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In this note we would like to explain the result of our paper [5]. In that paper
we determine the structure of all automorphisms on L(Z% x SL(2,Z)) which
preserve the subalgebra L(SL(2,Z)) globally. The proof is a modification of the
recent paper due to Neshveyev and Stgrmer for non-commutative groups. The
uniqueness of HT-Cartan subalgebras due to Popa plays a crucial role in the
proof.

The set of these automorphisms is denoted by Aut(L(Z?~xSL(2,Z)), L(SL(2,Z))),

and we write

Int(L(Z* x SL(2,Z)),L(SL(2,Z))) = {Adw : w is a unitary in L(SL(2,Z))}.
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Our main result is
Out(L(Z? » SL(2,Z)), L(SL(2, Z))) ~ Z13 % Zs,
where
Out(L(Z? » SL(2,2)), L(SL(2,Z)))
= Aut(L(Z? x SL(2,Z)), L(SL(2, Z)))/Int(L(Z? x SL(2,Z)), L(SL(2, Z)))

and Z, acts on Z,, by the inverse operation. Indeed the automorphism group
Aut(L(Z? x SL(2,Z)),L(SL(2,Z))) can be completely described by the irre-

ducible characters and automorphisms on SL(2,Z).



2. FRER

The unimodular group SL(2,Z) acts on Z? by the matrix multiplication. Then

its dual action on Z2? = T? is given by
a b\
(c d) (z,w) = (2°w®, 2Pw?)

for (Z Z) € SL(2,Z). We shall freely identify these two actions via the Fourier

transformation and this identification induces the natural isomorphism between
L(Z*xSL(2,Z)) and L>(T?)x4,SL(2,Z), where « denotes the action of SL(2,Z)
on L®(T?) induced by this action.

For each automorphism 3 on SL(2,Z), consider all measure-preserving trans-
formations S on T? such that Sg = 3(g)S for g € SL(2,Z). We denote by I
the set consisting of these type transformations. A measure-preserving transfor-
mation T on T? induces the automorphism o defined by or(f)(z) = fo T} (z)

(f € L*(T?), z € T?). For S € Iy, the automorphism os can be extended to
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L*®(T?) x4 SL(2,Z) by 05(Ag) = Ag(g), Where A, is the canonical implementing
unitary. An irreducible character x on SL(2,Z) also gives the automorphism o,
on L(Z? x SL(2,Z)) such that o,(A;) = x(9)Ag and oy z2) = id.

The following theorem is an analogue of [8] Theorem4.2 for the non-commutative
group SL(2,Z). We would like to emphasize that in the original proof [8] the com-
mutativity of groups plays a crucial role. Thus we need some more effort to prove

the theorem.

Theorem 2.1. Let v be an automorphism on L(Z?*xSL(2,Z)) satisfying y(L(SL(2,Z))) =
L(SL(2,Z)). Then there ezist a unitary w € L(SL(2,7Z)), an irreducible charac-
ter x on SL(2,Z), an automorphism  on SL(2,Z) and a transformation S € Ig

such that

v = Adwogo,,.
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This theorem enables us to determine the structure of Out(L(Z?*»xSL(2,Z)), L(S

as follows.

Corollary 2.2. We have an isomorphism

Out(L(Z? x SL(2,Z)), L(SL(2, Z))) =~ Z1z » Zs.

Proof of Corollary 2.2. First we shall show that oso, is an outer automorphism
on L(Z? x SL(2,Z)) whenever 3 is outer or Y is a non-trivial character. In order
to show this fact, we need the following claim:

Claim
L(SL(2,Z)) is singular in L(Z?xSL(2,Z)), i.e., if w is a normalizer of L(SL(2, Z))
in L(Z2? x SL(Z,Z)), then w must belong to L(SL(2,Z)).

The proof of this claim will be postponed until the end of this section.
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If 050, = Adw for some unitary w € L(Z* x SL(2,7Z)), then w is a normalizer
of L(SL(2,Z)) and hence w € L(SL(2,Z)) by the above claim. Then by the
proof of [8] Proposition 2.2, we have w = c), for some scalar ¢ and g € SL(2,Z).
(Indeed this can be easily seen by using the Fourier expansion of w.) Then the
direct computations show that this can be occur only when 3 is inner and ¥ is

trivial.

Thanks to the above consideration, we have only to prove that the subgroup
generated by {os}ser, s and {oy}y in Aut(L(Z* x SL(2,Z))) is isomorphic to
Z12 b Zz.

It is a well-known fact that SL(2,2Z) ~ Z4 %z, Z¢ where

(&0 (7))

are generators of Z4, Zg and Z, respectively. Hence all irreducible characters on

SL(2,Z) are of the form x; * xo for some x; € Z4 and x, € Zg which coincide on
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Z,. Thus it is easily seen that the group consisting of all irreducible characters
on SL(2,Z) is isomorphic to Z;,.

It is also well-known that up to inner automorphism, the map § = Ad <(1J (1))
is the unique outer automorphism on SL(2,Z) which does not come from some
character([6]). Clearly this map 8 induces the inverse operation on Zg, Zg¢(C
SL(2,7)) and hence on the characters. Define the transformation S on T? by
S(z,w) = (z,w). Then the direct computations show that S € Is. Note that S
(and o5) has period 2 and 050, = 0,305 holds. In [3] Golodets showed that I;4
consists of exactly two elements; identity map and conjugation map. It is easily
seen that S;' - S, € I,y if $1,5; € I5. Since the conjugation map is given by

(—01 _01) (the generator of Z,), we have the above statement. O

In order to prove the above theorem, we need the uniqueness theorem for HT-

Cartan subalgebras due to Popa. More precisely, we need:
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Theorem 2.3 ([10] 4.1. Theorem.). Let v be an automorphism on L(Z? x

SL(2,Z)) satisfying v(L(SL(2,Z))) = L(SL(2,Z)). Then there erists a unitary

u € L(Z? x SL(2,Z)) such that Adu*y(L(Z?)) = L(Z?).

Thanks to this theorem, we are now in the same situation as that of [8]. Un-

fortunately Neshveyev and Stgrmer’s proof uses the commutativity of the group

frequently, so we cannot apply their argument directly. However their argument

does work in our setting with some modifications.

The rest of this section will be devoted to the proof of the main result. Our

strategy is very much simple, which is a modification of the argument in the

paper due to Neshveyev and Stgrmer ([8]) in the non-commutative group setting.



We consider the standard representation of L®(T?) x4, SL(2,Z) on L*(T?) ®

I?(SL(2,Z)). Let 7 be the representation of L>(T?) given by

m(f) = Z ag‘l(f) ® eg,

geSL(2,Z)

where e, is the minimal projection on Cé, (¢ € SL(2,Z)) and f € L>®(T?).
We sometimes omit the symbol 7, so the reader should not confuse m(L*°(T?))
with L®°(T?) ® I. We denote the left regular representation (resp. the right
regular antirepresentation) of SL(2,Z) on [2(SL(2,Z)) by ), (resp. p,) (9 €
SL(2,Z)). Thus L(SL(2,Z)) = {Ag}’g'es L2,z a0d L(T?) %o SL(2, Z) is generated
by 7(L*(T?)) and L(SL(2,Z)).

The algebras L=(T?) and L(SL(2,Z)) act standardly on L%(T?) and [>(SL(2, Z))
respectively. For each automorphism o € Aut(L*®(T?)) (resp. o’ € Aut(L(SL(2,Z)))),

we denote its canonical implementing unitary by u, € B(L?(T?)) (resp. vy €
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B(I>(SL(2,7)))). For each measure-preserving transformation S on T?, we write

us = Usg. We also use the notation uy = u,,, vy = v,, and vg = vsg (S € Ip).

The modular conjugation of L*(T?) x, SL(2,Z) is denoted by J. It is easily

seen that Jr(f)J = f® I and J(I ® Ag)J = u, @ pj.

Let v be as in the theorem and take a unitary u € L*®°(T?) x, SL(2,Z)

such that u*y(L*®(T?))u = L*®(T?) (Here we use the uniqueness of HT-Cartan-

subalgebras). Let # = Adu*y. The canonical implementation of v is given by U,

and we define U = Ju*JU,. Then it is easily seen that AdU|pe(12)x.5L(22) =

v and AdU|p~(m2)er = 7. (Remark that in L®(T?) x, SL(2,Z), 7 preserve

7(L>°(T?)) globally. Hence we can define the automorphism ¥®1I on L*(T?)®1).

Define W = U(u ® v3). Clearly W belongs to L*(T?) ® R(SL(2,Z)). (See [8],
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Consider the Fourier expansion

¥ = Y EGTT WA,

g€ESL(2,Z)

where E denotes the trace-preserving conditional expectation on m(L*(T?)). Let

féh) be the support projection of E(37'(Ax)A;). The next lemma is obvious.

h
Lemma 2.4. f{" L fg,h) (9#9) Xesrez fm =

For almost all z € T?, there exists the unique element g(h,z) € SL(?, Z) such
that f;?,z,x)(x) =1and fP(z) = 0 (g # g(h,z)). Define §(h,z) = g(h,0™'z)
where o is a measure-presearx)ing transformation corresponding to %, i.e., o sat-
isfies ¥(f) = foo™! for f € L>®(T?).

The following lemma is well-known.
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Lemma 2.5. For almost all x € T?, we have g(h,z)"'z = o~ 'h~loz. The
map g(h,z) is a I-cocycle with respect to ¥ 'a7, i.e., g(h,z)g(k,0"*h~loz) =

g(hk,z). (Hence §(h,z) is a 1-cocycle with respect to a.)

The automorphism = is extended to R(SL(2,Z)) by Aduv,.
By using the Fourier expansion of 57!()\,) and Lemma 2.4, we can show the

next lemma.
Lemma 2.6. W (h™'z) = t(h, 2) paW (2)Y(0}(1 1)) where t(h, ) = E(Y(Ag(h,2)) M%) (2)-
From Lemma 2.6, we can easily show the following.

Lemma 2.7. Denote the comultiplication on R(SL(2,Z)) by A, which is defined

as A(pg) = pg ® pg. Then we have

F(h™'z) = t(h,z)®(h)*F(z)¥(h),



where F, ® and ¥ are defined by F(z) = v (W (z)) @y (W (z)) Aoy (W(z))*,

®(h) = v on)* ® v (pon)* and ¥(h) = Ao~y (pn)*. Note that ® and ¥ are

unitary representation of SL(2,Z).

We will use the following well-known fact: there is a sequence {h,}32, C

SL(2,Z) which has the properties (1) h, tends to infinity, (2) for any finite

set 8 C Z2? such that (0,0) ¢ Q, we can find a sufficiently largé no such that

h,2 N Q = 0 for n > ny. Indeed if we let for example

then it is easy to see that this sequence h,, is the desired one.

Take such {h,}32, C SL(2,Z) and fix it. Recall that the unitary F' belongs to

L®(T?)®R(SL(2,Z))®R(SL(2,Z)). The unitaries ®(h) and ¥(h) (h € SL(2,Z))

belong to I ® R(SL(2,Z)) ® R(SL(2,Z)). Let zn(z) = t(h,z). Then 2, is an
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unitary element in L*°(T?). The previous lemma means that

ah(F) = Zhé(h)*F\I’(h)

Lemma 2.8. The automorphism § = AdF on L®(T?)®R(SL(2,Z))QR(SL(2,Z))

satisfies

6(I ® R(SL(2,Z)) ® R(SL(2,Z))) = I ® R(SL(2,Z)) ® R(SL(2, Z)).

Proof. By using the previous lemma, it is easily seen that
FzF* = ®(h)ay(F)Y(h)*z¥(h)on(F)*®(h)*

for any z € I® R(SL(2,Z)) ® R(SL(2,Z)) (||z|| £ 1). In particular this equality
holds for h,. For any ¢ > 0, we can replace F' by Fy such that it has the finite
support as an element of L(Z?)®R(SL(2,Z))®R(SL(2,Z)). That is, by Kaplansy
.density theorem, there exists a finite subset 2 C Z? such that Fy = 3 . a40, (a4

is an element of R(SL(2,Z))® R(SL(2,Z))) and ||F — Fy||2 < € and || Fol| < || F||.
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Hence we get

| Fox By — ®(R)an(Fo) ¥ (h)* 2 ¥ (h)an(Fo)* ®(h)*|| < 4e.

As n goes to infinity, the support of ®(h)ay(Fo)¥(h)*z ¥ (h)an(Fo)*®(h)* goes
to infinity except for the unit (0,0) € Z2%, while the support of FozF§ does not
change. Since ¢ is arbitrary, this means that the support of FzF™* consists of only
one point (0,0). Hence FzF* € I ® R(SL(2,Z)) ® R(SL(2,Z)).

By the same argument, we can also see that F*zF € I ® R(SL(2,Z)) ®

R(SL(2,Z)). Thus we get the statement. 0

Let II(h) = F¥(h)*F*®(h). Then we have ay(F) = z,II(h)*F. Thanks to the

previous lemma, each II(h) belongs to I ® R(SL(2,Z)) ® R(SL(2,Z)).

Lemma 2.9. (i) 24 is an a-one cocycle.

(i) II is an unitary representation of SL(2,Z).

79



Proof. Obvious. O
Since F¥(h)F*TI(h) = ®(h) and FU(h)F*, TI(k), ®(h) are representations, we
have FU(h)F*II(k) = II(k) F¥(h)F*. Indeed we have
FU(h)F*FU(k)F*TI(h)TI(k) = ®(hk) = B(h)D(k)
= FU(h)F*II(h)F¥ (k) F*TI(k).

Hence F¥(k)F*II(h) = II(h)F¥(k)F*.

Lemma 2.10. The von Neumann algebra geherated by II(SL(2,Z)) is finite di-

mensional.

Proof. As noted above, we know that II(SL(2,Z)) C (FY(SL(2,Z))F*)N(R(SL(2,Z))®
R(SL(2,Z))). Since AdF preserves R(SL(2,Z)) ® R(SL(2,Z)) globally, it is
enough to show that (¥(SL(2,Z))) N (R(SL(2,Z)) ® R(SL(2,Z))) is finite di-

mensional. Recall that ¥(SL(2,Z))" = A(SL(2,Z))" = {g®g: g€ SL(2,Z)}".
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Combining this with the fact SL(2, Z) ~ Z4xz,Zs, it is easy to see that (¥(SL(2,Z)))'

(R(SL(2,Z)) ® R(SL(2,Z))) is 4-dimensional. O

Lemma 2.11. There ezist unitaries 2 € L®(T?) and A € R(SL(2,Z))®R(SL(2,Z))

such that F = z* @ A.

Proof. Since I is a finite-dimensional representation, we may assume that II(hy,)
converges to a unitary X € R(SL(2,2)) ® R(SL(2,Z)) in the norm topology.
Hence

|lah, (F) = 2n, X F|
converges to zero as n — co. Take a Spectral projectiori e of X such that eX =

wX where w € T. Since e is a fixed point of a (because e € R(SL(2, Z)) ®

R(SL(2,Z))), we get

||ath,, (eF) — zn,w(eF)||



converges to zero. For each normal state p on R(SL(2,Z)) ® R(SL(2,Z)), we

denote by T, the slice map from L®(T?)®R(SL(2,Z))®R(SL(2, Z)) onto L*>(T?),

ie., T,(z ®y) = p(y)z for ¢ € L°(T?) and y € R(SL(2,Z)) ® R(SL(2,Z)).

Obviously T, commutes with . Hence

|loth, (Tp(eF)) = 2n,w(T,(eF))]|

converges to zero. Since eF' is a non-zero element (because F' is unitary), we can

choose p such that f = T,(eF) is also non-zero. Next we claim that g = |f| is a

constant function. Indeed, since

lloh, (f) = Zn,w ]

converges to zero, ||as, (g9) — g|| also converges to zero. As in the proof of Lemma

2.8, by comparing their supports as elements of L(Z?), we conclude that g is

constant. Thus we may assume that f is unitary. Since both ||as, (F) — 25, X F||

and ||ap, (f) — 2n,wf|| converge to zero, ||an, (F) — (Wf*on,(f)) X F|| and hence
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llan, (f*F) —wX (f*F)|| converge to zero. Considering the supports again, we see

that f*F is a (operator-valued) constant function, i.e., f*F € I® R(SL(2,Z)) ®

R(SL(2,Z)). This means that F' is of the desired form. O

Combining this lemma with o, (F) = 2, ®(h)*F¥(h), we get

This implies that the map h — 5‘1'1_—:%@—“”2 is independent of the choice of z

almost everywhere and define the irreducible character x on SL(2,Z). Hence we

have t(h, z) = 2B

— z(h~1z)

Therefore if we replace u by uz, we may assume that t(h,z) = x(h), F(h™'z) =

x(h)®(h)*F(z)¥(h) for almost all z,y € T2. Indeed, we have

B3N (&) = 1(h,2) = S5 5x(B)
and hence

E(FOA)A) = zan(2)* x(R)F(FP).
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E(z"wv(A)uzA;) = x(WA(f{V).
Of course uz satisfies (uz)*L®(T?)(uz) = L*(T?). Hence we may assume that
t(h,z) = x(h) and F(h~'z) = x(h)®(h)*F(z)¥(h) for almost all z,y .e T?.
From this equation, the same argument as in the proof of Lemma 2.8 shows the

following.
Lemma 2.12. F(z) = F(y) for almost all z,y € T?.

Lemma 2.13. There ezist a unitary wg € R(SL(2,Z)), an automorphism 3
on SL(2,Z) and the map T?> > z — g(z) € SL(2,Z) such that g(h,z) =

9(z)B~ ' (h)g(h™'z)™* and v(py) = x(9)wiPs(g)wo-

Proof. Since F is a (operator-valued) constant function, we have

YU W (2))@7 (W () Aoy (W (z))* = v 1 (W (y)®7 (W (y)) Aoy (W (y))*.
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By letting F'(z,y) = v {(W (y)*W(z)), we get
F(z,y) ® F(z,y) = A(F(z,y))-

This implies that for almost all z,y € T?, we can find the unique g(z,y) €
SL(2,Z) such that F(z,y) = py(zy)- Fix zo € T? and let wo = W(xo), g(z) =
g(z,z0). We then have

v'l(wSW(x)) = F(20,2) = Py(ao2) = Py(z)
and hence W (z) = woy(pg(z)). Combining this with W(h~'z) = X(h)phW(x)fy(pg(h’z)),
we get

7! o Adwi(pn) = X(h™")Pg(a)-15(h.2)g(h—12) -
From this equation, we can find an automorphism S on SL(2,Z) such that

g(h,z) = g(x)B 1 (h)g(h'z)~" and v(py) = X o B(g)wsPs(s)Wo- 0

The rest of the proof is completely same as that of [8]. Hence we would like to
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Finally we would like to show the claim stated in the proof of Corollary 2.2.
The proof is essentially same as that of [8] Theorem 2.1. However, since we are
dealing with the non-commutative group SL(2,Z), in order to prove the claim we

need the triviality of “operator-valued eigenfunctions” on T?. We have already

used this type argument in the proof of Lemmas 2.8, 2.11 and 2.12.

Proof. (Proof of the claim which we have postponed) Let w be a normalizer of
L(SL(2,Z)). Define § = Adw and v = w(I ® v}). Note that v € L®(T?) ®

R(SL(2,Z)). Compute

v(I ®vg) = w = JAJwIALJ

= (un ® pp)w(u} ® pr)

Hence we get ap(v)(I ® p;0(pr)) = v. Then the same argument in the proof of

Lemma 2.8 shows that v € R(SL(2,Z)). Thus w = v(IQuy) € IQB(I?(SL(2,Z))).
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Combining this with the fact that w commutes with JA,J = uy ® pj,, we see that

w must belong to L(SL(2,Z)). O
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