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Abstract

Constructible falsity ~A, also called strong negation, is an alternative to Heyt-
ing’s negation —A (+ (A — 1)) in intuitionistic logics. In this paper we give the
proofs for Kripke completeness of the basic logic N-, and its five variations. Among
them the most fresh results are about the logics with what we call omniscience
axiom, -~ (AV ~A). We present two different proofs based on tree-sequents: one
is by an embedding of classical logic, and the other is by an extended version of
tree-sequent.

1 Introduction

Intuitionistic logic Int introduced by Heyting is a realization as a formal system of
Brauwer’s intuitionism as to mathematics. However, its negation —A, which is equiv-
alent to A — L and called Heyting’s negation to make distinct from ~A, is subject
to criticisms that it is not constructive enough. For instance, it seems a natural de-
mand from constructivists’ point of view that in order to show —Vz A, we must know
a concrete object t such that —A[t/z] holds. But this is not the case with Heyting’s
negation.

~A, called constructible falsity or strong negation, was introduced independently
by Nelson [Nel49] and Markov [Mar50]. ~A is axiomatized in the Hilbert-style system
as follows:

A— (~A—> B)

~(AANB) o ~AV~B ~(AVB)+ ~AAN~B
~(A—- B)~ AAN~B ~~Aeo A ~Ao A
~VzA o dz~vA ~JzA o V~vA

It is easy to verify that ~ is free from such criticisms as stated above.
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The logic* N (N stands for Nelson’s logic) is the —-free fragment of Int plus con-
structible falsity ~ axiomatized as above. The basic logic considered in this paper is
the logic N-,, N plus Heyting’s negation —.

We will also consider the variations of N_, which are obtained by adding some of
the following characters:

D Constant domain aziom, Vx(A(z) V- B) — VzA(z) V B. Here z have no free
occurrences in B. Its name comes from the fact that a Kripke model for Int
which makes this axiom valid has a constant domain, i.e. the same domain for
every possible world. This is one of the axioms which characterize intermediate
(or super-intuitionistic) logics.

O ——(AVv~A), which the authors would like to call omniscience ariom. This axiom
is needless to say peculiar to the logics with both ~ and —, and as we shall show
later, it is interpreted as a reference to Kripke model that every possible world
has an omniscient world which approves it. This axiom may also be considered
as one of the weaker versions of the law of excluded middle, AV ~A'.

P This indicates omitting the axiom A — (~A — B), and as a result we have
paraconsistency.

With these three characters we obtain 8(= 23) variations of N-, which form the
lattice (the upperright the stronger) presented below (Fig. 1).

N_DOP(x) ~ N.DO
4 b
N_DP » N_D
+D N_OP(x) -~ N.O
+0
N-P +~ N,
—P

Fig. 1: N_-family

In the literature [AN84] ND, NP or NDP (—-free fragment of N.D, NP or N_DP)
is referred to as N*, N~ or N*—, respectively.

*In this paper the word logic is used for a pair of a formal language and the set of formulas of that
language which are admitted as theorems. To define the set of theorems, we will adopt Gentzen-style
sequent systems.

t—AV —-A is said to be the weak law of ezcluded middle and characterizes intermediate logics.

93



In this paper we prove Kripke completeness of logics N-, N_-D, NP, N_-DP, N_O
and N_DO.

For each logic we introduce a Gentzen-style sequent calculus, Kripke-type possible
world semantics, and give the correspondence between them, i.e. the completeness
theorem?. For the proof of completeness, we adopt the general method tree-sequent.
Roughly stated, a tree-sequent is a finite tree each of whose nodes are associated with a
sequent. Since it simulates the shape of Kripke models for variations of Int, we can easily
obtain a counter-model for an unprovable sequent by expanding the corresponding tree-
sequent, hence the proof of completeness. In the literature [Kas99] applications for Int,
some intermediate logics, modal logics, and relevant logics are presented.

For the logics N.O and N_DO, we can hardly prove their Kripke completeness by
simply applying the tree-sequent method, because omniscience axiom may be regarded
as a reference to “upper bounds” of Kripke models. Fresh results in this paper lie in
the proofs for them; we present two different methods to consider the logics with O.
One uses an embedding of classical logic Cl into N-O, and its idea is that an omniscient
possible world can be induced by a Cl-model (which is usually called a structure). The
other proof is by an extended version of tree-sequent which the authors would like to
call tree-sequent with guardians. ,

Kripke completeness of the logic N.OP or N_.DOP remain unconsidered in this
paper. It is hard to find an embedding of classical logic into those two logics, so that
our first method fails. And the method of tree-sequent with guardians also fails, while
tree-sequent can treat the logics NP and N-DP; in fact, the authors are not certain
as to which type of models N_OP or N_.DOP is complete. In any case, they require
more inspection$.

We describe the notations used in this paper.

The relation = denotes syntactical equivalence. For example, AA B and B A A are
logically equivalent in those logics considered in this paper. However, AAB # B A A.

Aly/z] is a substitution, i.e. a formula obtained by substituting every free occur-
rence of z in A by y. It is not preferable that by substituting = by y a new bound
variable comes to existence, which is the case when a free occurrence of z is in a scope
of Yy. We avoid such cases by taking variants, i.e. substituting bound variables.

As we do in the Tarski-type semantics for Cl, in defining semantics we will introduce
constants each of which designates a certain individual w. This kind of constant is said
to be the name of u, and denoted by u.

We will sometimes denote a formula by A(z) to emphasize that x has free occur-
rences only in A, as we just did to demonstrate constant domain axiom. However,
more often we do not add (x) but do put explicitly as “x has no free occurrence in

For a finite set of formulas T = {A4;, ..., An}, the formula AT (or \/T') is defined as
AiAN...NA, (or AjV...VA,). IfT' =0, then it is T (or L), which is an abbreviation
of A — A (or =(A — A), respectively).

$Some other cut-free sequent systems are presented by Ishimoto {Ish70], and Kripke completeness
of ¥ (N plus constants) is presented by Tanaka [Tan80] whose proof is done differently from ours.

§When we consider a logic with both = and ~ in it, it seems reasonable to admit ~—A — A as an
axiom. However, this results in the fact that the formula =4 — (~—A — B) is provable even without
the axiom A — (~A — B), which designates that any paraconsistent variation of N~ can have only
limited paraconsistency.
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2 Logic N.

2.1 Sequent System GN_

Here we introduce the Gentzen-style sequent system for the logic N-..
The language of the logic N-, consists of the following symbols:

e countably many variables, x1, 22, ... ;
e countably many m-ary predicate symbols for each m € N, pL , p2,, ... ;
e logical connectives, A, =, —, ~, V. |
V and 3 are introduced as defined symbols:
AVB=n~(~AAN~B) JzA = ~Vz~A

A < B is an abbreviation of (A — B) A (B — A).

We do not consider constants or function symbols, which makes the arguments
simpler without essential loss of generality.

Terms and formulas of N-, are composed in the same way as those of Cl, and note
that ~ is unary.

A sequent is defined as an ordered pair of finite sets of formulas, therefore the rule
of exchange or contraction is omitted.

Now we present the axioms and the inference rules of the Gentzen-style sequent
system GN_, for the logic N-:

| (axiom 1) T oAS (axiom 2)
E—{:——z—:—ﬁ—n (weakening)

'=sAA A,§3=>II( £)
T,x = A1 i
'=AA I'=AB

ABT'= A

AABT = A ML) TS AAAE R
I'sAA BY=TI AT =B
ASBTssAn Y TSA5B (=R)s
T'=AA . AT=
AT = A (L) §5=a OR)s
Aly/z], T = A ' = Alz/x]
ol e e W) 3}
VzA,T = A (VL) T = VzA ("R)s,ve
~Al'=>A ~BTI'=A I'= A,~A~B
H) ? ~ b 3. N/\R
~(AAB),T'= A (~AL) F=>A,~(A/\B)( )
A, ~B,I'= A (~ooLL) = AA 1"=>A,~B( LR)
~(A— B),'= A = A,~(A— B)
AT = A = AA
~ar=A N raa g 7R
AT=A T=AA
~~AT = A (~L) FSA A (~~R)



~Alz/z),[ = A (VL) = A ~Aly/x]
~VzA, I = A Ve I'=> A,~VZA

(~VR)

Here the subscript S indicates the condition that the succedent of the conclusion consist
of only one formula, and VC the eigenvariable condition, i.e. the eigenvariable z must

not appear in the conclusion.
A formula A is provable in GN_, GN_, - A, if GN_ + = A.
Now we consider logical equivalence in N—, which require some remarks.

DEFINITION 2.1 (LOGICAL EQUIVALENCE IN N.)
Let A and B be formulas of N.. A and B are logically equivalent, A =y_ B, if
GN_+ A~ Band GNL F ~A & ~B. :

THEOREM 2.2 (THE EQUIVALENCE THEOREM)

Let C[] be a formula of N, where the special atomic formula [] is allowed to appear,
and C[A] a formula obtained by substituting every occurence of [] by the formula A. If
A =n_ B, Then C[A] &N, C[B].

Proof. By the induction on the construction of C[]. |

REMARK 2.3

It is common in a logic L which does not have ~ to define the logical equivalence
A BbylLF A« B. However, this is not enough to allow the equivalence theorem
for the logics with ~ as we shall see in lemma 2.8.

It is required naturally that the meaning of a formula A is invariant as to substitu-
tion of bound variables.

LEMMA 2.4
If z has no free occurrences in A, then VzA[z/z] =n_ VxA, i.e. variants are logically
equivalent in N-.

2.2 Kripke-Type Semantics for N_

The Kripke-type possible world semantics for N_, is introduced as a natural extension
of that for Int, which is one of the reasons why logics with constructible falsity are

worthy of consideration.
Let (M, <) be a poset, W a non-empty set, U be a map of M into ‘PW, satisfying

e U(a) # 0 for all a € M;
e a < b implies U(a) C U(b).

For every predicate symbol p (we assume p is m-ary), we define two interpretations of
pina € M, p! (@) and p!" (@) as subsets of U(a)™, satisfying

e a < b implies p!* @ C pI*®) apd pf~ (@) C pI~ ®).

o p1+(a) Nnpl~ @ =g,
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Then the quintuple M = (M, <,U, It,I7) is said to be an N_-model.

An element a in M is said to be a possible world, and can be thought of as a stage
of our knowledge. a < b can be read as b is more advanced, knows more than a. U(a)
is called a domain of a, being the set of individuals recognized by a.

Given an N-.-model 901, we can obtain the two relations between a € M and a
closed formula A, a =t A and a =~ A, by extending two interpretations I* and I~
in the procedure shown below. a =7 A or a =~ A may be interpreted as “a verifies
A” or “a refutes A” respectively (this terminology the authors hope reflects the idea
of constructivism).

a =t A and a == A are defined inductively on the construction of the closed
formula A:

akE=Yp(uy,...,um) = (ul,...,um)epI+(“);
a|=—p(£1_,...,u_m)‘ <  (u1y...,Up) €EP
a=YAANB <= aEtA and ot Bj;
al="AAB <= alE"A or afE" B; ‘
aE=tA—-B <= foreveryb>a, bt A implies bt B;
aF"A—>B <<= aF'A and af" B;

I~ (a) .

aEt-A <<= foreveryb>a, bIET A;
aET-A < akEtA;
aEt~A <<= aE"A;
aE"~A & afETA;

aEtVzA <+= foreveryb>aandeveryuecU(b), bt Alu/z];
al="VzA <= forsomeu € U(a), al" Alu/z].

The case where neither a =t A nor a =~ A holds is interpreted as “a cannot tell
the truth of A” and denoted by a &1~ A.

A formula A of N is valid in an N_-model M = (M,<,U, I, I7), M | A, if
a =t VT A for every a € M, where VZ' A is a universal closure of A. A is valid,
N- = A, if A is valid in every N_-model.

A sequent I' = A of GN., is valid (or valid in M), N, ET = A (or M T = A),
if the formula (AT") — (V/ A) is valid (or valid in 21).

The result of the following lemma is necessary for a € M to be considered as a stage
of knowledge, and is verified easily by the induction on the construction of a formula

A.

LEMMA 2.5
Let A a formula of N, M = (M, <,U,I*,I") be an N_-model, a,b € M and a < b.
Thena =t A (ora =" A ) implies b =% A (or b |=~ A, respectively).

The next lemma is proved by the induction on the constructif_)n of a formula A, the
base case of which is verified by the condition of an N_-model p!” (® np! (®) = @. This
is not the case for the logics with the letter P, i.e. those which allow paraconsistency.

LEMMA 2.6
Let A a formula of No, M = (M, <,U, I*,I7) be an N-model and a € M. Then it is
impossible that both a =1 A and a =" A hold.
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The soundness of the sequent system GN_, with respect to the Kripke-type semantics
defined above is also easily proved by the induction on the derivation in GN_..

THEOREM 2.7 (KRIPKE SOUNDNESS OF GN.-,)
IfGNLFT = A, then N T = A.

From the soundness theorem we can obtain the following result which justifies the
definition of logical equivalence in N_, (see remark 2.3).

COROLLARY 2.8
GN- F A & B does not necessarily imply GN- - ~A — ~B.

Proof. Let p and ¢q be distinct 0-ary predicate symbols, then it is easy to verify
GN- F (p A ~p) © (g A ~q).

Here let M = (M, <,U,I*,I7) be an N.-model where M = {0}, 0 =% p, 0 £+~ q.
Then 9 (£ ~(p A ~p) & ~(g A ~q), hence GN-, I/ ~(p A ~p) & ~(q A ~q) by the
contraposition of the theorem. 1

Now we can give some examples of provable / unprovable formulas in GN_. We

present them in comparison with Cl or Int. In the table presented below, — is denoted
by ~ for Cl or Int.

AV~A

(A->1)—->~A
~(AANB) - ~AV ~B
~~A— A

~Nz~A — 3zA
~(AN~A)

(A— B) — (~B — ~A)
(~B = ~A) - (A B)

x x x OO0 x x|&

XxOQOOx x xQx|3

0]0]0]0]0)010)0)[=

2.3 Tree-Sequent System TN_

Here we introduce TN-, the tree-sequent system for N.,, and consider the relation
between TN_, and the Gentzen-style system GN-. :

In the next subsection, we shall prove Kripke completeness of GN_ using tree-
sequents. In general, a formal deductive system (of Hilbert-style, Gentzen-style, tableau
method, or else) is designed to derive a formula which is valid in any model of the cor-
responding semantics. This request can be stated differently, as “a formal deductive
system should derive a formula for which we have no counter models”. This may help
us understand how the idea of tree-sequents is obtained or justified.

In variations of Int, we can assume a Kripke model to form a tree by taking every
path in an original model as a new node. Thus if we would like a unit of deduction to
simulate the shape of Kripke models, its shape should be a tree.

A tree-sequent T of TN. is a finite tree each of whose nodes is associated with its
own I' 2 A, where I' = A is a sequent of GN—,, a a finite set of variables, and the
following conditions are satisfied:

e Let a be an arbitrary node of 7, ag(= 0), a1, ..., an(= a) a path from the root
0 of T to a, and I'; = A, associated to a;. Then ag, o, ..., an are disjoint.
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The (disjoint) union ap Uy U---U e, is said to be the set of available variables
at the node a.

o Every free variable which appears in the sequent associated to a is available at a.

If I' 2 A is associated to a node a (we will denote this by a : I' 2 A), then a is
the set of variables which are available at a for the first time in tracing from the root.
We present an example of a tree-sequent of TN-:

" r(z,y)

~(p(z) V ~p(z)) % p(z) V ~p(2) Vz(g(y) V r(z,v) ¥ av) v Var(z,y)

= —=(p(z) V ~p(z))
This tree-sequent can also be denoted in the following styles:
Yoy
2 v w} v
~(p(z) V ~p(z)) = p(z) V ~p(z) Vz(a(y) Vr(2,9)) = q(y) VVar(zy)

& p(z) v ~p(=))

or
[ & @) vrp(@) | [0 V~pa) S pa) v ep@) ]
[Valaw) Vr(z,v) ¥ aw) v Var(z,y) | B r(z,9)] |

We will adopt the last one for the economy of space, i.e.

’Tl : m

r2a |

However, this style hardly clarify the structure of a tree-sequent. It will help us un-
derstand better to rewrite in the first style.

is denoted by [['2 A|T;...Tn)

The tree-sequent system TN_, derives tree-sequents using the following axioms and
inference rules:

(axiom 1) (axiom 2)

...(Ag,“... ...[A,NAg,x,l...

For instance, (axiom 1) is interpreted that if a sequent of the form A = A is associated
to any node of 7, then TN_ 7.

o C3A|---
-.-[E,I‘%A,HL--

This is interpreted as we can add any formula to the antecedent or the succedent of a
sequent associated to any node.

(weakening)

...[rgA,A|... ...[A,g__?>11|...

(cut)
L nE3A0)--




Here the tree-structure and the nodes not displayed are the same among the conclusion
and the two hypotheses¥.

a B

Aar2AlmRo)eg

...

Here a formula A in the antecedent of a node b: A, X 2 As dropped to the antecedent
of a sequent associated to the mother of b.

- [A,B,T3A]|. .
.. [AAB,T2A]|-..

Here the rule (AL) of GN., is applied to one node (more precisely, a sequent associated
to one node), and the tree-structure and the nodes not displayed are the same between
the hypothesis and the conclusion.

(AL)

...[Fz‘-’;A,Al... ...[pgA,B|...
.2 A,AAB]|--.

Here the tree-structure and the nodes not displayed are the same among the conclusion
and the two hypotheses. This kind of remark is to be attached to every inference rule
presented below.

(AR)

-~-[F=">A,A|--- - [B,x321M|--- (L)
. [A-B,I,T2AI]|---
|
...[pgAl...[A=>B]...]... (oR),

. T2AA-B|--

Here the daughter A Lp (which must be a leaf) of the node I' 2 A in the hypothesis
is trimmed. The subscript t will be added to the rules of this type, i.e. a leaf is trimmed.

T2 AA| . T2A a1
mhApgAynhm PR A-A-- (oR).
...[A[y/z],ng... (VL)

...[va,ng...

1 - N [ G717 | O
T2 AVzA|---

z is not available at the node associated with I' = A, thus z does not appear as a free
variable in "' = A.

YCut rule is necessary for the proofs of lemma 2.9 and its counterparts for other logics, which are
used only when omniscience axiom is involved. Hence just to prove the completeness of the logics
without the letter O, we do not need cut rule.

Moreover, if the Gentzen-style system is proved to be cut-free, then cut rule of the tree-sequent
system can also be omitted.
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. [~ATZ Al . [~\BT2A|. (AL) T3 A ~A~B| (~AR)
- [~(AAB),T 2 A|... ...[pgA,N(A/\B)]...
--[A,~BTZ2A|--- .. AAl--- -T2 A,~B]|---
| oy B2 A4 [r L m)
[~(A-=B),T2A]|... L2 A~A-B)|---
~[ATSA|-- --[F=°>A,A|---
..[N_.A,ng...( ) D2 A~A - ( )
...[A,ng... ..‘.[pgA,A|...
..[NNA,[‘:%AI...( ) ...[I‘%A,NNA|...( )
[~A[/2), T DT A - L2 A, ~Aly/a] ] -
- [~WZATZ A (~"Lvo T3 A, ~VzA| - (~VR)

VC, an abbreviation for the variable condition, is that the eigenvariable z must not
appear in any node of the conclusion.

Now we will consider the relation between TN_ and GN., through the following
two lemmas.

LEMMA 2.9
Let T be a tree-sequent of TN.. If T has a node a : ' = A such that GN_ - T = A,
then TNL 7. :

Proof. By the induction on the derivation of I' = A in GN.. It is easy to check
the case where the rule or the axiom applied at last is other than ( )g i.e. those
which demand the succedent of the conclusion consist of only one formula. We will
only present the case for (—R)g, (-R)g or (VR)g v

For (—R)g, we have in TN,

ind. hyp.
o [Z]... AL B].. ] (drop 1)
[pz"n,,| [A=>B]---]--- (LR)
345 B|
For (-R)g, ind. hyp
- ny
(S lAS )
[1‘§>| [A=>]---]--- (-R)



For (VR)S’ Vo

ind. hyp.
Y-SR R CLT SRS N B
[=] [: [2/]] -] (drop L)
2| B A/ ] R)

...[pgva|...

A pre-tree-sequent T of TN, satisfies all the conditions of a tree-sequent except the
one that if = has a free occurrence in a : I' 3 A then z is available at a. This concept
is necessary for the proof of the next lemma which is done by an induction.

The translation into a formula of a pre-tree-sequent 7 of TN-,, denoted by 77/, is
defined inductively on the height of 7

C2A|T... T =va(AD) - (/A VT v...vTi)

Then the next important lemma is proved, which approves so called the soundness
of TN-.

LEMMA 2.10
If TNL F T, then GNL - T/,

To prove this lemma we will prepare a couple of sublemmas.

SUBLEMMA 2.11

Let T be a tree-sequent of TN-, a a node of T, T' a pre-tree-sequent which consists
of all the descendants of a, T{,..., T, pre-tree-sequents of TN, and T1,...,T% be a
tree-sequent obtained by substituting T' by T/, ..., T, respectively (Fig. 2).

Fig. 2. T,Th,...,Tx
Then GN- + 77, ..., T/F = T implies GNL+ T/ ,..., TS = T7.

SUBLEMMA 2.12
Let T and T' the same as those in the sublemma above. Then GN- + T'f implies

GN- T4,
Proof. Both sublemmas are proved easily by the induction on the height of a in 7 ‘-



Proof of lemma 2.10

By the induction on the derivation of 7 in TN_. For the base case, i.e. when 7 is an
axiom, use sublemma 2.12. For the step cases where 7 is derived by an inference rule
with a hypothesis (or hypotheses), use sublemma 2.11.

2.4 Kripke Completeness of GN_

Here we present the way how we can construct what we may call a counter N_-model
for an unprovable tree-sequent 7 of TN_,, hence Kripke completeness of TN_. Then
Kripke completeness of GN_, is obtained immediately by lemma 2.10.

The sketch is as follows. Let 7 be an unprovable tree-sequent of TN, then we can
extend 7 to obtain an infinite tree-sequent 7 which is TN_-saturated (we shall define
this concept later). A TN_-saturated tree-sequent induces an N_-model 9t (here the
set of available variables at a is used as the seed of the domain of a), and this is what
we would like to obtain, i.e. a counter-model for 7.

We start with defining the concept TN-_-saturatedness, which is a natural extension
of that for LK. Here an infinite tree-sequent of TN_, is a possibly infinite tree each of
whose node is associated with its own I' = A, where I and A are sets of a possibly
infinite number of formulas of N_,, and « is a set of a possibly infinite number of vari-
ables, and satisfies the same conditions as those of a tree-sequent, as to the availability
of variables.

DEFINITION 2.13 (TN_-SATURATEDNESS)
An infinite tree-sequent 7 of TN_, is TN -saturated if it satisfies the following condi-
tions:

l.Leta: T3 Aandb: X =ﬂ> IT be nodes of 7. If b is a descendant of a,’then
rcs;

2. Foreverynode a: ' 2 A of 7,

(a) (AL)-saturated : If AAB €T, then AcT" and B€T,;

(b) (AR)-saturated : f AAB€ A;then A€ Aor Be A;

(c) (—L)-saturated : If A—> BeTl',then Ac Aor BeT;

(d) (—R),-saturated : If A — B € A, then there exists a descendant b : 21
of a such that A € ¥ and B € II;

(e) (—L)-saturated : If ~A € T, then A € A;

(f) (-R),-saturated : If A € A, then there exists a descendant b 2L Mofa
such that A € X; '

(g) (VL)-saturated : If VzA € T, then A[y/z] € I for every available variable y
at a;

(h) (VR),-saturated : If VzA € A, then there exists a descendant b: & £ 11 of
a and a variable y such that Aly/z] € II; .

(i) (~AL)-saturated : If ~(AAB) €I',then ~A€Tl or ~B €T

(j) (~AR)-saturated : If ~(AA B) € A, then ~A € A and ~B € A;

(k) (~—L)-saturated : If ~(A —» B) €', then A€ and ~B €T
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(1) (~—R)-saturated : If ~(A — B) € A, then A€ Aor ~Be€ A;
(m) (~-L)-saturated : If ~—A €T, then A €T;
(n) (~—R)-saturated : If ~—A € A, then A € A;
(0) (~~L)-saturated : If ~~A €T, then A € T';
(p) (~~R)-saturated : If ~~A € A, then A € A;
(q) (~VL)-saturated : If ~VzA € T', then ~A[y/z] € T for some variable y;

(r) (~VR)-saturated : If ~VzA € A, then ~A[y/x] € A for every available
variable y at a. .

Note that for the rules ( ),, descendants are involved.

Now let 7 a tree-sequent of TN_, such that there is at least one variable available
at its root, and TN_, I/ 7. We describe the way 7T is extended to a TN_-saturated
infinite tree-sequent.

By our definition of the language of N, there are only countably many formulas
of N_,, hence we can enumerate them as B;, By,.... We arrange this to obtain a new
sequence, ‘

B | By,By | B1,B2,Bs | ...

which we denote by A;, As,.... The point is that every formula of N, appears infinitely
many times in A;, As,.... Again by definition, a term of N_ is to be a variable and
we can enumerate them as z1,z2,....

We extend 7o(:= 7)) step by step and obtain a sequence of (finite) tree-sequents
T1,T3,.... The step from 7;_; to 7T; is for the reduction of the formula A;, described
below in detail. It should be paid attention to that each operation preserves the
unprovability of the tree-sequent.

1. (inheritance) For every node a : I' = A of 7;_; such that A; € ', add A; to the
antecedent of each descendant of a. This operation is called an inheritance, and
preserves unprovability because of the rule (drop L);

2. (reduction) According to the shape of A;, one of the following operations is
executed for each node a : I' = A of T;_1:

(a) Ai=BANC. If A; €T, then add B and C to I'. This operation preserves
unprovability because of the rule (AL) of TN_. If 4; € A, then at least one
of the tree-sequents obtained by adding B or C to A is unprovable because
of the rule (AR). Take the unprovable one as a resulting tree-sequent ;

(b) A;=B — C. If A; €T, then add B to A, or C to I, so that the resulting
tree-sequent remains unprovable. If A; € A, then make a new daughter

(which is a leaf) of a, b: B % C;
(c) A; =-B. If A; €T, then add B to A. If A; € A, then make a new daughter
b: B =0> ofa;

(d) A; =VzB. If A; €T, then add B[y/z| to I, for every y which is available
at @ and is in {zi,...,z;}. If A; € A, then take a fresh variable z,, and

make a new daughter b : zxl g [Zm/z] of a;
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() A; = ~(BAC). If A; € T, add ~B or ~C to T, so that the resulting
tree-sequent remains unprovable. If A; € A, add ~B and ~C to A;

(f) A, =~(B—-C). lf A; €T, add Band ~C toT. If A; € A, add B or ~C
to A so that the resulting tree-sequent remains unprovable;

(g) A;=~-BorA;=~~B.If A; €T (or A),add BtoT (or A, respectively) ;

(h) A; = ~VzB. If A; € I, then take a fresh variable z,,, add ~B[z,/z] to T,
and also add z,, to a. If A; € A, add ~B[y/z] to A for every y which is

available at @ and in {z;,...,z;}.
Take an infinite tree-sequent T of TN- as a union of To,71,..., i.e. the tree-
structure of 7 is a union of those of 7y, 73,..., and the infinite sequent or the set of

variables associated to each node is again a union of those of Ty, T1,. ...
Then it is easily verified that 7 is TN_-saturated. _
Now we will construct an N_-model 9 = (M, <,U,I*,I") from 7. Let (M, <) be

a tree-structure of 7 and U(a) be the set of available variables at a (here the condition
that one variable is available at the root of 7 assures that U(a) # 0 for every a € M).

For anode a:T' 2 A of 7 and an m-ary predicate symbol p,
+ a
pI (@) = {(yla,ym) lp(yl)aym) (S F}
P @ ={(1,--.,¥m) | ~p(¥1,-..,ym) €T}

The model 9 defined above certainly satisfies the conditions of N_-models; for
example, the condition p?* (@ Np?~ (@) = () is satisfied since every finite sub-tree-sequent
of T is unprovable in TN_, and TN, has an axiom

(axiom 2)

(@), ~p(T) B

Then the following fact is again easily verified by the induction on the construction
of a formula A: for every nodea:I' =3 A of T, A€l implies a =t A[Z/Z] in M
and A € A implies a [+ A[T'/T']. Here we used the fact that 7 is TN--saturated.

With the fact that 7 is a sub-tree-sequent of 7, we have proved the following
theorem: '

THEOREM 2.14 (KRIPKE COMPLETENESS OF TN-)
Let T be a tree-sequent of TN-, at whose root at least one variable is available, and
TN- i/ T. Then there exists a counter No-model M = (M, <,U,I*,I7) for T, that is:

e The tree-structure of T can be embedded in (M, <);

e For each nodea:T' = A of T, A€T impliesa =t A[Z/7T] in M, and A€ A
implies a [+ A[ZT /2.

From this we immediately obtain Kripke completeness of GN-.

COROLLARY 2.15 (KRIPKE COMPLETENESS OF GN-)
For every formula A of N, N |= A implies GN- - A.

Proof. Let GN- I/ A, and a be a nonempty finite set of variables which includes all
the free variables of A. Then by [ = A}/ =\_ V@ A and the contraposition of lemma

2.10, TNL i/ [ = A]. The theorem shows that there exists an N--model 9t such that
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3 Logic N_.D

In this section we consider the logic N_D, a variation of N, obtained by adding constant
domain axiom Vz(A(z) V B) — VzA(z) V B. This axiom corresponds to the reference
to Kripke models that every possible world has the same domain in common, as we
shall show later. Kripke completeness of GN-D, the Gentzen-style sequent system for
N_D, is shown just as that for GN-, using tree-sequents.

DEFINITION 3.1 (SEQUENT SYSTEM GN-D)
GN-D is GN_, plus the following axiom:

S Ve(A@) vV EB) = Ved@) v B *om D)

The following is a well-known result in the intermediate logic CD and also easily

verified.

LEMMA 3.2
Let GN_D’ be the system obtained from GN- by substztutmg the rule (VR)g vo by

L= A, Alz/z]
= A,VzA (R)vo

i.e. allow plural formulas in the succedent. Then GN_D’ is equivalent to GN-D.

DEFINITION 3.3 (N.D-MODEL)
An No-model M = (M, <,U,I*,I7) is an N.D-model if U is a constant map.

We define the validity, N-D |= A, just like that of N-,. Then the soundness of GN-D
is shown by the induction on the derivation.

THEOREM 3.4 (KRIPKE SOUNDNESS OF GN-D)
IfGNL.DFT = A, then N.-D =T = A.

Now we introduce TN_D, the tree-sequent system for N_D. A tree-sequent T of
TN-D is a finite tree each of whose nodes is associated with a sequent I' = A of GN
(or GN-,D. Each will do since they have the same language in common). This definition
is different from that of TN- in that the indication of a set of variables is omitted here,
because in TN_D we need not consider whether a variable is available or not, which
worked as a seed of a domain in the proofs above.

The axioms and inference rules of TN_D are the same as those of TN, except that
they have no consideration about availability of variables, and the rule (VR), (which
trims a leaf) of TN is substituted by

. [C=A Alz/z] |-
T =AVzA]| -

(VR)vo

. The rule adopted here may be justified by lemma 3.2.
Next we consider the relation between TN_.D and GN_D, just as that between TN
and GN_.

LEMMA 3.5
Let T be a tree-sequent of TN_D. IfT has anodea : T = A such that GN_D T = A,

then TNL.DF 7.
Proof. Just like the case of TN, i.e. lemma 2.9. i
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DEFINITION 3.6 (TRANSLATION)
A translation into a formula of a tree-sequent 7 of TN-D, denoted by 77, is a universal
closure of 7P, which in turn is defined inductively on the height of T;

C=A|T.. T = (A\D) = (VA VIPV---VTE

Here the concept pre-tree-sequent is not necessary because it was for considering avail-
ability of variables.

LEMMA 3.7
If TNL.D+ T, then GN_D T/,

Again we prepare a couple of sublemmas, the proofs for which are easy by induction
just like those for lemmas 2.11 and 2.12.

SUBLEMMA 3.8
LetT, T', T],..., 7! and Tq,..., Ty be just as those of lemma 2.11. Then GN_D
%, ..., T? = T'" implies GN.-D+TP,..., TP = T".

SUBLEMMA 3.9 ‘

Let T and T' the same as those in the sublemma above. Then GN_D + T'% implies
GN_D+ 77,

Proof of lemma 3.7

By the induction on the derivation of 7 in TN_D. The proof is carried out Just like
that of lemma 2.10, and it suffices to check the case where 7 is inferred by the rule
(VR)yg of TN..D. In fact, we can not apply sublemma 3.8 which was used in the case
of TN, therefore we will make use of the character of N_.D instead.

Suppose GN_D F (---[I' = A, A[z/z] | ---)f as an induction hypothesis. Then

(---[L = A, Alz/x] | --- ) is in the form

VZVz(By = C1V (By = Ca V (---V (Bn = Cr V Alz/x]) ---)))

, where 2z has no free occurrence in any of B; or C;. Then we repeatedly apply the
following logical equivalences which are easily verified:

Vx(B — C(x)) 2n.p B — VzC(z) Vz(CV D(z)) =n_p C VVzD(z)

The second one is unique to logics with constant domain axiom. Thus we have the
logical equivalence,

([ = A, Alz/z] | -+ ) |
=VZVz(B; —» C1V (B = CoV (-+-V (Br — Cn V Alz/z]) -+ +)))
=N.p VT (B~ C1V (B2 = C2 V(- V (Bn = Cp VVzA) -+ )
=(--[=>AvzA|---)

By the induction hypothesis and the cut rule, we obtain GN_.D F (---[[' = A,VzA |
)f

DEFINITION 3.10 (TN_D-SATURATEDNESS)

An infinite tree-sequent 7" of TN-D is TN_D-saturated if T satisfies the conditions of
TN--saturatedness (see definition 2.13) where the word available is omitted and the
condition (2h) (VR),-saturated is substituted by:
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(VR)-saturated : If VzA € A, then Aly/z] € A for some variable y;

Now we can prove Kripke completeness extending an unprovable tree-sequent of
TN.D into saturation to obtain a counter model, as we did in TN_.

Arrange all the formulas and variables to obtain sequences A;, As, ... and z1, z2, . ..
as we did in the last section. Let 7 a tree-sequent of TN_D such that TN_D I/ 7.
We extend 7 step by step and obtain 7y, 73, ..., where each step 7;_; to 7; is for the
reduction of A;. The operation carried out at each step is almost the same as that in
TN, being different in the following points:

e The word available is omitted;
e The case (2d) is substituted by:

(2d) A; = VzB. If A; € T, then add all of Blz;/z],...,Bz;/x] to I. If A; €
A, then take a fresh variable z,, and add Bz,,/z| to A. This operation
preserves unprovability because of the rule (VR) of TN_D;

Let 7 be a union of Ty, 71,.... Then T is TN_D-saturated.

From 7, we can construct an N_D-model M = (M, <,U,I*,I7) as follows: let
(M, <) be a tree-structure of 7, U(a) the set of all the variables for every a € M
(hence 9t is N D-model, i.e. has the constant domain), and interpretations It and I~

just the same as those for TN-.
Then 9N is a counter model for 7, and we obtain the following theorem:

THEOREM 3.11 (KRIPKE COMPLETENESS OF TN_D)
Let T be a tree-sequent of TN_D such that TN_ tf T. Then there ezists a counter
N_D-model M = (M, <,U,I*,I7) for T, that is:

e The tree-structure of T can be embedded in (M,<);

e For each node a:T = A of T, A €T impliesa |t A[T /7T in M, and A€ A
implies a [+ A[Z/ 7).

Kripke completeness of the Gentzen-style system GN-D is derived immediately as
a corollary: ‘

COROLLARY 3.12 (KRIPKE COMPLETENESS OF GN_D)
For every formula A of N_D, N_D |= A implies GN_.D I A.

Proof. Let GN.-Dl/ Aand 7 :=| = A]. Since T/ 2\_p VT A and the contraposi-
tion of lemma 3.7, TN_.D I 7. The theorem shows that there exists an N_D-model 9t
such that 2 = A. |

4 Logics NP, N_.DP

In this section we consider the logics NP and N_DP, obtained by omitting the axiom
A — (~A — B) in N, and N-D which results in paraconsistency.

A logic L is explosive if in GL, the Gentzen-style system for L, GL - 4,-A = B
(it depends on the language of L which one of — or ~ we adopt, and in fact we use
~ here). For instance, Cl, Int and N, are all explosive. L is paraconsistent if it is not
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Paraconsistent logics are certainly of considerable use as tools to formalize theories
which have some contradiction but are non-trivial. We can give some examples of such
theories; the Newton-Leibniz version of calculus, Cantor’s naive set theory, or early
quantum mechanics. The history and some approaches other than we present in this
paper are in the literature [PR84] by Priest and Routley, who adopt relevant logics as
an approach to paraconsistency. Whether NP or N_DP is useful with respect to the
motivation stated above is to be inspected further.

The proof of Kripke completeness of GN_P or GN_DP is exactly the same as that
of GN_, or GN_D, respectively.

The Gentzen-style sequent system GN_P or GN_DP is defined by omitting the
axiom

m; (axiom 2)
in GN- or GN_D, respectively.

M = (M,<,U,I*,I7) is an N_P-model (or a N_DP-model) if it satisfies all the
conditions of N--model (or a N_D-model) except the one p!* @ np!~ (@) = ¢,

The tree-sequent system TN_P or TN_DP is obtained by omitting the axiom

v axiom 2)
"'[A,NA%I (
in TN or TN_D, respectively.
Then we can prove Kripke completeness of GNP or GN_DP just like that of GN_,
or GN_D, respectively.

THEOREM 4.1 (KRIPKE SOUNDNESS AND COMPLETENESS OF GN_P AND GN_DP)
Let L be either NP or N_DP, and A an arbitrary formula of L. Then L = A if and
only if GL + A.

From the soundness, we can assure that N_,P and N_DP are both paraconsistent:

COROLLARY 4.2
Let L be either NP or N_DP. Then sequents of the form A,~A = B are not provable
in GL, in general.

Proof. Let p and q O-ary predicate symbols, 9 = (M, <,U,I*,I~) be an L-model
such that M = {0}, 0=* p, 0 =" p, and 0 £+~ q. Then M [~ p A ~p — ¢ and by the
soundness we have GL I/ p, ~p = q.

5 Logics N.O, N_DO
5.1 First Proof — Kripke Completeness of GN_O

In this subsection we consider the logic N_O (O for omniscience axiom, ~—(AV ~A)),
whose Kripke completeness we can hardly prove by only applying the tree-sequent
method we used above. Here we use some fresh result about the relation to classical
logic.

GN_O, the Gentzen-style sequent system for N_,O, is GN_, plus the axiom

iom O
S AV ~A) (axiom O)

An N_-model M = (M, <,U,I*,I7) is an N_O-model if for every a € M, there
exists a/(> a) such that:
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e o’ is maximal in the poset (M, <);

o p! (@) upl™(@) = U(a')™ for every predicate symbol p, where m is the arity of
P.

From the condition p!* (¢) N p!~ (@) = @ of an N_-model, the union p!* @) Up!~ (@) ig
disjoint.

LEMMA 5.1

Let M = (M, <,U,I*,I7) be an N-model, a’ € M satisfy the two conditions itemized
above, and A be an arbitrary closed formula of N.. Then o’ =1 A ora’ = A, and
by lemma 2.6 exactly one of them holds.

Proof. The proof is easy by the induction on the construction of A, a formula of N,
where u, a name of an individual, is allowed to occur. We present here only the step
cases where A= B — C or A =VzA.

When A = B — C, assume a’ £t A. We shall show that o’ =~ A holds. If
o’ == B, by lemma 2.5 for every ¢ > a’ ¢ =~ B, which in turn implies ¢ £+ B by
lemma 2.6. Hence o’ =+ B — C, which is a contradiction. So we must have o’ £~ B,
which is equivalent to a’ =7 B by the induction hypothesis. Now o’ =1 C leads to a
contradiction in the same way, so we must have a’ =~ C by the induction hypothesis.

When A = VzB, assume a’ £+ A. Since a’ is maximal, there exists u € U(a’) such
that o’ £ Blu/z], which implies a’ =~ Blu/z] by the induction hypothesis. Hence
we have o’ = VzB. i

a’ may be regarded as a possible world which is omniscient, in the sence of lemma 5.1.
This is the origin of the name of the axiom.

In order to prove Kripke soundness of GN-O, we have only to verify that the formula
-—(AV ~A) is valid in every NO-model, which is obvious by lemma 5.1.

THEOREM 5.2 (KRIPKE SOUNDNESS OF GN-O)
IfGNL.OFT = A, then N.O T = A.

TN-O, the tree-sequent system for the logic N O, is obtained from TN- by adding
an axiom

(axiom O)

---[%~m(AV~A)|~--

. Then the same relations as those between GN- and TN- hold between GN_O and
TN-O, as we shall see in the following lemmas.

LEMMA 5.3
Let T be a tree-sequent of TNLO. If T has anodea : T' = A such that GNLOFT' = A,
then TNLOF T.

Proof. By the induction on the derivation of I' = A in GN-O. |

We define the translation into a formula of a tree-sequent 7 of TN_O, T/, as the
same one as that of TN-.

LEMMA 5.4
IfTN_O+ T, then GN_O Tf.

Proof. Similarly to the proof of lemma 2.10. i
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We make a remark about the language of Cl. All of V, — and 3 can be introduced
as defined symbols in Cl; however in this paper we assume the logical connectives of Cl
be not only A, = and V but include — to make correspondence with N_O.

In this paper a structure in Tarski-type semantics for Cl is often said to be a Cl-
model. For a Cl-model 2 we denote the domain of 2 by |2|, and the interpretation
of a predicate symbol p by py. We will often denote a formula of Cl by A, in order
to make clear that A contains no ~’s. A~ is a formula of N, which is obtained by
replacing some (possibly all or no) —’s in A by ~.

Now we prepare a lemma which is a basic idea for the proof of Kripke completeness
of GN_; that is, a Cl-model induces an omniscient possible world.

LEMMA 5.5
Let A be a Cl-model, and My = (M, <,U,I*,I7) an N_O-model such that M = {0},

( )= |24, p"© = py and p! © = U(0)™\pa. Then for an arbitrary closed formula
A. of Cl, A= A if 0 =+ A~ (or equivalently M = A~-). From this and lemma
5.1, we also have A = A~ iff 0 =" A~-.

Proof. By the induction on the construction of A.. We only present the step case
where A, = -B_.

When A- = -B-,, A~ is syntactically equivalent to =B~ or ~B~.. A = A
iff A £ B, which is equivalent to 0 it B~ by the induction hypothesis. This
is equivalent to 0 =t —B~._ since 0 has no descendants, and is also equivalent to

0 =+ ~B~.- by lemma 5.1. |

THEOREM 5.6 (MAIN THEOREM 1. KRIPKE COMPLETENESS OF GN-O)
IfN_O = A, then GN_O - A.

Proof. We describe the sketch of the proof here, and the details shall be shown later
as lemmas.

Let GN_O I/ A, and a be a finite set of variables which is nonempty and includes
every free variable of A. By lemma 5.4 and [ A]f = V@A, TNL.O I/ [2 A]. Now we
extend [ A] into TN_-saturation in the same way as we do in TN-,. Because TN, and
TN-O have the same inference rules in common, the procedure of extension preserves
the unprovability of the tree-sequent in TN-O. Hence as a result we obtain an infinite
tree-sequent T which is TN- -saturated, and every finite sub-tree-sequent of which is
unprovable in TN-O. A TN_-saturated 7 induces an N_-model 90t = (M, <, U, I*,I")
which makes A not valid.

We are to add an omniscient world a’ to each possible world a of 9, in the following
way.

Let a : I' 2 A the node of 7 which induces an possible world a of 9. Then
by lemma 5.3 and that every finite sub-tree-sequent of 7 is unprovable in TN-O, for
every finite subsets I C I' and A’ C A we have GN.O I/ IV = A’, i.e. the infinite
sequent I' = A of GN_O is GN_O-consistent. It is the result of corollary 5.10 that
from I’ = A we have a LK-consistent sequent I'-, = , i.e. every finite subsequent of
which is unprovable in LK. Then by lemma 5.11 we can construct a Cl-model 2l which
has a large domain enough to include U(a) and makes every formula in I' valid. We
construct a’ from 2 as 0 of My in lemma 5.5. Then a’ is an omniscient possible world,
and we add it to 9 as a new daughter of a.

By carrying out this procedure for every node of 9, we obtain an N O-model
such that 9’ }£ A, hence Kripke completeness of GN-O. It shall be shown in lemma

5.13 that 90U is a counter model for A in fact. |
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First we present some derivations which are only allowed in the logics with omni-
science axiom, and some related results.

LEMMA 5.7
In the system GN_O, the following derivations are allowed:
~AT =
—A-As WD —ZT5 Y gopomave MY

Proof. The derivations above can be simulated in GN-O as follows. Here it is notable
that we do not use (axiom 2) A,~A =, hence these are also allowed in the systems
GN_OP and GN_DOP (needless to say in GN-DO).

(#1)
A=> A : ~A = ~A
AA Ao (weakening, L) ~A A AS L
axiom O AV ~A ~~A A S R L (VL)
= —-—(AV ~A) ——(AV ~A),~A A= (=R, L)
-~A,-A=> (CUt)
(& 2)
—A = -—~A (—1 ) ﬁ—n'vA,F = (_' ) )
AT (cut)
(#3)
A=A B=21B (-L) ~A=>~A
A—- B,A=~AVB (-L) A—- B, ~A=~AVB (L
A— B,A ~(~AVB)=> A— B,~A,~(~AVB)=> (VL;
axiom O A—- B,AV~A~(~AVB)=> (-R.L,R)
= -—(AV ~A) A— B,~~(AV~A) = -—~(~AV B) t’ ’
A B= ——(~AV B) (cut)
|
LEMMA 5.8
Let the sequent system GN_O’ be GN_, plus an inference rule
~AT =
-AT'= (#2)

. Then GN_O' I = ——~(A V ~A), and with lemma 5.7 we obtain the equivalence of
GN-O and GN_O'.

Proof.

(axiom 2)
(~VL)
(#2)
(-R)

A A

~(AV ~A) >
-(AV~A)=>
= - (AV ~A)
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Using lemma 5.7 we can prove the main lemma, which is an embedding of LK into
GN-Oll. Again I'~., is obtained by substituting some —’s by ~ in T.

LEMMA 5.9 (MAIN LEMMA)
LKEFT. = A_ if and only if GNLO F ', ~A~ - = . Moreover, it is also equivalent
to GN—.O I"‘ FN—.,_‘ANﬁ = .

Proof. The second equivalence is obvious by (#2) and GN_.O - ~A = -A.

We consider the first equivalence. The only if part of the lemma is shown semanti-
cally; Let 2 an arbitrary Cl-model. By the soundness of GN_O My |= ', ~Ann =,
and by lemma 5.5 we have 2A =T'_,,-A_ = |, hence A = ' = A.. Then by com-
pleteness of LK, LK +T_ = A_. 4

We now consider the if part. First note that we may restrict axioms (or initial
sequents) of LK to the form p(Z') = p(Z). The proof is carried out through the
induction on the derivation in LK.

In the following A~.-, is denoted by A’ to avoid the proof being too wide.

The inference rule of LK applied at last is presented in the left, and the correspond-
ing proof figure in GN_O in the right:

axiom axiom 2

7@) = 2@ O @) @) o | )
ind. hyp.

F => A T I‘,, NA, é . .

T = Al (weakening) YT, A, T = (weakening)
ind. hyp.
ATl=A AT ~A =
’ ] A
AAB,T = A (AL) A'ANB,T",~A" = (AL)

For the rules introducing A or V, the proof is similar to that of (AL).
'=sAA ind. hyp.

ISAA () e, _miiw
-A' TV ~A"'= (42) ~AL TV, ~A" =
ind. hyp.
ATl = A I/, ~AL A =

F'=A,-A IV,~A', ~=A" (or ~~A') =

I'=AA BYX=1I

For the rule of LK A—- BT, S= A1

(—L), we have in GN-O

ind. hyp. ind. hyp.
~A T, ~A"= B Y ~II = (VL)
3 ~A'V B\ T", ¥ ~A' ~T =
43 (-R, L)

A 5B = -~(~AVB) ——(~A'VEB), T, ~A T >

A = B I ~N ~I = (cut)
ind. hyp.
AT= A B S
F = A,A N B (—‘)R) F,,NA,,N(A, N B,) = (N-——)L)

IlIn the literature [Tan80] an embedding of the —-free fragment of Cl into N is presented.
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COROLLARY 5.10
Let A- be a formula of Cl obtained by replacing every ~’s by — in a formula A of N-,.
Then for every sequent I' = A of GN-.O, GN_O I/T' = A implies LKt/ T' =.

Proof. Take the emptyset as A~—, and use the lemma. |

The next lemma. certifies that we can construct a Cl-model which will be the seed
of an omniscient possible world.

LEMMA 5.11
Let T' = A be an infinite sequent of LK which is consistent, that is, for every finite
subsets IV C T and A’ C A we have LK i/ TV = A’. Then there exists a Cl-model A

such that:
1. |2 includes the set of all variables;
2. Ak A2/ 7] for every AeT;
3. A B[T /7] for every B € A.

Proof. First increase variables twofold, adding z; for each original variable z;. Then an
infinite number of variables z7, x5, ... have no occurrence in I' => A, which is a sequent
of the original formal language. Now with the condition that I' = A is consistent we
can extend it to a LK-saturated infinite sequent I' = A, which induces a Cl-model A
where || = {z1,z}, 22,25, ...} and the conditions 1. and 2. are satisfied. Hence 2 is

what we would like to obtain. [ |

REMARK 5.12

The reason why we cannot apply our method to the logic N.DO lies in the lemma
above. Given an infinite consistent sequent I' = A, we must have infinitely many
extra variables to extend it to LK-saturation, which result in the extension of the

domain.

Now we prove the last lemma.

LEMMA 5.13
Let A, DV, 9, a’, a and so on be the same as in the proof of theorem 5.6. Then IV
is certainly an N-O-model and 9V = A.

Proof. First we show that U’ is an N_-model. As we saw in lemma 5.11, U(a) C U(a’).
If 7 € p! @ (or p! (@), then by the definition of 9, p(Z) (or ~p(Z)) is in ' where
a:T 2 Ais anode of 7. Now by the definition of 2 which is a counter model for
the sequent ', = of LK, A = p(Z) (or A = —p(T)), which in turn implies that
a' =t p(@) (or &/ - p(T), respectively) by lemma 5.5. Hence we have obtained
pI+(a’) g pI+(a,) and pI_(a) g pI_(a’)_

Since we added an omniscient world a’ for every a € M as a new daughter, I’ is
an N_O-model.

Now it suffices to show 90 [~ A, which is reduced to the following:

For every node a : T' 2 A of 7, B €T (or B € A) implies a =+ B[Z/ 7]
(or a £t B[Z/T'), respectively) in 9.
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Please note that in the above statement a is considered as a possible world of 9, not of
901. This is verified as follows. If B € T', by the definition of a’ we have o’ =1 BT /7],
hence the addition of a’ does not affect the fact that a =" B[Z /7).

Assume B € A. It is an important fact here that the cases where a £+ B is
affected by the addition of a new daughter a’ are limited to those where the logical
connective =, — or V is involved; i.e. where in order to verify whether =1 holds or not
we must see the descendants of a. And on top of it, to show a £+ B[Z' /7] in such
cases what we must verify is “there is one world where ...”. Since 91 was already the
model where a [t B[Z /], it also holds in 90V

For example, assume a £t —B in 9 for a closed formula B. Then there is a
descendant b of a in 90t where b |=* B, and b is also in 9’. Hence we have a % -B

in 9, too. |

5.2 Another Proof — For GN_O and GN_DO

In this subsection we present another proof of Kripke completeness of GN_O. As we
saw above, we cannot apply the method in the previous subsection to GN_DO; that is
because we construct omniscient possible worlds after we have finished constructing a
counter N_-model. In this way we cannot take a fresh variable which is necessary to
make an omniscient world, without increasing variables.

The method presented here overcomes this kind of difficulty; it constructs both a
counter N_-model and omniscient worlds simultaneously.

In the proof we use a tree-sequent with guardians, often abbreviated as T'S;. Roughly
speaking, TS, is a tree-sequent of TN_O each of whose nodes has an extra sequent of

GN_O and a finite set of variables; each node has two sequents ' = A 1 & A . The

second sequent X £ 11 is said to be a guardian sequent, or simply a guardian, of that
node.

Now we explain the idea of TS;. To construct an omniscient world a’ for each
possible world a of a counter N_-model after extending an unprovable tree-sequent of
N-O, it is necessary to have a record which formula must be verified or refuted at
a’, and this information is written in the guardian sequent of a. In other words, the
guardian sequent of a is the seed of the omniscient world for a.

We present the precise definition:

DEFINITION 5.14 ,
A tree-sequent with guardians (TSg) G is a finite tree each of whose node a is associated

with its own two sequents of GN_O and two finite sets of variables, I' X Aandr 21

(we will denote this fact by (a : ' = A 1 & 2 IT)), which satisfies the following
condition:

Let Gt be a tree obtained by adding a new daughter (ag : A1 T = )to

eachnode (a:T S ATZ £ II), and then omitting all the guardians (Fig.
3). Then Gt is a tree-sequent of TN_; that is, G* satisfies the conditions as
to the availability of variables.

For example, a N 8 = @ for (a:I‘;a‘»ATEgH).

' 2 A is said to be a left-sequent, or simply sequent of a, and X A Ma guardian
sequent, or simply guardian of a. The tree-sequent Gt is a translation into tree-sequent
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[¢] | s4n
/

Fig. 3: G and G*

of G. A variable z is available at the node a in G if it is available at a in the translation
G. z is available at ag in G, where a is a node of G, if z is available at the daughter
ag of a in G°.

Now we introduce the TSg-system TgN_O for the logic N_O:

_ — (axiom 1) (axiom 2)
a3 arzdm.. A~AS 1281
iom gl .
TrBATAS A MomE) e aw L, (emed)
(axiom gO)

.ra3at av~a)...
Inference rules

(weakening), (drop L), (AL), (AR), (—L), (—=R),, (-L), (-R);, (VL), (VR),,
(~AL), (~AR), (~—L), (~—R), (~-L), (~-R), (~~L), (~~R), (NVL)VC
and (~VR), »

i.e. all the inference rules of TN, except (cut), are adopted and applied to left-sequents,
not to guardians.

..ra2a14znoj...
.ar2atzslog..

(enlightenment L)

The rules (g- - - ) involve only guardians but no left-sequents. For them we will indicate
only guardians.

B
S TT=2A-..
! 5 | (g-weakening)
1S TE A
1o lmal 14080
r (g-cut)
1SS ILT -
B B A
.. 1ABXTBI|--- - 1ESIA|--- ---1230,B)--
2L (g a " (grm)
..1AnB,s&my... .12 2mAnB]|--.
8 ¢! B
(g—L) | (s—R)

.-1A-B2,oEmuy|... . 122ma-B)--
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e lmal- -S|
5 (g-L) 5 (-R)
A BU{z}
EZRI gy DAL gumy,
e TVZAE S IO - - 1E=1I,VzA | ---
B B B
1 ~ASSII| s - T~BEBI - e 1EEI,~A,~B] -
. L (grenry 120 L (genR)
- 1~AAB,S &I - 1SS ~AAB)|---
8 « A8 8
. 1A~BXET]-.. TS BILAl- - 1ES I, ~BY---
T (g L "
o t~(A-B),T21]|... 1S 8 0,~(A—>B)|---
B B
5 | (g~-L) 5 (g~-R)
B 8
- TAYXSSI--- - TESILA|---
T (ganr) AL (g
---TNNA,E:_}Hl... . ...TE:}H,NNAI...
Bu{z} B
...TNAz m,z 4 H .« "'TEéH,NA xT P
2/2] | (VT W/l m)

1 vzA, SR sl ~vzal...

In view of the function of a guardian as a seed of an omniscient possible world, the
logical rules as to guardians are to be of the form of those in LK, as above.

Now we define the translation into a formula of TS, G, in an inductive way similar
to that of tree-sequent. A pre-TS; satisfies every condition of T'S; except the one that
if z is free in the sequent of a (or in the guardian of a), then z is available at a (or
at a4, respectively). A translation into a formula of a pre-TSg G, denoted by Gf, is
defined inductively on the height of G:

‘r2a1s2106...6,)
:EVW((/\F)—»(\/A) v vﬁ’ﬁ(('/\z)_ﬂ(\/n)) vg{v.--vg,{,)

As is the case for systems of tree-sequent, we can prove the following lemma, which
may be regarded as the soundness of TZN-O:

LEMMA 5.15
If TgN-O G, then GN.O |- Gr.

Proof.  Since the counterparts of lemma 2.11 and 2.12 are easily verified, we can
assume that the node to which an inference rule is applied (or the node which is in the
form indicated in an axiom) is nothing but the root. Now we prove the lemma by the
induction on the derivation of G in TgN-O.

The cases for (axiom 1), (2), (gl) or (g2) are easy.

For the (axiom gO), by omniscience axiom GN_O F ——(A4 Vv ~A).

For the rules which are common in TN-, and TgN-O such as (drop L) or (~VR),
the proof is carried out just as we did in the proof of lemma 2.10.
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For remaining rules involving guardians, some proofs are obvious, others are com-
plicated. Here we present the latter cases.
Before considering each cases, we prepare the following fact:

GN-(LJ or GNLO) I =—(A V —~4) ()

A=A
asav-a "%
A(AV-A) = o
—n(A \Y —|A) = -A (VR)
-(AV-A)=>AV-A L
“(AV -A),~(AV -A) = E:R))
= (A V-A)

For (g—R), it suffices to show that GN.O - -—~(C A A — D) = -—(C — DV -A).

C,AACANA—D=DV-A C,-~ACANA—>D=DV-A

' C,AV-ACNA—-D=DV-A R (VL)
(%) AV-ACrNASDSCoDvoA R -
=>—|‘-I(AV—|A) ﬂ—l(AV"\A),—'\-ﬂ(C/\A—)D):ﬂﬁ(c_)Dv_‘A) Eﬁ t,) )
cu

-—~(CAA— D)= -~(C— DV-A)

For (g—R), the proof is similar to above, using GN-O F -—(A V -A).
For (gVR), it suffices to show that GN.O + Vz2=—=(C — DV A[z/z]) = ——~(C —
D v VzA), where z is not free in C nor D.

(axiom 2)

DD " Aje Al = ()

C=C . DV Alz/z],~D,~Alz/z] =
- C — DV Alz/z],C,~D,~Alz/z] =
Vz——(C — DV Alz/z]),C,~D, ~A[z/x] =
Vz=—-(C — DV Alz/z]),C,~D,~NzA =
Vz-—(C — DV Alz/z]),~(C — DV VzA) =
Vz——(C — DV Alz/z]),~(C —- DV VzA) =
Vz—==(C — DV A[z/z]) = ~—~(C — DV VzA)

(—L)
(-R,-L, VL)
(NVL)VC
(~VL, ~—L)
(#2)

(-R)

We are to extend an unprovable TSg into saturation and derive a counter model
from it; hence the definition of saturatedness is as follows:

DEFINITION 5.16 (TgN_O-SATURATEDNESS)
An infinite TS; G is TgN-O-saturated if it satisfies the following conditions:

1. The translation into a tree-sequent, G*, is TN_-saturated;

2. Foreverynode (a: T = A1 X LY II) and every atomic formula p(7’), if T is
available at a4 then p(7’) € ¥ or ~p(7T) € X.



Let G be a T'S; such that T;N_O I/ G and at least one variable is available at its root.
e will extend G step by step to obtain a sequence of unprovable TSgs Go(= G), G1, . - -,
st as we did in TN_. The step from G;_; to G; involves A; (A, Aa,... is the same
quence of formula as subsection 2.4), and is stated in detail as follows:

1. Apply the same operations (inheritance and reduction) to the left-sequents of G.

For example, if (a: T = AT X A IT) and A; € T, then add A; to the antecedent
of the left-sequent of each decsendant of a, not involving guardians;

2. (report) For each node (a: T = A1 X £ II), if A; € T then add A; to ¥. This
operation is called a report and unprovability is preserved because of the rule
(enlightenment L);

3. (g-reduction) According to the shape of A;, one of the following operations is
executed for each node (a:I' 2 AT X £ II):
(a) A; = p(T). If T is available at a4, then add p(7’) or ~p(7T) to X, so

that unprovability is preserved. This is possible; if not, we can derive a
contradiction as follows:

(axiom gO) o 1p(@),z 0| @) EEm)-

R - 1p@)vep@) s A

(g- ut)

(b) A, = BAC. If A; € X, then add both B and C to ¥. Unprovability is
preserved by the rule (gAL). If A; € II, then add B or C to II, so that
unprovability is preserved. This is possible by (gAR);

(c) A;=B — C. If A; € &, then add B to Il or C to X, so that unprovability
is preserved. If A; € II, then add B to ¥ and C to II;

(d) A;=-B. If A; € ¥ (or II), then add B to II (or X, respectively) ;

(e) A; =VzB. If A; € I, then add B[y/z] to I, for every y which is available
at ag and is in {z1,...,z;}. If A; € II, then take a fresh variable x,,, add
Alzy, /z] to IT and also add z, to 3;

(f) Ai=~(BAC). If A; € £, add ~B or ~C to ¥, so that unprovablhty is
preserved. If A; € I1, add ~B and ~C to IT;

(g) Ai=~(B—-C). If A, € %, add B and ~C to L. If A; € II, add B or ~C
to I so that unprovability is preserved ;

(h) Aj=~—-Bor A, =~~B.If A, € £ (orII), add B to  (or II, respectlvely) ;

(i) A; = ~VzB. If A; € X, then take a fresh variable z,,, add ~B|zn, /2] to X,
and also add z,, to 8. If A; € II, add ~B|y/z] to II for every y which is
available at a4 and in {z1,...,z;}.

Let 5 be the infinite TS, which is the union of Gp,Gi,.... Then 5 is TgN-O-
turated. Indeed, it satisfies the condition that G is TN_-saturated; for example, a
de (ag : 2 IT) of Gt satisfies the condition

(VR),-saturated : If VzA € X, then there exists a descendant b : @ 2 g of
ag and a variable y such that Afy/z| € ¥
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by taking a4 itself as b. G satisfies the second condition of TgN_O-saturatedness by
the operation (g-reduction) as to atomic formulas.

Since an infinite tree-sequent Gt is TN_-saturated, it induces an N.-model 901 in the
way stated in subsection 2.4. Moreover, the second condition of TgN_O-saturatedness
yields that 90 is actually an NoO-model, where the omniscient world a’ for each world
a induced by a4 of G*.

The following is easily verified by the induction on the construction of a formula
A using the fact that G is TN_-saturated: for every node a : I' 2 A of Gt (g is
an original TS, which is unprovable), a € T' (or a € A) imphes a =Y A[Z/7] (o
a £t A[T/T), respectively). Hence we have proved the following theorem:

THEOREM 5.17 (KRIPKE COMPLETENESS OF TgN-O)

Let G be a TSy of TgN-O at whose root at least one variable is available, and TgN-O I/
G. Then there exzsts a counter NO-model M = (M, <,U,I*,I7) for G; that is, 9 is
a counter model for the tree-sequent G* in the sense stated in theorem 2.14.

COROLLARY 5.18 (KRIPKE COMPLETENESS OF GN_O)
For every formula A of N-O, N_O = A implies GN.O |- A.

Proof. Leta TSz Gbe|[ = A1 2 ] where o # 0. By the contraposition of
lemma 5.15 we have T;N-O I/ G, hence the theorem yields that there exists a counter

N_O-model M for G, which makes A not valid. |

Now we consider the logic N.DO. The Gentzen-style sequent system GN-DO for
the logic N_DO is GN_,O plus constant domain axiom

S V2(A@@) v B) = VzA@z)v B @xiom D)
. An N_O-model M = (M, <,U, I*,I7) is an N.DO-model if U is a constant map.

After making the same kind of alterations as we did from TN-, to TN-D, the TS,
method for N-,O stated above can be also applied to the logic N_.DO, and we obtaln
the following theorem:

THEOREM 5.19 (MAIN THEOREM 2, KRIPKE COMPLETENESS OF GN_DO)
For every formula A of N.DO, N_DO = A if and only if GN_DO + A.
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