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Some correspondences of reduction-procedures
between natural deduction and sequent calculus
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Hosei University, Tokyo 102-8160, Japan. ({EEUK)

Abstract

An interpretation from LK to NK with one conclusion and full logical sym-
bols is defined. A procedure for transforming LK-proofs is shown such that one
can recognize the existence of the redexes in the corresponding NK-proofs.

1 Introduction

Gentzen [3] introduced two types of logical systems. One is natural deduction and the
other is sequent calculus. He proved his Hauptsatz as the cut-elimination theorem
for the sequent calculus LK and LJ. Later, Prawitz [5, 6] proved Gentzen’s Hauptsatz
as the normalizatioin theorem for the natural deduction NK (in some restriction)
and NJ. In general, the normalization procedure for natural deduction works *faster’
than the cut-elimination procedure for sequent calculus. Moreover, the former has
stronger property than the latter such as the strong normalization theorem [5, 6, 4]
and the Church-Rosser property [5, 6, 2]. In this paper, we introduce an interpretation
from LK-proofs to NK-proofs. Here, NK means the classical natural deduction with
one conclusion and containing full logical symbols primitively. Then we discuss a
classification of cuts in LK according to their roles in NK and define procedures for
eliminating the cuts in LK which cause no redex in NK. But the investigation of the
representation in LK for the correspondings of the normalization procedure in NK is
our further work. The construction of this paper is as follows. In the next section,
we show our system of NK which is expressed in a system of typed terms. That is
introduced in our previous papers [1, 2]. In section 3, we define our interpretation of
LK to NK. In section 4, we define some kinds of cuts in LK which does not correspond
with redexes in NK, and we show our lemmata which say that we can remove such
inessential cuts.

2 AC-calculus for the representation of NK

In this section, we define the system of A€-calculus which is an extension of typed
A-calculus in Church-style. A€-calculus corresponds with classical natural deduction
NK with one conclusion and full logical symbols. The system is introduced in [1, 2].
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2.1 Typed-terms

Types are formulas of a first order language £ which contains D, A, V, V, and 3 as
logical symbols, and L as a propositional constant. We use = A as an abbreviation of
the formula A O 1. Two formulas are identical if they vary only by bound variables.
We use the following letters, possibly with sub- or superscripts, as metavariables.

e a,b,c : for individual variables of L.
e p,q : for L-terms.

e A B,C,D : for L-formulas.

e z,y,z : for AC-variables.

e r,5,t,u,v,w : for \C-terms.

There are assumed to be uncountably many A€-variables. Typed A€ -terms and their
free XC -variables are defined as follows, where the set of all free A“-variables of a
AC-term t is denoted by FV (t):

e If z is a A-variable and A a L-formula, then (z4) is a A®-term of type A, and
FV((z4)) = {z4}. Moreover, we call the term (z*) an ariom-term.

¢ By the following schemata, we explam other constructions of terms. A schema
of the form
[zl ] [xn "]

ti: By -+ tn,: B,
L tniBa )

means that: if ¢; is a AC-term of type B; for each i, then u is a A®-term of type
C,and FV(u) = Ui<icn (FV (i) \ {z#}). Moreover, we call u a (*)-term.

[4]
(m.ﬁ{ :BA 55 I), t :At(Duf: Bu <40 E),

(t,uy): AAB , t( 0): A , t( t(r1) : B
. B Lave o
t: : : U v
{t,B}: AVB (VIo) {A,t}: AVB (V&) t(A\Veld.u, AVyB.v): C (VE),
t:A t:VaA
(A\Va.t) : VaA VI), t(p) : Alp/a] (VE)

(2]
t: Alp/a] t:3a4 u:C
@) 34 D oAy 0 O
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In the schemata above, A[p/a] represents the type obtained from A by substi-
tuting p for all free occurrences of a in A. The constructions (VI) and (3F) are
subject to the usual eigenvariable conditions for £-variables. That is, in (VI),
the L-variable a does not occur in the types of any free AC-variables in ¢, and
in (3E), the A®-variable a does not occur in the types of any free AC-variables
in u except z4, nor in C.

Note that any A€-term ends with a right bracket ), ), or } as a sequence of letters.

Eliminator. In each of the schemata (D E), (AE), (VE), (VE), and (3E), the
newly constructed term is represented in the form te. We call this expression € an
eliminator from Dy to Dy where Dy and D; are the type of ¢ and te respectively.

Note that an eliminator is a sequence of letters which starts with a left round
bracket and ends with a right round bracket. Moreover, an eliminator itself is not a
AC-term.

2.2 JAil-regularity

An axiom term (27¢) is AL -nice in a term ¢ iff for every occurrence of (7€) in ¢ there
exists a term u of type C such that the occurrence of (z7€) is in the form (z7C)(u)
as a subterm of ¢ and also the occurrence of (z7¢) is not bound in t. A term w is
AL -regular iff for every subterm (A+z7€.t) in w, (7€) is AL-nice in ¢.

To simplify the representation of the reduction, we assume that every A€-term is
Al-regular. This causes no loss of generality, because a non-regular At-abstraction
can be transformed to a regular one as follows. If an occurrence (z7C) violates the
regularity of the Al-abstraction (Atz7C.t), then replace the occurrence (z7€) by
(AyC .(z7€)(y€)) using a new variable y.

The reduction in the A®-calculus will be defined in the next subsection and will
have the property that the contractum of any A‘-regular A®-term is also A*-regular.

For a term (A1z7C.t), we use a notation for brackets as follows: for every occur-
rence of subterms of the form (z7¢)(u) in t, the right-most bracket of the subterm is
indexed by z, that is, the subterm is denoted by (z7€)(u),.

2.3 Reductions

Now we define two kinds of contractions of AC-terms as follows. One is called essential
and the other structural. They are denoted by >, and >, respectively.

. (Az4.t)(u) De t[u/z4]

o (t,u)(m0)Det, (,u)(ml)Deu

o {t, BY\zhu, XyP o) b uft/ad], {4, (\Vahu, \VyP 0) Do oft/P)
o (Wat)(p) e t[p/a]

o (05 (A 324 .u) >, u[p/a; t/z4]
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o t(A\ A, A\VyP w)e >y t(AVadue, AV yP ve)
o t(N Tz u)e >y t(A A ue)
e Mz C e, Mz Pd[e)s/ )e, 2P /27C])

In the schemata above, ¢ represents an eliminator from C to D. The expression
[u/:cA] represents the term obtained from ¢ by substituting u for all occurrences
(z4) in t. The expression t[ €)z/ )z, "D /£7C] represents the term obtained from
t by substituting ¢); for all occurrences ), and z™P for all occurrences z7¢
in ¢ simultaneously. The expression t[p/a] represents the term obtained from ¢ by
substituting p for all occurrences a in t. Moreover, u[p/a;t/z4] is the abbreviation of
ulp/allt/cAP/).

Note that our structural contractions consist of commutative contractions con-
cerning elimination rules for disjunction and existential quantifier, and the same kind
of contractions for the redex formed by a classical absurdity rule and an elimination
rule.

3 Interpretation of LK to \“-calculus

In this section, we define a mapping from LK-proofs to A°-terms, and show some
basic property of the mapping.

3.1 The mapping ¢

# maps each LK-proof D to a A®-term in the following conditions.

o If the conclusion of D is of the form A, ---, A, = By, - Bm, C, then the set

of all free variables in ¢D is included in the set {xf‘ i Th ,nyl ooy YpBm },
and the type of ¢D is C.
e If the conclusion of D is of the form A;j,---,A, —, then the set of all free

variables in ¢D is included in the set {xf’, ---,zf»}, and the type of ¢Dis L.

We call each z* a left-side corresponding variable and each y;Bj a right-side corre-
sponding variable of D . '
#D is defined by the induction on the construction of D .

e If D is an axiom of the form A — A, then ¢D is (z4).
¢ By the following schemata, we explain other constructions of ¢D . A schema of
the form
Fl — el[tl . Cl], b ’,Fn — en[tn . Cn]
Ty — eo[to : Co]

means that: if the LK-proofs whose last sequent are the upper sequents I'y —
©., -, = O,, are mapped by ¢ to ty of type Cy, - -, t, of type C, respec-
tively, then the LK-proof whose last sequent is the lower sequent 'y — Oy is
mapped by ¢ to tg of type Co,
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I' 90,Au:A] B,A—=At:(C] (5 1)
ADB,T,A— 0,A [t[(:4>B)(u)/zB] : C] if © is empty or A is not empty,
' 0,Au:A] B,A—A[t:C] (5 1)
AD B, T,A— 0,A[(Ay,Cn 4[(2428)(u)/2B]) : Cy) otherwise, where © =
Cl; e Cn;

AT -5 0,B[t: B]
' 5©,AD> B[(Az4t): AD B]

(O R)

AT—=01[t:C) (ALo) B, T -0 [t:C]
AAB,T = 0 [t[(zA"B)(x0)/z4] : C] ), AAB,T — © [t[(zA"B)(x1)/zB] : C]

(/\Ll)

'>0,A[t:A] T—>06,B[u: B]
I' 40,AAB[{t,u): AN B]

(AR)

Al-50[u:C] BT 506[v:(C]
AV B,T - 0 [(z4VB)(A\VzA.u, A\VyB v) : C]

(VL)

r—-0,At: A] (VRo) I' 50,B[t: B]
T +0,AVBI[{t,B}: AV B] ¥ T—56,AVB[{A,t}:AV B]

'(le)

I' 50,A[u: A] ' 50,A[u:A]
—A (_|L : : 1,-C A . (_'L)
-A,T = 0 [(274)(u) : 1] if © isempty, 7 A, ' = © [(A~y,“.(274)(v)) : Cy] ,
otherwise, where © = Cy,---,C,,
AT—>0[t:(C] R) AT —-0[t:C] (=R)
[ — 0,24 [(Az4.1) : =A] if © isempty, I' = ©,-A [(Az4.(27C)(2)) : =A] ,

otherwise,

Alp/al, T -5 O [t : C]

I 50,A[t: Al
VaA, T © [tl(="*4)(p)/2 /] - C] (VE)

T — O,VaA [(A\Va.t) : Vad] ,

(VL)

AT >0 [u:C] T — 0, Alp/d] [t : Alp/a]]
a4, T = 0 [(z7*) (M2t u) : C] GL) T30 304 (0570 : 3aa] 0,

r—-0i[t:C]
AT—->0]t:C)
r-oef[:C] r-Loeft:C]

WR \
I' 50,A[(At2"410) : A (WE) if© isempty, I — ©, A [ A tz74.(y7°)(?)) : 4]
otherwise,

(WL)

(WR)




AJAAT 50 [t: () (CI)
AT 50 [t[z2/zf; 24 /28] : O] ,

I 50,AA[t: A

T =5 0,A[My™.(y4)(@)) : 4] where y~4 is the right-side corresonding
variable for the occurrence A in the upper sequent which is at the second place
from right,

AVA,B,T =30 [t:C]
AB,A T 50 [t:(C]

(EL)

I >0,4,B,A[t:C]
T—=0,B,AA[t:C]

I' 0,A4,B,A[t:C]
if A is not empty, I' = ©, B, A, A [(Atz™4.(27B)(t)) : A]

(ER)

otherwise, |
Ir—-50,Au:A] A A-Aft:C] (Cut
T,A = 0,A [tlu/z4]: C] if © is empty or A is not empty, where

24 is the left-side corresonding variable for the occurrence A in the right up-
' 5 0,Au:A] A A->Alt:C] (Cut
u

per sequent, ', A = ©,A [(ALyrCn t[u/z4]) : Cnl otherwise, where © =
Ci,---,Cyr, and z4 is as of the previous case.

Fact For any LK-proof D, ¢D is AL-regular.

Proof If a AC-variable 7€ is newly bounded by a Atin a step of the construction
of ¢D , then £ is one of the right-side corresponding variables in the previous step.
On the other hand, every right-side corresponding variables in D is AC-nice in ¢D .
O

We have also the next fact by definitions.

Fact If a LK-proof D is cut-free, then ¢D is normal.

Notice There exists a LK-proof which has cuts but whose image of ¢ is normal.
For example, the following proof has such property:

A—>A A A
A—A

4 Correspondences between cuts and redexes

Definition (assumption-predecessor) Let F be an occurrence of a formula in the
antecedent of a sequent in a LK-proof. An assumption-predecessor of F is defined
as follows. (i) If Fis AANB, ANB, A D B, VaA, A, A, B in the lower sequent
of the schema (ALog), (AL1), (D L), (VL), (CL), (EL), (EL) respectively, then A,
B, B, Alp/a), two A’s, A, B in the upper sequent of the schema is the assumption-
predecessor of F. (ii) If F is one of the formula in ' or A in the lower sequent



of a schema, then the corresponding formulae in I'’s or A respectively in the upper
sequents of the schema are the assumption-predecessors of F'. (iii) Otherwise, F' has
no assumption-predecessor.

Definition (weakening-assumption) Let F' be an occurrence of a formula in the
antecedent of a sequent in a LK-proof. We call F' a weakening-assumption if one of
the following conditions holds. We define this notion inductively on the construction
of LK-proofs. (i) F' is the weakening formula A of the schema (WL). (ii) F is one of
the formulae in I' in the lower sequent of the schema (D L), and B in the right upper
sequent of the schema is a weakening-assumption. (iii) F' is one of the formulae in
I' in the lower sequent of the schema (Cut), and A in the right upper sequent of the
schema is a weakening-assumption.

We have the following two facts by induction on the construction of the LK-proof
D.

Fact Let I';A,A — © be the conclusion of a LK-proof D , and z4 the left-side
" corresponding variable in ¢D for the occurrence A. Then the following conditions
are equivalent: (i) 4 does not occur in ¢D . (ii) The occurrence A is a weakening-
assumption.

Fact Suppose I') A, A — O is the conclusion of a LK-proof D , and the occurrence
A is a weakening-assumption. Then we can transform D to a LK-proof D’ whose
conclusion is ', A - O .

Definition (weakening-assumtion-inference) Let A (B) be the occurrence of the
formula A (B resp.) in the right upper sequent A,A — A (B,A — A resp.) of an
instance R of (C'ut) rule ((D L) rule resp.) in a LK-proof. We call R a weakening-
assumption-cut (weakening-assumption-(D L) resp.) if the occurrence A (B resp.) is
a weakening-assumption. Moreover, we call an instance R of an inference rule in a
LK-proof a (weakening-assumption-inference) if R is a weakening-assumption-cut or
a weakening-assumption-(D L).

By the previous fact, we have the next lemma.

Lemma 1 For any given LK-proof D , we can transform D to an LK-proof D’ of
the same conclusion which has no weakening-assumption-inference.

Definition (ariom-assumption) Let F be an occurrence of a formula in the an-
tecedent of a sequent in a LK-proof. We call F' an ariom-assumption if F is not a
weakening-assumption, and if one of the following conditions holds. We define this
notion inductively on the construction of LK-proofs. (i) F' is the formula-occurrence
in the antecedent of an axiom sequent. (ii) F' has one and only one assumptioin-
predecessor which is identical as formula with F', and which is an axiom-assumption.
(iii) F has two assumption-predecessor which are all axiom-assumptions, or one of
which is an axiom-assumption and the other is a weakening-assumption.

We have the next fact by definitions.
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Fact Let I',A,A — © be the conclusion of a LK-proof D , and z4 the left-side
corresponding variable in ¢D of the occurrence A. Then following two conditions are
equivalent. (i) A is an axiom-assumption. (ii) x4 occurs in ¢D , and any occurrence
of z# in ¢D is not of the form (z4)e where € is an eliminator.

Definition (aziom-assumption-cut) For an instance R of cut rule in a LK-proof, we
call R an ariom-assumption-cut if the occurrence of the cut-formula A in the right
upper sequent A, A — A of R is an axiom-assumption.

Fact Suppose Dy is a LK-proof of Ag, A, A; — A which has no axiom-assumption-
cut and the occurrence A in the last sequent of Dy is an axiom-assumption. Let
D; be a LK-proof of I' = ©, A. Then we can transform Dy to a LK-proof Dy of
Ao, T, Ay = ©, A which has no axiom-assumption-cut. Moreover, if Do and D; have
no weakening-assumption-rule, neither has Dy.

Proof By induction on the construction of Dy. O
Using this fact and Lemma 1, we have the next lemma.

Lemma 2 For any given LK-proof D , we can transform D to a LK-proof of the same
conclusion which has neither weakening-assumption-rule nor axiom-assumption-cut.

Definition (smooth (O L), (Cut), (ER)) We say that an instance R of (O L) or
(Cut) rule is smooth if the succedent of right upper sequent of R is not empty. We
also say that an instance R of (E'R) rule is smooth if the right-most formula in the
succedent of upper sequent of R is not exchanged by R.

Definition (smooth LK-proof) Let D be a LK-proof. We say that D is smooth if
D is an axiom or if the last inference of D is (ALg), (AL1), smooth (D L), (VL),
(WL), (CL), (EL), smooth (ER), or smooth (Cut).

Definition (slipping cut) Let R be an instance of cut rule in a LK-proof D . We
call R a slipping cut if the subproof of D whose last seqeunt is the left upper sequent
of R is smooth.

Lemma 3 Let D be a LK-proof whose last inference R is an instance of cut rule. If
R is not a weakening-assumption-cut, an axiom-assumption-cut, nor a slipping cut,
then ¢D is not normal.

Proof Let Dy and D; be the subproofs of D whose last sequent is left and right
upper sequent of R respectively. Let A, A — A be the conclusion of D; and z# the
left-side corresponding variable in ¢D; of the occurrence A. ¢Dq is (AI)-, (VIp)-,
(VhL)-, (O I)-, (V])-, (3I)-, (VE)-, (3E)-, or (L.)-term, because R is not a slipping
cut. ‘On the other hand, z4 occurs in ¢D; because R is not a weakening-assumption-
cut, and also there exists at least one occurrence of z4 in the form of (z4)e where
€ is an eliminator because R is not an axiom-assumption-cut. Therefore, ¢D has a
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Fact Suppose D is a LK-proof whose last inference R is a slipping cut and there
exists no slipping cut in D above R. Then we can transform D to a LK-proof D’ of
the same conclusion in which there exists no slipping cut. Moreover, if D has neither
weakening-assumption-rule nor axiom assumption-cut, then neither has D’ .

Proof By induction on the constraction of the LK-proof whose last sequent is the
left upper sequent of D . O

By this fact and Lemma 2, we have the next lemma.

Lemma4 For any given LK-proof D , we can transform D to a LK-proof of the same
conclusion which has neither weakening-assumption-rule, axiom-assumption-cut, nor
slipping cut.
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