.e., w(F) =0, a contradiction. Thus 4(S\ &) =0. O

Proposition 11. The von Neumann subalgebra W*(S,ol|s) of M is
equal to N.

Proof. We set L :== W*(S,0|s).
(L C N) : Tt suffices to prove N (A) C N. If T € N (A), then, by
Lemma 7
T = Ea(Tv})vn
nel

in the sense of the strong operator topology. Since each E4(Tv};)v, is
in N, T also belongs to N.
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(NCL):IfL°(f) € N\ L, then we get ry(supp(f) N (R\S)) >0
and

77 (Supp(f) N U F(Pn|D0m(pn)\En))

nel

= (supp(f) nR\S)NY F(pn)>
>0. "

So there exists n € I such that g (supp(f) N T'(onlDom(p)\E.)) >
0. On the other hand, E4(L°(f)v}) is of the form L(h) for some

n

h € L*(X). A direct computation shows that supp(h) is equal to

m(supp(f) N T'(pn)). Since p(m(supp(f) N I'(pnlpom(pu)\E.))) > 0, we
obtain L(h)(1 — e,) # 0, i.e., Ea(L7(f)v}) & Ae, = Ea(Nv}). So we
get L°(f) € N, a contradiction. O

By the above proposition, we construct a subrelation for each inter-
mediate subalgebra. Hence we have proved our main theorem.

We note that our construction of subrelations uses only the subalge-
bra and the original equivalence relation. It does not use the arguments
given in [5, Section 3.
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