Submetacompactness in countable products

大阪教育大学 田中 秀典 (Hidenori Tanaka) Osaka Kyoiku University

1 Introduction

A space X is said to be metacompact if every open cover of X has a point finite open refinement and X is said to be submetacompact if for every open cover \mathcal{U} of X, there is a sequence $(\mathcal{V}_n)_{n\in\omega}$ of open refinements of \mathcal{U} such that for each $x\in X$, there is an $n\in\omega$ with $\operatorname{Ord}(x,\mathcal{V}_n)<\omega$. Here, for $x\in X$ and $n\in\omega$, let $\mathcal{V}_{n_x}=\{V\in\mathcal{V}_n:x\in V\}$ and $\operatorname{Ord}(x,\mathcal{V}_n)=|\mathcal{V}_{n_x}|$. We call this sequence $(\mathcal{V}_n)_{n\in\omega}$ a θ -sequence of open refinements of \mathcal{U} . Clearly, every paracompact space is metacompact and every metacompact space is submetacompact. It is well known that if X is countably compact and submetacompact, then X is compact.

Since the notion of C-scattered spaces was introduced by R. Telgársky [Te1], C-scattered spaces play the fundamental role in the study of covering properties of products. A space X is said to be scattered if every nonempty subset A of X has an isolated point in A, and X is said to be C-scattered if for every nonempty closed subset A of X, there is a point $x \in A$ which has a compact neighborhood in A. Scattered spaces and locally compact spaces are C-scattered. R. Telgársky [Te1] proved that if X is a C-scattered paracompact (Lindelöf) space, then $X \times Y$ is paracompact (Lindelöf) for every paracompact (Lindelöf) space Y.

R. Telgársky [Te2] also introduced the notion of \mathcal{DC} -like spaces, using topological games. The class of \mathcal{DC} -like spaces includes all spaces with a σ -closure-preserving closed cover by compact subsets and all paracompact C-scattered spaces. R. Telgársky proved that if X is a paracompact (Lindelöf) \mathcal{DC} -like space, then $X \times Y$ is paracompact (Lindelöf) for every paracompact (Lindelöf) space Y. Furthermore, G. Gruenhage and Y. Yajima [GY] proved that if X is a metacompact (submetacompact) \mathcal{DC} -like space, then $X \times Y$ is metacompact (submetacompact) space Y and that if X is a C-scattered metacompact (submetacompact) space, then $X \times Y$ is metacompact (submetacompact) for every metacompact (submetacompact) space Y. For covering properties of countable products, the author proved the following.

- (A) ([T1]) If Y is a perfect paracompact (hereditarily Lindelöf) space and $\{X_n : n \in \omega\}$ is a countable collection of paracompact (Lindelöf) \mathcal{DC} -like spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is paracompact (Lindelöf).
- (B) ([T2, T3]) If $\{X_n : n \in \omega\}$ is a countable collection of metacompact (submetacompact) \mathcal{DC} -like spaces, then the product $\prod_{n \in \omega} X_n$ is metacompact (submetacompact).
- (C) ([T2]) If $\{X_n : n \in \omega\}$ is a countable collection of C-scattered metacompact spaces, then the product $\prod_{n \in \omega} X_n$ is metacompact.

The author [T3] asked whether the product $\prod_{n\in\omega}X_n$ is submetacompact whenever X_n is a C-scattered submetacompact space for each $n\in\omega$.

Our purpose of this paper is to give an affirmative answer to this problem.

All spaces are assumed to be regular T_1 . Let ω denote the set of natural numbers and |A| denote the cardinality of a set A. Undefined terminology can be found in R. Engelking [E].

2 Submetacompactness

Let X be a space. For a closed subset A of X, let

 $A^* = \{x \in A : x \text{ has no compact neighborhood in } A\}.$

Let $A^{(0)} = A, A^{(\alpha+1)} = (A^{(\alpha)})^*$ and $A^{(\alpha)} = \bigcap_{\beta < \alpha} A^{(\beta)}$ for a limit ordinal α . Note that every $A^{(\alpha)}$ is a closed subset of X and if A and B are closed subsets of X such that $A \subset B$, then $A^{(\alpha)} \subset B^{(\alpha)}$ for each ordinal α . Furthermore, X is C-scattered if and only if $X^{(\alpha)} = \emptyset$ for some ordinal α . Let X be a C-scattered space and $A \subset X$. Put $\lambda(X) = \inf\{\alpha : X^{(\alpha)} = \emptyset\}$ and $\lambda(A) = \inf\{\alpha : A \cap X^{(\alpha)} = \emptyset\} \leq \lambda(X)$.

It is clear that if A, B are subsets of X such that $A \subset B$, then $\lambda(A) \leq \lambda(B)$. A subset A of X is said to be topped if there is an ordinal $\alpha(A)$ such that $A \cap X^{(\alpha(A))}$ is a nonempty compact subset of X and $A \cap X^{(\alpha(A)+1)} = \emptyset$. Thus $\lambda(A) = \alpha(A) + 1$. For each $x \in X$, there is a unique ordinal α such that $x \in X^{(\alpha)} - X^{(\alpha+1)}$, which is denoted by $\operatorname{rank}(x) = \alpha$. There is a neighborhood base \mathcal{B}_x of x in X, consisting of open subsets of X, such that for each $B \in \mathcal{B}_x$, cl B is topped in X and $\alpha(cl B) = \operatorname{rank}(x)$. If A is a topped subset of X and X is a subsets of X such that $X \cap X^{(\alpha(A))} = X \cap X^{(\alpha(A)$

The following plays the fundamental role in the study of submetacompactness.

LEMMA 2.1. (G. Gruenhage and Y. Yajima [GY]) There is a filter \mathcal{F} on ω satisfying: For every submetacompact space X and every open cover \mathcal{U} of X, there is a sequence $(\mathcal{V}_n)_{n\in\omega}$ of open refinements of \mathcal{U} such that for each $x\in X$,

$${n \in \omega : Ord(x, \mathcal{V}_n) < \omega} \in \mathcal{F}.$$

By Lemma 2.1, let \mathcal{F}^{n+1} denote the filter on ω^{n+1} generated by sets of the form

$$\prod_{i \leq n} F_i$$
, where $F_i \in \mathcal{F}$ for each $i \leq n$.

Put

$$\Phi_n = \prod_{i < n} \omega^{i+1}$$
 for each $n \in \omega$ and $\Phi = \bigcup \{\Phi_n : n \in \omega\}$.

For $\mu = (\tau_0, \tau_1, \dots, \tau_n) \in \Phi_n, n \in \omega$ with $n \geq 1$, let $\mu_- = (\tau_0, \tau_1, \dots, \tau_{n-1}) \in \Phi_{n-1}$. If $\tau \in \Phi_0$, let $\tau_- = \emptyset$. For each $\tau \in \omega^{n+2}$, let $\mu \oplus \tau = (\tau_0, \tau_1, \dots, \tau_n, \tau) \in \Phi_{n+1}$. Let \mathcal{U}, \mathcal{V} be collections of subsets of a space X. Put $\mathcal{U} \wedge \mathcal{V} = \{U \cap V : U \in \mathcal{U} \text{ and } V \in \mathcal{V}\}$.

THEOREM 2.2. If $\{X_n : n \in \omega\}$ is a countable collection of C-scattered submetacompact spaces, then the product $\prod_{n \in \omega} X_n$ is submetacompact.

PROOF. We may assume the following (cf. [A1, Theorem]):

- (1) X is a C-scattered submetacompact space and for each $n \in \omega$, $X_n = X$,
- (2) X is topped and there is a point $a \in X$ such that $X^{(\alpha(X))} = \{a\}$.

We shall show that X^{ω} is submetacompact. Let \mathcal{B} be the base of X^{ω} , consisting of all basic open subsets of X^{ω} , that is $B = \prod_{n \in \omega} B_n \in \mathcal{B}$ if there is an $n \in \omega$ such that for $i < n, B_i$ is an open subset of X and for $i \ge n, B_i = X$. Let

$$n(B) = \inf\{i : B_i = X \text{ for } j \ge i\}.$$

We call n(B) the length of B. Let \mathcal{O} be an open cover of X^{ω} , which is closed under finite unions and $\mathcal{O}' = \{B \in \mathcal{B} : B \subset O \text{ for some } O \in \mathcal{O}\}.$

Take a $B = \prod_{i \in \omega} B_i \in \mathcal{B}$ and let $\mathcal{N}(B) = \{i < n(B) : clB_i \text{ is topped in } X\}$. Take an i < n(B) with $i \notin \mathcal{N}(B)$. In case of that $\lambda(clB_i)$ is an isolated ordinal. Then there is an ordinal γ such that $\lambda(clB_i) = \gamma + 1$ and $clB_i \cap X^{(\gamma)}$ is nonempty and locally compact. For each $x \in dB_i \cap X^{(\gamma)}$, there is an open neighborhood B_x of x in X such that dB_x is topped in X, $cl(B_x \cap X^{(\gamma)})$ is compact and $\alpha(clB_x) = \operatorname{rank}(x)$. For each $x \in clB_i - X^{(\gamma)}$, take an open neighborhood B_x of x in X such that dB_x is topped in $X, dB_x \cap (dB_i \cap X^{(\gamma)}) = \emptyset$ and $\alpha(clB_x) = \operatorname{rank}(x)$. Then every $clB_i \cap clB_x$ is topped in X and $\alpha(clB_i \cap clB_x) =$ $\alpha(clB_x)$. Next, let i=n(B). Since $X^{(\alpha(X))}=\{a\}$, take a proper open neighborhood B_a of a in X, and for each $x \in X - \{a\}$, take an open neighborhood B_x of x in X such that $a \notin clB_x, clB_x$ is topped in X and $\alpha(clB_x) = \operatorname{rank}(x)$. In case of that $\lambda(clB_i)$ is a limit ordinal. For each $x \in clB_i$, there is an open neighborhood B_x of x in X such that clB_x is topped in X and $\alpha(clB_x) = \operatorname{rank}(x)$. Since $\mathcal{B}_i(B) = \{B_x : x \in clB_i\}$ is an open cover of clB_i and X is submetacompact, there is a θ -sequence $(\mathcal{V}_{B,i}^j)_{j\in\omega}$ of open (in X) refinements of $\mathcal{B}_i(B)$, $\mathcal{V}_{B,i}^j = \{V_{\xi} : \xi \in \Xi_{B,i}^j\}$, $j \in \omega$, such that for each $j \in \omega$, $\cup \mathcal{V}_{B,i}^j = B_i$ and for each $x \in B_i, \{j \in \omega : Ord(x, \mathcal{V}_{B,i}^j) < \omega\} \in \mathcal{F}, \text{ where } \mathcal{F} \text{ is the filter on } \omega \text{ described in Lemma 2.1.}$ For each $j \in \omega$ and $\xi \in \Xi_{B,i}^j$, take an $x(\xi) \in clB_i$ such that $V_{\xi} \subset B_{x(\xi)}$. For each $i \in \mathcal{N}(B)$ and $j \in \omega$, let $\Xi_{B,i}^j = \{\xi_{B,i}^j\}$ and $\mathcal{V}_{B,i}^j = \{V_{\xi_{B,i}^j}\} = \{B_i\}$. For each $\eta = (j_0, j_1, \cdots, j_{n(B)}) \in \omega^{n(B)+1}$, put $\Xi_{B,\eta} = \prod_{i \leq n(B)} \Xi_{B,i}^{j_i}$. For each $\xi = (\xi(i)) \in \Xi_{B,\eta}$, let $V(\xi) = \prod_{i \leq n(B)} V_{\xi(i)} \times X \times \cdots$ and $V_{\eta}(B) = \{V(\xi) : \xi \in \Xi_{B,\eta}\}$. Then every $V_{\eta}(B)$ is an open cover of B. Take a $\xi = (\xi(i)) \in \Xi_{B,\eta}$. $(\xi(i)) \in \Xi_{B,\eta} \text{ and let } \mathcal{M}(\xi) = \{i \leq n(B) : clV_{\xi(i)} \text{ is topped in X}\}. \text{ Then } \mathcal{N}(B) \subset \mathcal{M}(\xi).$ Put $K(\xi) = \prod_{i \in \mathcal{M}(\xi)} (clV_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))}) \times \prod_{i \leq n(B), i \notin \mathcal{M}(\xi)} V_{\xi(i)} \times \{a\} \times \cdots = \prod_{i \in \omega} K_{\xi,i} \text{ and } \mathcal{K}(B, \eta) = \{K(\xi) : \xi \in \Xi_{B,\eta}\}.$ We consider the following condition for $K(\xi)$.

(*) There is an open set $B' \in \mathcal{O}'$ such that $K(\xi) \subset B'$.

If $K(\xi)$ satisfies (*), define $n(\xi) = \inf\{n(O) : K(\xi) \subset O \text{ and } O \in O'\}$. Put $r(\xi) = \max\{n(B), n(\xi)\}$. Then there is an $O(\xi) = \prod_{i \in \omega} O_{\xi,i} \in \mathcal{O}'$ such that:

- (3) $K(\xi) \subset O(\xi)$,
- (4) $n(\xi) = n(O(\xi)).$

Take an $H(\xi) = \prod_{i \in \omega} H_{\xi,i} \in \mathcal{O}'$ such that:

- (5) (a) $\prod_{i < n(\xi)} H_{\xi,i} \times X \times \cdots \subset O(\xi)$,
 - (b) for i with $n(\xi) \leq i \leq n(B)$ or $i \leq n(B)$ with $i \notin \mathcal{M}(\xi)$, let $H_{\xi,i} = O_{\xi,i}$,
 - (c) for $i < n(\xi)$ with $i \in \mathcal{M}(\xi)$, let $H_{\xi,i}$ be an open subset of X such that $K_{\xi,i} = clV_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))} \subset H_{\xi,i} \subset clH_{\xi,i} \subset O_{\xi,i}$,
 - (d) for i with $n(B) < i < n(\xi)$, let $H_{\xi,i}$ be an open subset of X such that $K_{\xi,i} = \{a\} \in H_{\xi,i} \subset clH_{\xi,i} \subset O_{\xi,i}$,
 - (e) if $r(\xi) = n(B)$, let $H_{\xi,i} = X$ for each i > n(B), and if $r(\xi) = n(\xi) > n(B)$, let $H_{\xi,i} = X$ for $i \ge n(\xi)$.

Then we have $K(\xi) \subset H(\xi)$. Let $\mathcal{P}(B) = \{P : P \subset \{0, 1, \dots, n(B)\}\}$ and $P \in \mathcal{P}(B)$. Define

$$G(\xi) = \prod_{i \in \omega} G_{\xi,i}$$
 and $B(\xi, P) = \prod_{i \in \omega} B_{\xi,P,i}$

as follows:

Let

- (6) (a) In case of that $r(\xi) = n(B)$. For each $i \leq n(B)$, let $G_{\xi,i} = V_{\xi(i)} \cap O_{\xi,i}$ and for each i > n(B), let $G_{\xi,i} = X$.
 - (b) In case of that $r(\xi) = n(\xi) > n(B)$. For each $i \in \omega$, let $G_{\xi,i} = \emptyset$.
 - (c) In either case, for each $i \leq n(B)$, if $i \in P$, let $B_{\xi,P,i} = V_{\xi(i)} clH_{\xi,i}$ and if $i \notin P$, let $B_{\xi,P,i} = V_{\xi(i)} \cap O_{\xi,i}$. For each i > n(B), let $B_{\xi,P,i} = X$.

Clearly, if $r(\xi) = n(B)$, then $B(\xi, \emptyset) = G(\xi)$. Notice that for each $i \in \omega$, $B_{\xi,P,i} \subset B_i$ and if $B(\xi, P) \neq \emptyset$, then $n(B(\xi, P)) = n(B) + 1$. Let $i \leq n(B)$. If $i \in P$ and $i \notin \mathcal{M}(\xi)$, then $B_{\xi,P,i} = \emptyset$.

$$\mathcal{B}_{\eta,\xi}(B) = \{ B(\xi, P) : P \in \mathcal{P}(B) - \{\emptyset\} \} \text{ if } r(\xi) = n(B),$$

$$\mathcal{B}_{\eta,\xi}(B) = \{ B(\xi, P) : P \in \mathcal{P}(B) \} \text{ if } r(\xi) = n(\xi) > n(B),$$

CLAIM 1. Let $K(\xi)$ satisfies the condition (*), $P \in \mathcal{P}(B)$ and $B(\xi, P) \in \mathcal{B}_{\eta, \xi}(B)$ with $B(\xi, P) \neq \emptyset$. If $r(\xi) = n(B)$, then there is an $i < n(\xi)$ with $i \in P$.

Now, assume that $K(\xi)$ does not satisfy the condition (*). Let $G(\xi) = \emptyset$. Take a $P \in \mathcal{P}(B)$ and define $B(\xi, P)$ as follows: If $P = \emptyset$, let $B(\xi, P) = V(\xi)$. If $P \neq \emptyset$, let $B(\xi, P) = \emptyset$. Put $\mathcal{B}_{\eta,\xi}(B) = \{B(\xi, P) : P \in \mathcal{P}(B)\} = \{V(\xi)\}.$

Then, in each case, we have $V(\xi) = G(\xi) \cup (\cup \mathcal{B}_{\eta,\xi}(B))$.

CLAIM 2. Let $i \leq n(B), \xi = (\xi(i)) \in \Xi_{B,\eta}, K(\xi) = \prod_{t \in \omega} K_{\xi,t}, P \in \mathcal{P}(B)$ and $B(\xi, P) = \prod_{t \in \omega} B_{\xi,P,t}$ with $B_{\xi,P,i} \neq \emptyset$.

- (a) If $i \in P$, then $K(\xi)$ satisfies (*), $i \in \mathcal{M}(\xi)$ and $\lambda(clB_{\xi,P,i}) < \lambda(clB_i)$.
- (b) Let $i \notin P$.
 - (i) If $i \in \mathcal{M}(\xi)$, then $clB_{\xi,P,i}$ is topped in X such that $\lambda(clB_{\xi,P,i}) = \lambda(clV_{\xi(i)})$ and $K_{\xi,i} = clV_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))} = clB_{\xi,P,i} \cap X^{(\alpha(clB_{\xi,P,i}))}$. Furthermore, if $i \in \mathcal{N}(B)$, then $clB_{\xi,P,i}$ is topped in X such that $\lambda(clB_{\xi,P,i}) = \lambda(clB_i)$ and $K_{\xi,i} = clB_i \cap X^{(\alpha(clB_i))} = clB_{\xi,P,i} \cap X^{(\alpha(clB_{\xi,P,i}))}$,
 - (ii) If $i \notin \mathcal{M}(\xi)$, then $\lambda(clB_{\xi,P,i}) < \lambda(clB_i)$.

For each $\eta \in \omega^{n(B)+1}$, put

$$\mathcal{G}_{\eta}(B) = \{G_{\xi} : \xi \in \Xi_{B,\eta}\} \text{ and }$$

 $\mathcal{B}_{\eta}(B) = \cup \{\mathcal{B}_{\eta,\xi}(B) : \xi \in \Xi_{B,\eta}\}.$

Then we have

(7) (a) every element of $\mathcal{G}_{\eta}(B)$ is contained in some member of \mathcal{O}' ,

- (b) $\mathcal{G}_{\eta}(B) \cup \mathcal{B}_{\eta}(B)$ is a cover of B,
- (c) the length of nonempty element of $\mathcal{B}_n(B)$ is n(B) + 1.
- (8) For each $x \in B$, $\{\eta \in \omega^{n(B)+1} : \operatorname{Ord}(x, \mathcal{V}_{\eta}) < \omega\} \in \mathcal{F}^{n(B)+1}$.
- (9) For each $x \in B$, $\{\eta \in \omega^{n(B)+1} : \operatorname{Ord}(x, \mathcal{G}_{\eta}(B) \cup \mathcal{B}_{\eta}(B)) < \omega\} \in \mathcal{F}^{n(B)+1}$.

For each $m \in \omega$ and $\tau \in \Phi_m$, let us define \mathcal{G}_{τ} and \mathcal{B}_{τ} of elements of \mathcal{B} . For each $m \in \Phi_0 = \omega$, let $\mathcal{G}_m = \mathcal{G}_m(X^{\omega})$ and $\mathcal{B}_m = \mathcal{B}_m(X^{\omega})$. Assume that for $m \in \omega$ and $\mu \in \Phi_m$, we have already obtained \mathcal{G}_{μ} and \mathcal{B}_{μ} . Let $\tau \in \Phi_{m+1}$ and $\tau = \mu \oplus \eta$, where $\mu = \tau_- \in \Phi_m$ and $\eta \in \omega^{m+2}$. Let $B \in \mathcal{B}_{\mu}$. If $B \neq \emptyset$, then we denote $\mathcal{G}_{\eta}(B)$ and $\mathcal{B}_{\eta}(B)$ by $\mathcal{G}_{\tau}(B)$ and $\mathcal{B}_{\tau}(B)$ respectively. If $B = \emptyset$, let $\mathcal{G}_{\tau}(B) = \mathcal{B}_{\tau}(B) = \{\emptyset\}$. Let $\mathcal{G}_{\tau} = \mathcal{G}_{\mu} \cup (\cup \{\mathcal{G}_{\tau}(B) : B \in \mathcal{B}_{\mu}\})$ and $\mathcal{B}_{\tau} = \cup \{\mathcal{B}_{\tau}(B) : B \in \mathcal{B}_{\mu}\}$. Then every nonempty element of \mathcal{B}_{τ} has the length m + 2.

CLAIM 3. $\{\mathcal{G}_{\tau} \cup (\mathcal{B}_{\tau} \wedge \mathcal{O}') : \tau \in \Phi\}$ is a θ -sequence of open refinements of \mathcal{O}' .

PROOF OF CLAIM 3. By (7) (a) and induction, for each $\tau \in \Phi, \mathcal{G}_{\tau} \cup (\mathcal{B}_{\tau} \wedge \mathcal{O}')$ is an open refinement of \mathcal{O}' . Take an $x = (x_i) \in X^{\omega}$. By (9), take a $\tau(0) = m(0) \in \omega$ such that $Ord(x, \mathcal{G}_{\tau(0)} \cup \mathcal{B}_{\tau(0)}) < \omega$. Then $\tau(0) \in \Phi_0$. If $\mathcal{B}_{\tau(0)_x} = \emptyset$, then we are done. So, assume that $\mathcal{B}_{\tau(0)_x} \neq \emptyset$. By (7) (c), every nonempty element of $\mathcal{B}_{\tau(0)}$ has the length 1. By (9) again, we can take an $\eta(1) \in \omega^2$ such that

$$\eta(1) \in \cap \{\{\eta \in \omega^2 : Ord(x, \mathcal{G}_{\eta}(B) \cup \mathcal{B}_{\eta}(B)) < \omega\} : x \in B \in \mathcal{B}_{\tau(0)}\} \in \mathcal{F}^2.$$

Let $\tau(1)=(\eta(0),\eta(1))\in\Phi_1$. Then we have $Ord(x,\mathcal{G}_{\tau(1)}\cup\mathcal{B}_{\tau(1)})<\omega$. Assume also that $\mathcal{B}_{\tau(1)_x}\neq\emptyset$. Continuing in this manner, we can choose a $\tau(t)=(\eta(0),\eta(1),\cdots,\eta(t))\in\Phi_t$ such that for each $t\in\omega$, $Ord(x,\mathcal{G}_{\tau(t)}\cup\mathcal{B}_{\tau(t)})<\omega$ and $\mathcal{B}_{\tau(t)_x}\neq\emptyset$. Since $\mathcal{B}_{\tau(t)_x}\neq\emptyset$ and finite for each $t\in\omega$, it follows from König's lemma (cf. K. Kunen [K]) that there are sequences $\{\xi_t:t\in\omega\},\{\mathcal{N}(t):t\in\omega\},\{\mathcal{M}(t):t\in\omega\},\{K(t):t\in\omega\},\{P(t):t\in\omega\},\{B(t)=B(\xi(t),P(t)):t\in\omega\},B(\xi(t),P(t))=\prod_{i\in\omega}B_{t,i} \text{ of elements of }\mathcal{B} \text{ satisfying: for each }t\in\omega,$

- (10) (a) $x \in B(t) = \prod_{i \in \omega} B(t)_i \in \mathcal{B}_{n(t)}(B(t-1))$ and n(B(t)) = t+1, where $B(-1) = X^{\omega}$,
 - (b) $\xi_t \in \Xi_{B(t-1),\eta(t)}$,
 - (c) $\mathcal{N}(t) = \mathcal{N}(B(t-1)),$
 - (d) $\mathcal{M}(t) = \mathcal{M}(\xi_t)$,
 - (e) $K(t) = K(\xi_t) = \prod_{i \in \omega} K(t)_i \in \mathcal{K}(B(t-1), \eta(t)),$
 - (f) $P(t) \in \mathcal{P}(\{0,1,\cdots,n(B(t-1))\})$
 - (g) if K(t) satisfies the condition (*) and $r(\xi_t) = n(B(t-1))$, then there is an $i < n(\xi_t)$ with $i \in P(t)$,
 - (h) If $i \in P(t)$, then $\lambda(clB(t)_i) < \lambda(clB(t-1)_i)$,
 - (i) For $i \notin P(t)$,
 - (1) if $i \in \mathcal{M}(t)$, then $K(t)_i \subset clB(t-1)_i$, $i \in \mathcal{N}(t+1)$ and furthermore, if $i \in \mathcal{N}(t)$, then $K(t)_i = clB(t-1)_i \cap X^{(\alpha(clB(t-1)_i))} = K(t+1)_i = clB(t) \cap X^{(\alpha(clB(t)_i))}$ and hence $\lambda(clB(t-1)_i) = \lambda(clB(t)_i)$,
 - (2) if $i \notin \mathcal{M}(t)$, then $\lambda(clB(t)_i) < \lambda(clB(t-1)_i)$.

Let $i \in \omega$. By (10)(a), let $t \geq 1$ such that n(B(t)) > i. By (10)(h), if $i \in P(m)$ for $m \geq t$, $\lambda(clB(m)_i) < \lambda(clB(m-1)_i)$. Since there does not exist an infinite decreasing sequence of ordinals, there is an $t_i \geq 1$ such that for each $t \geq t_i$, $i \notin P(t)$. By (10) (i) (2), there is an m_i such that $m_i \geq t_i$ and for each $t \geq m_i$, $i \in \mathcal{M}(t)$. Then, by (10) (i) (1), for each $t \geq m_i$, $clB(t+1)_i$ is topped and $clB(t+1)_i \cap X^{(\alpha(clB(t+1)_i))} = K(t+1)_i = K(m_i+1)_i$. Let $K = \prod_{i \in \omega} K(m_i+1)_i$. Then K is a compact subset of X^{ω} . Since \mathcal{O} is an open cover of X^{ω} , which is closed under finite unions, there is an $O = \prod_{i \in \omega} O_i \in \mathcal{O}'$ such that $K \subset O$. By (10) (a), take an $s \geq 1$ such that:

- (11) (a) $n(O) \leq n(B(s-1))$,
 - (b) for each $i < n(O), m_i + 1 \le s$.

For each i < n(O), by (11) (b), $K(s)_i = K(m_i + 1)_i \subset O_i$. Then $K(s) \subset O$ and hence, K(s) satisfies the condition (*). Since $n(\xi_s) \leq n(O), r(\xi_s) = n(B(s-1))$. By (10)(g), there is an $i < n(\xi_s)$ with $i \in P(s)$, which contradicts the way of taking s.

The proof is completed.

References

- [A1] K. Alster, On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math. 127 (1987), 241-246.
- [E] R. Engelking, General Topology, Helderman, Berlin, 1989.
- [GY] G. Gruenhage and Y. Yajima, A filter property of submetacompactness and its application to products, Top. Appl. 36 (1990), 43-55.
- [K] K. Kunen, Set Theory, An Introduction to Independence Proofs, North Holland, Amsterdam, 1980.
- [T1] H. Tanaka, A class of spaces whose countable product with a perfect paracompact space is paracompact, Tsukuba J. Math. 16 (1992), 503-512.
- [T2] H. Tanaka, Covering properties in countable products, Tsukuba J. Math. 17 (1993), 565-587.
- [T3] H. Tanaka, Submetacompactness and weak submetacompactness in countable products, Top. Appl. 67 (1995), 29-41.
- [Te1] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
- [Te2] R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.

E-mail: htanaka@cc.osaka-kyoiku.ac.jp