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Remarks on Shimura’s oracle cut elimination and
Kripke sheaf semantics for modal predicate logics
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Abstract

Shimura [Cut-free systems for some modal logics containing S4, Reports on
Mathematical Logic 26(1992), 39-65.] introduced an operator I which sends
a modal (propositional) logic L containing S4 to a modal logic 7(L). He in-
troduced a Gentzen-style formal system for I(L) with oracles and showed some
interesting results on I. He stated just brief words on modal predicate logics
in a short section, and left detailed studies uncultivated. In the present article,
we make remarks on this topic for modal predicate logics, especially on com-
pleteness with respect to Kripke-type (possible world) semantics. We present
an example of strongly Kripke-frame complete L whose I image I(L) is Kripke-
frame incomplete. We also show a positive result that if we take the Kripke sheaf
semantics instead of the Kripke frame semantics, the operator I preserves the
strong Kripke-sheaf completeness.

Keywords: modal predicate logics, oracle sequent systems for modal logics,
Kripke completeness, Kripke sheaf semantics.

Introduction
In [11], Shimura defined a modal propositional logic I(L) based on a modal (propo-

sitional) logic L containing S4.! His definition induces an operator I which sends an
arbitrary normal (propositional) extension L of S4 to a normal extension L) of S4. It

*The author would like to thank Professor Tatsuya Shimura for his comments. This research was
supported in part by Grand-in-Aid for Scientific Research No. 13430001 and No. 13640111, Japan
Society for the Promotion of Science.

1Shimura [11] introduces six logics I(L), II(L), I1I(L), IV(L), V(L) and VI(L) based on L. In
this paper, we deal only with his first logic I(L). We can show similar results for other I(L) and
V(L), as well.
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is a natural and fascinating subject to study whether or not a property of L is preserved
under I, and which property of L makes /(L) to have some interesting property.

Shimura {11] introduced a Gentzen-style formal system for I(L) with oracles given
by L and showed the cut-elimination theorem with the presence of oracles. He proved
some results on I by making use of his oracle cut elimination, especially on the preser-
vation of completeness with respect to Kripke-type (possible world) semantics.

He dealt only with modal propositional logics, and stated just brief words on modal
predicate logics in a short section, saying ‘analogues hold for the predicate logic,” and
left detailed studies uncultivated. In the present article, we make remarks on non-
preservation and preservation of the (strong) completeness with respect to Kripke-type
(possible world) semantics for modal predicate logics. Indeed, we present an example
of L which is strongly complete with respect to Kripke frame semantics, but whose I
image I(L) is Kripke frame incomplete.

However, we can make the situation much better, if we take the Kripke sheaf
semantics instead of the Kripke frame semantics. That is, the operator I preserves the
strong completeness of L with respect to Kripke sheaf semantics.

In Section 1, we give some preliminaries to make this article rather self-contained.
Shimura’s (L) and its Gentzen-type formal system with oracles are also presented here
in the setting of modal predicate logics. In Section 2, we give preliminaries of Kripke
frame semantics and present a modal predicate logic which is a counter example of
a simple predicate analogue of Shimura’s preservation result on modal propositional
logics. The Kripke sheaf semantics is briefly explained in Section 3. We show here a
Claim which is left to be proved in Section 2, and complete the proof of the counter
example. In Section 4, we show an affirmative result which is a modal predicate
analogue of Shimura’s Theorem in [11] by making use of the Kripke sheaf semantics.
Section 5 is devoted to make concluding remarks.

1 Preliminaries

We fix a pure first-order modal language £, which consists of logical connectives V
(disjunction), A (conjunction), D (implication), — (negation), a modal operator O
(necessity), and quantifiers 3 (existential quantifier) and V (universal quantifier), a
denumerable list of individual variables and a denumerable list of m-ary predicate
variables for each m < w. As usual, 0-ary predicate variables are identified with
propositional variables. Note that £ contains neither individual constants nor function
symbols.

Our basic modal logic is the first-order modal predicate logic S4,. Here we define
S4. in the Gentzen-style formal system GS4.

Definition 1.1 (GS4: Gentzen-Style System for S4,)
As usual, upper case Greek letters I', X, ... stand for finite (possibly empty) sequences
of formulas. Let LK be Gentzen’s sequent calculus for first-order classical logic. The
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GS4 is defined by adding to LK two rules for O.

AT -0 O or — A

nlnt Al T 0
AT 56 (07 ar 5 o4 o470

where O is the sequence of formulas OB, OB,, ..., OB, with I" being By, B,, ..., B,,.
A formula A is said to be provable in S4,, if the sequent — A is provable in GS4.

It is well-known that GS4 enjoys the cut-elimination theorem. That is,

Fact 1.2 Each proof P of GS4 can be transformed into a cut-free proof P' with
the same end-sequent of P.

In this article, a modal predicate logic is understood as a set L of formulas of £
which satisfies the following five conditions:

(1) L contains all formulas provable in S4,,
(2) Lis closed under the rule of modus ponens (from A and A D B, infer B),
(3) L is closed under the rule of necessitation (from A, infer OA),

(4) L is closed under the rule of generalization (from A, infer VzA),
(5) L is closed under the rule of substitution (from A, infer g’;“‘""’u")AD.z

Following these terminologies, we identify S4, with the set of formulas provable in
it. For a set S of formulas of £, we denote by S4, + S the smallest modal predicate
logic containing S4, U S. If S = {Xj,..., X, }, we write S4, + X; + --- + X,, instead
of S4, + {X1,...,X,}. Note that modal predicate logics are all normal extensions of
S4,. We denote by NExtS4, the set of all modal predicate logics. Now we define the
operator I : NExtS4, — NExtS4,.

Definition 1.3 (Cf. Shimura [11]) Let L be an arbitrary normal modal logic
containing S4,. We define I(L) by putting:

I(Ly=S4,+{BvO(B > A); AeL}.

Note that as an axiom schema, BV O(B D A) is equivalent to p V O(p D A), where p
is a propositional variable not occurring in A. It is obvious that S4, C I(L) C L for

every L € NExtS4,.

2For the precise definition of 32**"*) A|, see Church [1].
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Definition 1.4 (GI(L): Sequent system for I(L)) Shimura’s oracle sequent
system for I(L) is built on the base of Gentzen’s LK by adding two inference rules for
modal operator O. One of these rules is the left-0 rule (O —) for GS4;

AT -0 (0 =)
04, - ©
and another one is the right-0O rule which is made applicable by consulting oracles
given by L;
ar,II - A,A [ — O4]
or,II — A,04

where [OI' & OA] means ‘OI' — OA is provable in L’.

(GI(L) — O),

Fact 1.5 GI(L) is equivalent to I(L). That is, for every formula A, A is in I(L)
if and only if the sequent — A is provable in GI(L).

One of the interesting achievement in Shimura [11] is that GI(L) enjoys the cut-
elimination theorem. That is,

Fact 1.6 (Shimura [11]) Each proof P of GI(L) can be transformed into a cut-
free proof P' with the same end-sequent of P. :

2 Kripke frame semantics for modal predicate log-
ics

In this section we recall basics of the Kripke frame semantics for modal propositional
and predicate logics containing S4,. Shimura’s preservation result on modal propo-
sitional logics is also recalled here. We present a modal predicate logic which is a
counterexample of a simple predicate analogue of Shimura’s preservation result.

For each non-empty set U, we denote by L[U] the language obtained from £ by
adding the name % of each u € U. In what follows, we sometimes use the same letter
u for the name of u. We sometimes identify £[U] with the set of all sentences of L[U].

Definition 2.1 A quasi-ordered set M = (M, R) with the R-least element Oy is
said to be a Kripke base. That is, R is a reflexive and transitive relation on M, and
OmRa for every a € M. A pair (M, U) of a Kripke base M = (M, R) and a mapping
U of M to the power set 2° of some nonempty set S is said to be a Kripke frame, if
(1) U(a) # 0 for every a € M, and (2) for every a,b € M, aRb implies U(a) C U(b).

A binary relation |= between each a € M and each atomic sentence of L[U(a)] is
said to be a valuation on (M, U). We extend |= to a relation between each a € M and
each sentence of L[U(a)] inductively as follows:
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eakEAABifandonlyifa = A and a = B,
eaFAVBifandonlyifal=Aoral= B,
eaFADBifandonlyifat Aorafl B,

e a |=0A if and only if b = B for every b € M with aRb,

e a|=-Aif and only if a [£ A,

e a = VzA(z) if and only if for every u € U(a), a = A(T),

e a |= 3zA(z) if and only if there exists v € U(a) such that a = A(T).

A pair (F, ) of a Kripke frame F and a valuation |= on it is said to be a Kripke-frame
model. A formula A of £ is said to be true in a Kripke-frame model (F, ) if a A
for every a € M, where A is the universal closure of A. A formula A of £ is said to be
valid in a Kripke frame F if for every valuation |= on F, A is true in (F, |=). The set
of formulas of £ valid in F = (M, U) is denoted by L(F) or L{M, U). The following
proposition is a fundamental property of Kripke frame semantics.

Proposition 2.2 For each Kripke frame F, the set L(F) contains all formulas
provable in S4,, and is closed under the modus ponens, the rule of necessitation, the
rule of generalization and the rule of substitution. Namely, L(F) is a modal predicate
logic.

By the above Proposition 2.2, the set (.. L(F) is always a modal predicate logic
for every class C of Kripke frames. Suppose that we have a class C of Kripke frames
such that L = (g L(F). Then L is said to be complete with respect to C, or C
characterizes L. We have a stronger concept.

Definition 2.3 Let L be a modal predicate logic. A pair (S, T) of sets of formulas
of L is said to be L-inconsistent, if there exists Ay, A;,..., Ay € Sand By,B,,...,B €
T such that Ay AAs A...ANAx D B,V B, V...V Bjis provable in L. A pair (S,T) of
sets of formulas of £ is said to be L-consistent, if (S,T') is not inconsistent.

Let C be a class of Kripke frames. A modal predicate logic L is said to be strongly
complete with respect to C, if

(1) L € L(F) for every F € C,

(2) for every L-consistent pair (S, T), there exits a Kripke frame F = (M,U) € C, a
mapping f of the set F'V of all free individual variables to U(0p), and a valuation
|= such that (a) Om | A7 for every A € S, (b) Om [~ B for every B € T.

Here A/ (and BY) is the sentence obtained from A (B, respectively) by replacing all
free occurrences of each free individual variable z € F'V by the name f(z) of f(z).
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Definition 2.4 Let {F; ;i € I} be a set of Kripke frames with F; = (M;, U;) and
M; = (M;, R;) for each i € I. We may assume that M;NM; =0 (i # j). By >..; M,
we mean the quasi-ordered set obtained as the disjoint union of {M; ; ¢ € I'}. Suppose
we have a new element 0 & (J;., M;. We define 0 1 )., M; as the quasi-ordered set
obtained from ), ; M; by adding the new R-least element 0. Note that if 7 = @), then
01 ) ,c; M, is the singleton {0}.

Suppose next that V' is a non-empty set such that V' C M;e;U(Om,). We define
(0,V) 1T X icr Fi as the Kripke frame (01 3, ., M;, U) whose base is 01 Y, _; M; and
for every a € 01>, ., M,

_lV  (e=0),
Ule) = { Ui(a) (Z e M,).

If I ={1,2,...,n}, we write 0 + }_,.;M; by 0 + (My,...,M,), and (0,V) *
Zie]}:‘iby (OaV)T(]:la;J:n)

Now we recall Shimura’s completeness result in [11]. Note that Kripke bases are
the Kripke frames for modal propositional logics.

Fact 2.5 (Theorem 3.2 in [11]) Let L be a modal propositional logic containing
S4 characterized by a class C of Kripke bases. Then, propositional I(L) is characterized
by the Kripke bases of the form 01 (My,...,M,) where M;,...,M,, € C andn > 1.

Shimura [11] stated that an analogue of this Fact holds for the predicate logics.
Here is a very simple analogue of Fact 2.5 due to Shimura (personal communication).

Shimura’s Analogue for the Predicate Logics Let L be a modal predicate logic
characterized by a class C of Kripke frames. Then, I(L) is characterized by to the class
of Kripke frames of the form (0,V) 13, , F; where F; € C (i € I).

Here we have a counterexample to this statement. Let S4* be the logic S4, +
Jzq(z) D Vzg(x), where g is a unary predicate variable.

Lemma 2.6 S4* is strongly characterized by a class of Kripke frames.

Proof. For every Kripke base M = (M, R), we denote by M? the Kripke frame
(M, U®) with the constant mapping U whose image is a singleton i.e., U(a) = {0} for
every a € M. Then S4* is strongly characterized by the class of Kripke frames of
the form MZ?, since propositional S4 is strongly complete with respect to the class of
Kripke frames for modal propositional logics. (Recall that Kripke bases are the Kripke
frames for modal propositional logics.) 0

Lemma 2.7 No class of Kripke frames characterizes 1(S4*).
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Proof. Note that 3zq(z) V O(3zq(z) D Vzq(z)) is provable in I1(S4), since p Vv
O(p D (Jzq(z) D Vzq(z))) is provable in I(S4%), where p is a new propositional
variable. Then we have the following two claims.

Claim 1. If 3zq(z) V O(3zq(z) D Vxg(z)) is valid in a Kripke frame, then so is
Op v O-0p v O(3zq(z) D Vzg(z)).

Claim 2. OpVv O-OpV O(3zq(z) D Vzg(x)) is not provable in I(S4").

Claim 2 will be shown in the next section by making use of the Kripke sheaf
semantics. We show here Claim 1. Let F = (M, U) be a Kripke frame such that
OpvO-OpV (3zq(z) D Vzg(z)) & L(F), We prove that Izq(z)VO(3zg(r) D Vzq(r)) ¢
L(F). By the assumption, there is an element a € M = (M, R) and a valuation |= on
F such that:

(1) a = Op,

(2) a = O-Op,

(3) a }= O(3zq(z) D Vzq(z)).

By (1) and (2), we have an element b € M with aRb and a # b. By (3), we have a
c€ M and o, 8 € U(c) with aRc and a # 8. If a # ¢, then define a valuation |=! by:

z ' q(u) if and only if z = c and u = q,

for every £ € M and every u € U(z). Then, we have a ! Jzg(z) v O(Izg(z) D
Vzq(z)). If a = ¢, then {a, 8} C U(a) C U(b). Define a valuation =2 by:

z =2 q(u) if and only if z = b and u = «a,

for every z € M and every u € U(z). Then, we have a £? 3zg(z) vV O(3zg(z) D
Vrq(z)). Hence, 3rg(z) vV O(Izg(x) O Vzq(x)) is not valid in F. This completes the
proof of Claim 1.

Now our Lemma directly follows from these two Claims. .. O

This example shows the following.

Corollary 2.8 There is a strongly Kripke-frame complete modal predicate logic L
such that I(L) fails to be Kripke-frame complete.

Now we know that Shimura’s analogue of Fact 2.5 does not work well. Moreover,
even if we put strong assumption of Fact 2.5 that L is strong Kripke-frame complete,
and even if we relax the conclusion that I(L) is just Kripke-frame complete, the state-
ment is not true. In the next Section, we introduce the Kripke sheaf semantics to get

rid of this difficulty.
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3 Kripke sheaf semantics for predicate logics

In this section we prepare the Kripke sheaf semantics to make this article self-contained.
We refer readers to [14] for details®.

Definition 3.1 We can regard a Kripke base M = (M, R) as a category in the
usual way. Let & denote the category of all non-empty sets. A covariant functor D
from a Kripke base M to S is called a domain-sheaf over M. That is,

DS1) D(a) is a non-empty set for every a € M,

DS2) for every a,b € M with aRb, there exists a mapping Dg; : D(a) — D(b),
DS3) Dq, is the identity mapping idp(,) of D(a) for every a € M,

DS4) D,. = Dy, o Dy, for every a,b,c € M with aRb and bRc.

A pair K = (M, D) of a Kripke base M and a domain-sheaf D over M is called a
Kripke sheaf. If every D, (aRb) is the set-theoretic inclusion, (M, D) is said to be a
Kripke frame.

For each d € D(a) and each b € M with aRb, D,,(d) is said to be the inheritor of d
at b. For each formula A of £[D(a)] and each b € M with aRb, the inheritor A,p of A
at b is a formula of £[D(b)] obtained from A by replacing occurrences of @ (v € D(a))
by the name ¥ of the inheritor v of u at b.

A binary relation = between each a € M and each atomic sentence of L[D(a)] is
said to be a valuation on (M, D). We extend |= to a relation between each a € M and
each sentence of £[D(a)] inductively as follows:

eaEAABifand onlyifa F A and a | B,
eal=AVBifandonlyifal= Aoraf B,
eal=ADBifand onlyifa £ A or a E B,

e a |=0A if and only if b |= B, for every b € M with aRb,
e a |=-Aif and only if a [~ A,

a = VzA(z) if and only if for every u € D(a), a = A(T),

e a |= 3z A(z) if and only if there exists u € D(a) such that a |= A(7).

A pair (K, ) of a Kripke sheaf K and a valuation |= on it is said to be a Kripké-shea_f
model. A formula A of L is said to be true in a Kripke-sheaf model (K, =) ifa | A
for every a € M, where A is the universal closure of A. A formula A of £ is said to be

3The paper [14] dealt mainly with superintuitionistic predicate logics, not modal predicate logics.
However, the reader can find basic information on the Kripke sheaf semantics for modal predicate
logics in Section 5 of [14].
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valid in a Kripke sheaf K if for every valuation |= on K, A is true in (K, |=). The set
of formulas of £ valid in K = (M, D) is denoted by L(K) or L{M, D). The following
proposition is a fundamental property of Kripke-sheaf semantics.

Proposition 3.2 For each Kripke-sheaf K, the set L(K) contains all formulas
provable in S4., and is closed under the modus ponens, the rule of necessitation, the
rule of generalization and the rule of substitution. Namely, L(K) is a modal predicate
logic.

This property ensures that Kripke sheaves can be used for the study of modal
predicate logics. Suppose for example that we have given a given formula A and a
modal predicate logic L = S4, + X; + --- 4+ X,,. If we can construct a Kripke sheaf
(M, D) such that 1) X,..., X, are valid in (M, D), and 2) A is not valid in (M, D).
Then, by the virtue of this Proposition, we have that A ¢ L.

We define completeness and strong completeness of a modal predicate logic with
respect to the Kripke sheaf semantics. The definitions are just the same as those for
Kripke frames, except replacing ‘frame(frames)’ by ’sheaf(sheaves)’.

Definition 3.3 Let {K; ; i € I} be a set of Kripke sheaves with X; = (M, D;)
and M; = (M;, R;) for each ¢ € I. Suppose next that we have a non-empty set V and
a family f = {fi: V = D;(0m;) ; ¢ € I}. We define (0,V) 15 3°,; Fi as the Kripke
sheaf (0 1+ 3_,c; M;, D) whose base is 0 1 >_,.; M; and for every a,b € 01 3, ., M;
with aRb,

Idy (a=b=0),
— |4 (a = 0)’ _ - o f. _ .
D(a) = { D;i(a) (a € My), Dy = gg:gz:a.b fi EZ, 5 e0 1zi,/‘[njd)b e M),

Now we show the Claim 2 presented in the previous section. First we have to
mention the following Lemma, which was originally proved in Shimura [11] for modal
predicate logics. The proof can be carried out essentially in the same way in [11].

Lemma 3.4 Let L be a modal predicate logic sound with respect to a class C of
Kripke frames. That is, L C L(F) for every F € C. Then, I(L) is sound with respect
to the class of Kripke frames of the form (0,V) 1y 3 .., Fi where F; € C (i € I).

Let 71 = ({1},{1}) be the Kripke frame with the trivial Kripke base {1} whose
individual domain is the singleton {1}. Let w be the set {0,1,...}. There is a unique
mapping 7 : w — {1}. Since S4* C L(F;), we have I(S4*) C L((0,w) tx F1) by
Lemma 3.4.

Lemma 3.5 (Claim 2) Op Vv O-OpV O(3zq(z) D Vzq(z)) & 1(S4*).

Proof. Let us define a valuation = on (0,w) 1, F; by:

afEpifandonlyifa=1, a}=q(u)if and only if u = 1.
Then we have (1) 0 = Op, (2) 0 & O-0p, and (3) 0 j= O(3zq(z) D Vzg(z)). Hence
1(S4*) C L((0,w) 1= F1) # Op Vv O-0p v O(3zq(z) D Vzq(z)). O
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4 Affirmative result on predicate logics

In this section, we show an affirmative result which is a modal predicate analogue of
Shimura’s Theorem (Fact 2.5) by making use of the Kripke sheaf semantics. The aim
of this section is to show the following.

Theorem 4.1 (predicate version) Let L be a normal extension of S4 strongly
characterized by a class C of Kripke sheaves. Then, I(L) is strongly characterized by
the Kripke sheaves of the form (0,V) 1y ZjEJ K; where V is a non-empty set and
{K;; j € J} is a countable (possibly finite) subset of C.

Definition 4.2 (Cf. Komori [7], Fitting [8]) Let P be a set of individual vari-
ables. A pair of (S,7) is said to be I(L)-saturated with respect to P, if (S,T) is
I(L)-consistent, every individual variable occurring in SUT is in P, and

e ANBeS=AeSand Be S,
e ANBeT =>AeTorBeT,
e AVBeS=>A€SorBeS,
e AVBeT=>Ac€TandBeT,
e " AeS=A¢€eT,

e "AeT =>A€Ss,

e ADBeS=Ac€TorBEeS,
e ADBeT=AeSand BeT,
e DAeS=> A€,

e O0A € T and (S°,{0A}) is L-inconsistent = A € T,
where S® = {OB; OB € S}

e VzA(z) € S = A(v) € S for every v € P,

e VzA(z) € T = A(v) € T for some v € P,

e JzA(z) € S = A(v) € S for some v € P,
(v)

o JdzA(z) € T = A(v) € T for every v € P.

Then we can show the following Lemma in the quite similar way that is used in
Fitting [8, Theorem 4.2, Ch. 5].
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Lemma 4.3 Let (S,T) be an I(L)-consistent pair. Let () be the set of all individual
variables occurring freely in SUT. Take a denumerable list vy, vy, . .. of new individual
variables not in S, and put P = S U {vy,v,...}. Then, there ezists a I(L)-saturated
pair (S*,T*) with respect to P such that S C S* and T C T™.

The above (S*, T*) is said to be a I(L)-saturated extension of (S,T).

The following Lemma can be shown essentially in the similar way that is used
in Shimura [11, Theorem 3.2] and Komori [7, Lemma 3.12]. Shimura’s Theorem deals
with modal propositional logics, and Komori’s Lemma concerns with superintuitionistic
predicate logics and is described in the Kripke frame semantics with L being taken from
special sequence of logics. Here we have to carry out our proof in more general setting.
However, by the virtue of Kripke sheaves, we can apply Shimura’s and Komori’s idea
more directly.

Lemma 4.4 Suppose that L is strongly complete with respect to a class C of Kripke
sheaves. Let (S,T) be a I(L)-saturated pair with respect to P. Then there exist a
countable subset {K; = (M;,D;) ; j € J} of C, a family f = {f; : w — D;j(0m;) ; j €
J} of mappings, and a valuation on (0,w) 15 3°.c;K; such that (1) for every A € S,
0= Af, (2) for every B€ T, 0 |- BY.

Proof. Let J be the set {0A € T ; (OS,{A}) is L-consistent }. Then J is
at most countable. For each OA € J, There are a Kripke-sheaf model (Knu, [=04)
with Kos = (Maa, Doa) € C and a mapping fos : FV — Doa(Omg,) such that
OMDA bégA DAfDA and OMDA '=DA DanA for every 0X e SD. Since OMDA béDA DAfDA,
there is an element ans € Mng such that aga Foa (AfDA)oMmaDA.

Let f be the family {foa : FV — Dga(Om,,) ; OA € J}, and put the Kripke sheaf
(0, FV) 14 Y oacs Koa = (01 X gacs Maa, D). Define a valuation = on K by:

Ok X ifand only if X € S
for every atomic formula X of £,
a = X if and only if a € Moy and a [Foa X

for every a € Y 4.y Moa and every atomic formula X € [D(a)]. Note that L[FV]
is identified with the set of all formulas of £. Clearly, we have that for every a €
> o4cs Mog and every formula X € [D(a)], a = X if and only if a € Moy and a oy
X. Then, by induction on the length of X, we can show that

OEXifXeS,
OEXifXeT.

We sketch here the most essential case that OY € T implies O ¥ OY. Suppose that
ay e T. If (S°,{0Y}) is L-inconsistent, then A € T by the I(L)-saturatedness of
(S,T). Hence, by the induction hypothesis, we have 0 [~ Y. Therefore 0 [~ 0OY.
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If (S%,{0Y}) is L-consistent, then OY € J and aoy oy You,, aqy- Verify that
Yomgy aoy 18 just the same one with Ypagy. Hence 0 [ OY. a

Now we show Theorem 4.1. From Lemma 3.4, it follows that I(M) C L((0,V) 1y
Zje ; K;) for every countable (possibly finite) subset {K; ; j € J} of C. Suppose that
(S,T) is I(L)-consistent. Then by Lemma 4.3, we have a I(L)-saturated extension
(S*,T*) of (S,T). By Lemma 4.4, we have a Kripke-sheaf model with the intended
property. This complete the proof of Theorem 4.1.

5 Concluding remarks

5.1 Remarks on the language

We can add countably many individual constants and function symbols to our basic
language £. We interpret individual constants and function symbols as ‘global’ con-
stants and functions. That is, for every n-ary function symbol f, for every a,b € M
with aRb, and for every @ € D(a)™, it holds that f/@) (&) = f/®(@). Here f(® and
fI®) are interpretations of f at a and b, respectively. Then, most results hold for this
extended language, as well.

We can consider modal predicate logics with equality. Since one origin of Kripke
sheaves is the Kripke frame with equality for intuitionistic predicate logic,* It is easy
to modify the Kripke sheaf semantics suitable for modal predicate logics with equality.
Namely, we have only to interpret the equality symbol = as the identity relation =
in the domains. We shall however keep in mind that in Kripke sheaves with this
interpretation of the equality, it holds that VzVy(z = y D O(z = y)).

5.2 Further research: What analogue is the best analogue?

Prof. Shimura gave me some comments on my talk presented in the meeting held
at Research Institute of Mathematical Science, Kyoto University on August 2002. He
suggested a possibility to retain the Kripke frame semantics with posing some condition
on L in his Theorem (Fact 2.5). He stated one conjecture on the predicate extension
of his Theorem.

Conjecture (Shimura) Shimura’s Analogue for the Predicate Logics holds
for L with the condition: L C Q-Triv = S4, + p D Op.

Note that the example S4* does not deny his conjecture, since S4*  Q-Triv. Here
we have a counter example to this conjecture.

Definition 5.1 Let p, ro and r; be propositional variables, and ¢ a unary predicate
variable.

Triw : p D 0p,
4See Dragalin [2] and Gabbay [3].
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Z : 3Jzq(x) D Vzq(z),
H : rOVD(ro/\rl D] DTl).

Let w be {0,1,...}. Consider the Kripke frame ({0}, w) whose Kripke base is the
singleton {0} and whose domain is w. Let F, be the Kripke frame (M,, U) where
M, = {1, 2} < with < being the natural order on it, and U(1) = U(2) = {0}. Define:

L, = L{0},w),
L, = L(%), and
L = LiNL,.

Lemma 5.2 L is Kripke-frame complete.

Proof. By the above definition, {({0},w), >} characterizes L. m;

Proposition 5.3 I(L) is Kripke-frame incomplete.
Lemma 5.4 3zq(z) V O(3zq(z) D Vzq(z) vV Triv) € I(L).

Proof. Since 3zq(z) D Vzq(z)vVTriv € L, we have Izq(z)vO(3zg(z) D (Izg(x) D
Vzq(z) V Triv)) € I(L). a

Lemma 5.5 If 3zq(x) V O(3zq(z) D Vzg(z) V Triv) is valid in a Kripke frame,
then so is HV O(3xq(z) D Vzq(z) V Triv).

Proof. We show the statement by proving the contraposition. Suppose H V
O(3zq(z) D Vzq(z) V Triv) is not valid in a Kripke frame F = (M, U). Then there
are a valuation |= on F and a € M such that

(1) a £ H, and

(2) a = O(3zg(z) D Vzq(z) V Triv).

By (2), there exists an element b € M such that aRb, b |= 3zq(z) and b & Vzq(z)VTriv.
If a # b, then we change |= at a as a [~ g(u) for all u € U(a). Then a £ 3zq(z), and
hence we have a [~ 3zq(z) vV O(3zg(z) D Vzq(z) V Triv). Suppose that a = b. Then,
from b |= 3zq(z) and b & Vxg(z) V Triv, it follows that there exist o, 3 € U(b) = U(a)
with o # 3. By (1), By (2), there exist elements ¢o,c; € M such that aRco, coRey,
and

(1-1) a bé To,

(1-2) ¢o =10 ATy, and

(1—3) CF 1.
It is clear that a # cy and ¢y # ¢;. Note that {e, 8} C U(a) C U(cp) C U(cp)- Define
a valuation =’ at a, ¢y and ¢; by

a ¥ q(u) for all u € U(a)

co ' q(u) if and only if u = o
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cFE'p

a ' p
Then, we have a [ 3zq(z), ¢o ' 3zq(z), co ' Vzq(z), and ¢ &' Triv. Therefore,
a = 3zq(z) v O(Fzq(x) D Vzq(z) V Triv). O

Lemma 5.6 H V O(3z¢(z) D Vzq(z) V Triv) &€ I(L).

Proof. There is a unique mapping 7 : w — {0}. Since L C L(F,), we have
I(L) € L((0,w) Tr F2) by Lemma 3.4. Let us define a valuation |= on (0,w) 1, F2 by:

af=pifand only if a =0, a = q(u) if and only if u =0,
alEr;ifandonlyifa=1(i=0,1).

Then we have (1) 0 & Triv, (2) 0 = Jzq(z), and (3) 0 }= Vzg(z). Therefore, we
have (4) 0 & O(3zr(z) D Vzr(z) V Triv). Moreover, we have (5) 1 |= ro A 7; and (6)
1 }& Ory. Therefore we have (7) 1 £ 79 A7y D Or;. Note that (8) 0 = ro. Hence, by
(4), (7) and (8), we have 0 = H v O(3zq(z) D Vzq(z) V Triv). i

As we have seen, Shimura’s Analogue for the Predicate Logics does not work
well. If we change our semantical setting into the Kripke sheaf semantics, and if we put
strong condition on the completeness of a logic, then we can prove a not-simple but
certain analogue (Theorem 4.1). Shall we be contented with Theorem 4.1 as a good
analogue? Of course NO! Hence one agenda for the research comes as follows:

What analogue is the best analogue of Shimura’s Theorem?
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