Variants of subtlety in $P_{\kappa}\lambda$

— comparison of ideals defined by combinatorial principles —

2002. 10. 10

神奈川大学工学部 阿部 吉弘 (Yoshihiro Abe)¹
Dept. of Math., Faculty of Engineering,
Kanagawa University

概要

A type of subtlety for $P_{\kappa}\lambda$ called "A-subtle" is presented and compared with Menas' notion "M-subtle". Using it we prove almost ineffability is consistencywise stronger than Shelah property although $P_{\kappa}\lambda$ is A-subtle for every $\lambda \geq \kappa$ if κ is subtle. The following are also shown (i) " $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\}$ is A-subtle" has rather strong consequences. (ii) The subtle ideals are not λ -saturated, and completely ineffable ideal is not precipitous. (iii) $NAIn_{\kappa,\lambda} = NIn_{\kappa,\lambda}$ and $I_{\kappa,\lambda}$ does not have the partition property if $\lambda^{<\kappa} = 2^{\lambda}$. (iv) We can not prove " κ is $\lambda^{<\kappa}$ -ineffable whenever κ is λ -ineffable".

1 Notations and basic facts

Throughout this paper κ denotes a regular uncountable cardinal and λ a cardinal $\geq \kappa$. Let A be a set and a a set of ordinals with $|a| \leq |A|$. For any such pair (a, A), $P_a A$ denotes the set $\{x \subset A : |x| < |a|\}$. Thus $P_{\kappa} \lambda$ denotes the set $\{x \subset \lambda : |x| < \kappa\}$ and, for $x \in P_{\kappa} \lambda$, $P_{x \cap \kappa} x = \{s \subset x : |s| < |x \cap \kappa|\}$.

Combinatorial properties originated for regular uncountable cardinals have been translated into $P_{\kappa}\lambda$ in [10], [6] and [7]. For $x \in P_{\kappa}\lambda$, \hat{x} denotes the set $\{y \in P_{\kappa}\lambda\}$

¹2000 Mathematical Subject Classification: Primary 03E. Reserach partially supported by "Grant-in-Aid for Scientific research (C), The Ministry of Education, Science, Sports and Culture of Japan 09640299, and Japan Society for the Promotion of Science 14540142"

 $P_{\kappa}\lambda: x \subset y$. We say $X \subset P_{\kappa}\lambda$ is unbounded if $X \cap \hat{x} \neq \emptyset$ for all $x \in P_{\kappa}\lambda$. Let $I_{\kappa\lambda} = \{X \subset P_{\kappa}\lambda: X \text{ is not unbounded}\}.$

We say I is an ideal on $P_{\kappa}\lambda$ if the following hold:

- 1. $I \subset PP_{\kappa}\lambda$,
- 2. $\emptyset \in I$ and $P_{\kappa} \lambda \notin I$,
- 3. $I_{\kappa,\lambda} \subset I$,
- 4. I is κ -complete; $\cup X \in I$ for any $X \subset I$ with $|X| < \kappa$.

Thus $I_{\kappa,\lambda}$ is the minimal ideal on $P_{\kappa}\lambda$.

We say $X \subset P_{\kappa}\lambda$ is closed if $\cup D \in X$ for any \subset -chain $D \subset X$ with $|D| < \kappa$. X is called *club* if it is closed and unbounded.

Fact 1.1. Let $X \subset P_{\kappa}\lambda$. Then, X is club if and only if there exists $f: \lambda \times \lambda \to \lambda$ such that $C_f := \{x \in P_{\kappa}\lambda : f''(x \times x) \subset x \text{ and } x \cap \kappa \in \kappa\} \subset X$.

We say X is stationary if $X \cap C \neq \emptyset$ for any club C. Let $NS_{\kappa,\lambda} = \{X \subset P_{\kappa}\lambda : X \text{ is nonstationary}\}$. Let $I^+ = PP_{\kappa}\lambda \setminus I$. For $X \in I^+ \mid I \mid X$ denotes the set $\{Y \subset P_{\kappa}\lambda : Y \cap X \in I\}$, which is an ideal on $P_{\kappa}\lambda$ extending I. We say an ideal I is normal if I is closed under diagonal unions; $\nabla X := \{x \in P_{\kappa}\lambda : x \in \bigcup \{X_{\alpha} : \alpha \in x\}\} \in I$ for any $X = \{X_{\alpha} : \alpha < \lambda\} \subset I$. Note that I is normal if and only if every regressive function on $X \in I^+$ is constant on some $Y \in P(X) \cap I^+$, where a function f is said to be regressive if $f(x) \in x$ for any x in $dom(f) \setminus \{\emptyset\}$.

The relation \prec is defined by $y \prec z$ if $y \in P_{z \cap \kappa} z$. An ideal I is strongly normal if for any $X \in I^+$ and $f: X \to P_{\kappa} \lambda$ such that $f(x) \prec x$ for all $x \in X$ there exists $Y \in P(X) \cap I^+$ such that $f \upharpoonright Y$ is constant. This is equivalent to the following: for any $\{X_s: s \in P_{\kappa} \lambda\} \subset I$, $\nabla_{\prec} X_s := \{x: x \in \bigcup \{X_s: s \prec x\}\} \in I$. Clearly every strongly normal ideal is normal. A filter F on $P_{\kappa} \lambda$ and an ideal I on $P_{\kappa} \lambda$ are dual to each other if the following holds:

$$X \in F$$
 if and only if $P_{\kappa} \lambda \setminus X \in I$ for every $X \subset P_{\kappa} \lambda$.

The dual filter of I will be denoted by I^* .

For $f: P_{\kappa}\lambda \to P_{\kappa}\lambda$, let $C_f = \{x \in P_{\kappa}\lambda : f''P_{x \cap \kappa}x \subset P_{x \cap \kappa}x\}$. We define an ideal $WNS_{\kappa,\lambda}$ by:

 $X \in WNS_{\kappa,\lambda}$ if and only if $X \subset P_{\kappa}\lambda$ and $X \cap C_f = \emptyset$ for some $f: P_{\kappa}\lambda \to P_{\kappa}\lambda$.

The following are well-known [5], [8] and [1].

Fact 1.2. (1) $NS_{\kappa,\lambda}$ is the minimal normal ideal on $P_{\kappa}\lambda$.

- (2) $WNS_{\kappa,\lambda}$ is the minimal strongly normal ideal on $P_{\kappa}\lambda$ and $NS_{\kappa,\lambda} \subseteq WNS_{\kappa,\lambda}$.
- (3) $WNS_{\kappa,\lambda}$ is proper if and only if κ is Mahlo or $\kappa = \nu^+$ with $\nu^{<\nu} = \nu$.
- (4) If κ is Mahlo, then $\{x \in P_{\kappa}\lambda : x \cap \kappa = |x \cap \kappa| \text{ is inaccessible}\} \in WNS_{\kappa,\lambda}^*$.
- (5) If $h: P_{\kappa}\lambda \to \lambda$ is a bijection, then $WNS_{\kappa,\lambda} = NS_{\kappa,\lambda} \upharpoonright \{x: h"P_{x\cap\kappa}x = x\}.$
- (6) If $\{s_{\alpha}: \alpha < \lambda^{<\kappa}\}$ is an enumeration of $P_{\kappa}\lambda$ and $f: P_{\kappa}\lambda \to P_{\kappa}\lambda^{<\kappa}$ is defined by $f(x) = \{\alpha: s_{\alpha} \prec x\}$, then $f_{\star}(WNS_{\kappa,\lambda}) := \{X \subset P_{\kappa}\lambda^{<\kappa}: f^{-1}(X) \in WNS_{\kappa,\lambda}\} = WNS_{\kappa,\lambda^{<\kappa}}$ and $\{x \in P_{\kappa}\lambda: f(x) \cap \lambda = x\} \in WNS_{\kappa,\lambda}^*$.

All the notions defined above for $P_{\kappa}\lambda$ can be naturally translated into $P_{x\cap\kappa}x$ if $x\cap\kappa$ is regular uncountable. For instance, $X\subset P_{x\cap\kappa}x$ is unbounded if for any $y\in P_{x\cap\kappa}x$ there is $z\in X$ such that $y\subset z$, and $I_{x\cap\kappa,x}$ denotes the set $\{X\subset P_{x\cap\kappa}x: X \text{ is not unbounded in } P_{x\cap\kappa}x\}$ which is a $x\cap\kappa$ -complete ideal on $P_{x\cap\kappa}x$.

First we observe a type of subtlety for $P_{\kappa}\lambda$: $X \subset P_{\kappa}\lambda$ is A-subtle if for any $\{S_x \subset P_{x \cap \kappa}x : x \in P_{\kappa}\lambda\}$ and $C \in WNS_{\kappa,\lambda}^*$, there exist $y \prec z$ both in $C \cap X$ such that $S_y = S_z \cap P_{y \cap \kappa}y$.

The following are shown in §2:

Theorem 1.3. (1) κ is subtle if and only if $P_{\kappa}\lambda$ is A-subtle for every $\lambda \geq \kappa$.

- (2) If $X \subset P_{\kappa}\lambda$ is A-subtle, there exists $\{S_x \subset P_{x \cap \kappa}x : x \in X\}$ such that $\{x \in X : S_x = S \cap x\} \in WNS_{\kappa,\lambda}^+$ for every $S \subset P_{\kappa}\lambda$.
- (3) If κ is weakly Mahlo and $2^{\alpha^{<\kappa}} \leq \lambda$ for every $\alpha < \lambda$, there exists $\{S_x \subset P_{x \cap \kappa} x : x \in P_{\kappa} \lambda \text{ and } x \cap \kappa \text{ is regular}\}$ such that S_x is a club in $P_{x \cap \kappa} x$ and $\{x : S_x \not\subset C\} \in NS_{\kappa,\lambda}$ for any club $C \subset P_{\kappa} \lambda$.

The last statement is false for $\lambda = \kappa$.

In the next section we study large cardinal aspects of A-subtlety to prove an analogue of Baumgartner's theorem [4] for regular uncountable cardinals:

Theorem 1.4. If $X \subset P_{\kappa}\lambda$ is A-subtle, then $\{x \in X : X \cap P_{x \cap \kappa}x \text{ is } \Pi_n^m\text{-indescribable}\}$ is A-subtle for every $m, n < \omega$.

Thus our subtlety takes an appropriate place in $P_{\kappa}\lambda$ combinatorics. The next follows immediately.

Corollary 1.5. If $cf(\lambda) \geq \kappa$ and $X \subset P_{\kappa}\lambda$ is almost ineffable, then $\{x \in X : X \cap P_{x \cap \kappa}x \text{ is Shelah}\}$ is almost ineffable.

Hence " κ is almost λ -ineffable" is an essentially stronger hypothesis than " κ is λ -Shelah". Kamo [12] already proved:

Fact 1.6. (Kamo) If κ is λ -ineffable, then $\{x \in P_{\kappa}\lambda : P_{x \cap \kappa}x \text{ is not almost ineffable}\}$ is not ineffable.

Thus we have the same hierarchy of combinatorial properties for $P_{\kappa}\lambda$ as for regular uncountable cardinals. Our proof is applicable for Kamo's theorem and more simple than his.

Another corollary is:

Corollary 1.7. If $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\}\ is\ A$ -subtle, then $V \neq L[U]$

Note that $L \models$ " κ is subtle" if κ is subtle.

In §4 we turn to saturation of subtle ideals and show:

Theorem 1.8. (1) The ideals of non-subtle sets are not λ -saturated.

(2) The ideal of non-completely ineffable sets is not precipitous

The last section is devoted to almost ineffability and ineffability. Our results might be surprising comparing with Kamo's theorem:

Theorem 1.9. Suppose that $\lambda^{<\kappa} = 2^{\lambda}$. Then, X is almost ineffable if and only if X is ineffable.

As a corollary we get:

Corollary 1.10. (1) We can not prove in ZFC that κ is $\lambda^{<\kappa}$ -ineffable whenever κ is λ -ineffable.

(2) If $\lambda^{<\kappa} = 2^{\lambda}$, $I_{\kappa,\lambda}$ does not have the partition property

2 The Subtle ideals on $P_{\kappa}\lambda$.

Menas [16] tried to introduce subtlety into $P_{\kappa}\lambda$ as follows (we call *M-subtle* in this paper):

Definition 2.1. Let $X \subset P_{\kappa}\lambda$. X is M-subtle if for any $\{S_x \subset x : x \in P_{\kappa}\lambda\}$ and a club $C \subset P_{\kappa}\lambda$ there exist $y \subseteq z$ both in $C \cap X$ such that $S_y = S_z \cap y$.

This is not an essential generalization as proved in the same paper.

Fact 2.2. For every $\lambda \geq \kappa$, $P_{\kappa}\lambda$ is M-subtle if and only if κ is subtle.

We present a new definition of subtlety for $P_{\kappa}\lambda$ and use the word "A-subtle" for it. In place of the filter of club sets we use $WNS_{\kappa,\lambda}$.

Definition 2.3. For $X \subset P_{\kappa}\lambda$, X is A-subtle if for any $\{S_x \subset P_{x \cap \kappa}x : x \in P_{\kappa}\lambda\}$ and $C \in WNS_{\kappa\lambda}^*$, there are $y \prec z$ both in $C \cap X$ such that $S_y = S_z \cap P_{y \cap \kappa}y$. Set $I_M = \{X \subset P_{\kappa}\lambda : X \text{ is not } M\text{-subtle}\}$ and $I_A = \{X \subset P_{\kappa}\lambda : X \text{ is not } A\text{-subtle}\}$.

Remark 2.4. If $\lambda^{<\kappa} = \lambda$, then $\{x \in P_{\kappa}\lambda : h''P_{x\cap\kappa}x \subset x\} \in WNS_{\kappa,\lambda}^*$ for any bijection $h: P_{\kappa}\lambda \to \lambda$. Thus, in this case, $X \subset P_{\kappa}\lambda$ is A-subtle if and only if for any $\{S_x \subset x : x \in P_{\kappa}\lambda\}$ and $C \in WNS_{\kappa,\lambda}^*$ there are $y \prec z$ both in $C \cap X$ such that $S_y = S_z \cap y$.

We say κ is λ -subtle if $P_{\kappa}\lambda$ is A-subtle (in $P_{\kappa}\lambda$). If $P_{\kappa}\lambda$ is A-subtle, then it is M-subtle. So κ is assumed to be subtle in the rest of this section.

We collect several facts for subtle ideals:

Proposition 2.5. (1) $I_M \subset I_A$.

- (2) I_M is a normal ideal on $P_{\kappa}\lambda$.
- (3) I_A is a strongly normal ideal on $P_{\kappa}\lambda$
- (4) $\{x \in P_{\kappa}\lambda : x \cap \kappa \text{ is Mahlo}\} \in I_{M}^{*}$.
- (5) If $\kappa \leq \delta < \lambda$ and $X \subset P_{\kappa}\lambda$ is A-subtle, then $X \upharpoonright \delta := \{x \cap \delta : x \in X\} \subset P_{\kappa}\delta$ is A-subtle.
- (6) If κ is Mahlo and $\{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \text{ is } A\text{-subtle}\} \in WNS_{\kappa,\lambda}^+$, then X is A-subtle.
- (7) Let $\{s_{\alpha} : \alpha < \delta\}$ be an enumeration of $P_{\kappa}\lambda$ and $f(x) = \{\alpha : s_{\alpha} \prec x\}$ for $x \in P_{\kappa}\lambda$. Then, $f''X \subset P_{\kappa}\delta$ is A-subtle if and only if $X \subset P_{\kappa}\lambda$ is A-subtle.
- (8) If λ is regular, $X \subset P_{\kappa}\lambda$ and $\{\alpha < \lambda : X \cap P_{\kappa}\alpha \text{ is } M\text{-subtle}\} \in NS_{\lambda}^+$, then X is M-subtle.

Proof. We only show (3). Let $X \subset P_{\kappa}\lambda$ be subtle and $f: X \to P_{\kappa}\lambda$ such that $f(x) \prec x$ for every $x \in X$. Suppose to the contradiction that $f^{-1}(\{a\})$ is not subtle for any $a \in P_{\kappa}\lambda$. For $a \in P_{\kappa}\lambda$, we fix $\{S_x^a \subset P_{x \cap \kappa}x : x \in P_{\kappa}\lambda\}$ and $D_a \in WNS_{\kappa,\lambda}^*$ such that $S_y^a \neq S_z^a \cap P_{y \cap \kappa}y$ for any $y \prec z$ both in $D_a \cap f^{-1}(\{a\})$.

Let $h: P_{\kappa}\lambda \times P_{\kappa}\lambda \to P_{\kappa}\lambda$ be a bijection and set $T_x = h''(\{f(x)\} \times S_x^{f(x)}) \cap P_{x \cap \kappa}x$. Note that $C = \{x \in P_{\kappa}\lambda : h''(P_{x \cap \kappa}x \times P_{x \cap \kappa}x) \subset P_{x \cap \kappa}x\} \in WNS_{\kappa,\lambda}^*$. Since X is A-subtle and $E = C \cap \Delta_{\prec}D_a \in WNS_{\kappa,\lambda}^*$, there exist $y \prec z$ both in $E \cap X$ such that $T_y = T_z \cap P_{y \cap \kappa}y$. Then, f(y) = f(z) and $S_y^{f(y)} = S_z^{f(z)} \cap P_{y \cap \kappa}y$. Set a = f(y) = f(z). We have $y \prec z$ are both in $D_a \cap f^{-1}(\{s\})$ and $S_y^a = S_z^a$, which contradicts our assumption.

A natural question arises:

Question 2.6. Can it be proved that $I_M \subseteq I_A$?

It turns out that "A-subtle" is neither an essential generalization.

Theorem 2.7. If κ is subtle, then $P_{\kappa}\lambda$ is A-subtle.

Proof. Let $S_x \subset P_{x \cap \kappa} x$ for $x \in P_{\kappa} \lambda$ and $D \in WNS_{\kappa,\lambda}^*$. Since $\kappa^{<\kappa} = \kappa$, $WNS_{\kappa^+,\lambda}$ is proper.

We first show $\{x \in P_{\kappa^+}\lambda : D \cap P_{\kappa}x \in WNS^*_{\kappa,x}\} \in WNS^*_{\kappa^+,\lambda}$. Let $f: P_{\kappa}\lambda \to P_{\kappa}\lambda$ such that $C_f \subset D$. If $\{x \in P_{\kappa^+}\lambda : f''P_{\kappa}x \subset P_{\kappa}x\} \notin WNS^*_{\kappa^+,\lambda}$, $X:=\{x \in P_{\kappa^+}\lambda : \kappa \subset x \land \exists y_x \in P_{\kappa}x (f(y) \notin P_{\kappa}x)\} \in WNS^+_{\kappa^+,\lambda}$. Note that $\kappa = |x \cap \kappa|$ for every $x \in X$. By strong normality we have $y \in P_{\kappa}\lambda$ such that $Y:=\{x \in X : y_x = y\} \in WNS^+_{\kappa^+,\lambda}$. $Y \cap \widehat{f(y)} = \emptyset$. Contradiction. Thus $Z:=\{x \in P_{\kappa^+}\lambda : \kappa \subset x \land f \upharpoonright P_{\kappa}x : P_{\kappa}x \to P_{\kappa}x\} \in WNS^*_{\kappa^+,\lambda}$. For $x \in Z$ $D_x:=\{s \in P_{\kappa}x : f''P_{s\cap\kappa}x \subset P_{s\cap\kappa}x\} \in WNS^*_{\kappa,x}$. For every $x \in Z$ $D \cap P_{\kappa}x \in WNS^*_{\kappa,x}$ since $D_x \subset C_f \cap P_{\kappa}x \subset D$.

Note that κ is subtle if and only if $P_{\kappa}\kappa$ is A-subtle. Thus $P_{\kappa}y$ is A-subtle for every $y \in Z$. Now we consider $\{S_x : x \in P_{\kappa}y\}$ and $D \cap P_{\kappa}y$. There exist $x_1 \prec x_2$ both in $D \cap P_{\kappa}y$ such that $S_{x_1} = S_{x_2} \cap P_{x_1 \cap \kappa}x_1$.

The following observations suggest two ideals may be the same. The first appear in [16].

Fact 2.8. If $X \subset P_{\kappa}\lambda$ is M-subtle and $S_x \subset x$ for each $x \in X$, then for any club $C \subset P_{\kappa}\lambda$ there exist x, y both in $C \cap X$ such that $x \subset y$, $x \cap \kappa < y \cap \kappa$, and $S_x = S_y \cap x$.

Proposition 2.9. If κ is subtle, then $X = \{x \in P_{\kappa}\lambda : x \cap \kappa = |x|\}$ is A-subtle.

Proof. Note that $X \notin WNS_{\kappa,\lambda}$ ([1]). Let $f: P_{\kappa}\lambda \to P_{\kappa}\lambda$ and $S_x \subset P_{x\cap\kappa}x$ for all $x \in P_{\kappa}\lambda$. We build a chain $\langle x_{\alpha} : \alpha < \kappa \rangle$ as follows:

Choose $x_0 \in X \cap C_f$ arbitrally and $x_{\alpha+1} \in X \cap C_f$ so that $x_{\alpha} \prec x_{\alpha+1}$. For limit α let $x_{\alpha} = \bigcup \{x_{\beta} : \beta < \alpha\}$.

Set $x = \bigcup \{x_{\alpha} : \alpha < \kappa\}$. Then, $x \cap \kappa = |x| = \kappa$, $P_{x \cap \kappa} x = \bigcup \{P_{x_{\alpha} \cap \kappa} x_{\alpha} : \alpha < \kappa\}$, and there exists a club $D \subset \kappa$ such that for every $\alpha \in D$ $x_{\alpha} \cap \kappa = \alpha = |x_{\alpha}|$. Note that $x_{\alpha} \in C_f$ if α is regular. Let $g : P_{x \cap \kappa} x \to \kappa$ be any bijection. Then, we have a club $E \subset \{\alpha \in D : g^{\alpha} P_{\alpha} x_{\alpha} \subset \alpha\}$. Since E is subtle in κ , there exist regular $\beta < \gamma$ both in E such that $g^{\alpha} S_{x_{\beta}} = g^{\alpha} S_{x_{\gamma}} \cap \beta$. Since β and γ are regular, x_{β} and x_{γ} belong to C_f .

S. Baldwin[3] and others observed the consistency strength of the stationarity of $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\}$, the complement of the set we mentioned now.

Fact 2.10. ([3],[14],[1])

- (1) If κ is weakly inaccesible and λ Ramsey $> \kappa$, then $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\}$ is stationary.
- (2) If $\{x \in P_{\kappa}\kappa^{+} : x \cap \kappa < |x|\}$ is stationary, then 0^{\dagger} exists.
- (3) If $P_{\kappa}\lambda$ is Shelah, then $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\} \in NSh_{\kappa,\lambda}^*$.

Corollary 2.11. Suppose that 0^{\dagger} does not exist and $S = \{x \in P_{\kappa}\lambda : h^{*}P_{x \cap \kappa}x = x\}$ where $h: P_{\kappa}\lambda \to \lambda$ is a bijection. Then, $I_{M} \upharpoonright S = I_{A}$. Thus $I_{M} = I_{A}$ if I_{M} is strongly normal.

The same relation holds between subtlety and its another weakening, which relates to "ethereal" introduced by Kunen: $X \subset \kappa$ is ethereal if for any $\langle S_{\alpha} \in [\alpha]^{\alpha} : \alpha < \kappa \rangle$ and a club $C \subset \kappa$, there are $\beta < \gamma$ both in $C \cap X$ such that $|S_{\beta} \cap S_{\gamma}| = |\beta|$.

Definition 2.12. Let $X \subset P_{\kappa}\lambda$. We say X is weakly subtle if for any $\{S_x \in I_{x \cap \kappa, x}^+ : x \in P_{\kappa}\lambda\}$ and a club $C \subset P_{\kappa}\lambda$, there are $y \prec z$ both in $C \cap X$ such that $S_y \cap S_z \in I_{y \cap \kappa, y}^+$. Let $I_W = \{X \subset P_{\kappa}\lambda : X \text{ is not weakly subtle}\}.$

We have the following:

Proposition 2.13. (1) I_W is a normal ideal.

- (2) If $P_{\kappa}\lambda$ is weakly subtle, then κ is ethereal.
- (3) $I_W \upharpoonright S = I_A \text{ where } S = \{x \in P_{\kappa}\lambda : h^{*}P_{x \cap \kappa}x = x\} \text{ for a bijection } h : P_{\kappa}\lambda \to \lambda.$

Three subtle ideals are interesting from the view of the diamond principles for $P_{\kappa}\lambda$. The following two cardinal version of diamond principle by Jech is wellknown.

Definition 2.14. Let $X \subset P_{\kappa}\lambda$. Then,

 $\diamondsuit_0(X)$: there exist $\{S_x \subset x : x \in X\}$ such that $\{x \in X : S_x = S \cap x\}$ is stationary for any $S \subset \lambda$. We simply write \diamondsuit_0 for $\diamondsuit_0(P_\kappa\lambda)$. Let $J_0 = \{X \subset P_\kappa\lambda : \diamondsuit_0(X) \text{ does not hold}\}$.

The following are known (see [9], [10]):

Fact 2.15. (1) J_0 is a normal ideal on $P_{\kappa}\lambda$.

- (2) $L \models \text{``} \diamondsuit_0(X) \text{ for any } X \subset P_{\omega_1} \lambda \text{''}.$
- (3) If $2^{<\kappa} < \lambda$, then J_0 is proper.
- (4) If \diamondsuit_0 holds, then $NS_{\kappa,\lambda}$ is not 2^{λ} saturated.

In the context of I_A and I_W another version of diamond arises.

Definition 2.16. Let $X \subset P_{\kappa}\lambda$. Then,

 $\Diamond_1(X)$: there exists $\{S_x \subset P_{x \cap \kappa} x : x \in X\}$ such that $\{x \in X : S_x = S \cap P_{x \cap \kappa} x\}$ is stationary for any $S \subset P_{\kappa} \lambda$.

 $\diamondsuit_2(X)$: there exists $\{S_x \subset P_{x \cap \kappa} x : x \in X\}$ such that $\{x \in X : S_x = S \cap P_{x \cap \kappa} x\} \in WNS_{\kappa,\lambda}^+$ for any $S \subset P_{\kappa}\lambda$.

 J_1 and J_2 are similarly defined as J_0 .

Of course $J_0 \subset J_1 \subset J_2$ and it is easily seen:

Lemma 2.17. (1) J_1 is a normal ideal on $P_{\kappa}\lambda$.

- (2) J_2 is a strongly normal ideal on $P_{\kappa}\lambda$
- (3) If $\lambda^{<\kappa} = \lambda$ and $h: P_{\kappa}\lambda \to \lambda$ is a bijection, then $J_2 = J_0 \upharpoonright S$ with $S = \{x: h''P_{x\cap\kappa}x = x\}$.
- (4) $L \models "J_2 = WNS_{\omega_1,\lambda}"$.
- (5) If J_2 is proper, then any ideal $\subset WNS_{\kappa,\lambda}$ is not $2^{\lambda^{<\kappa}}$ saturated.

Theorem 2.18. If κ is subtle, then J_2 is proper.

Proof. We show $\diamondsuit_2(X)$ holds for every A-subtle $X \subset P_{\kappa}\lambda$.

By induction on \prec we define $S_x \subset P_{x \cap \kappa} x$ for $x \in X$ as well as $C_x \subset P_{x \cap \kappa} x$.

If x is a \prec minimal element of X, then $S_x = C_x = \emptyset$.

Suppose S_y and C_y is defined for every $y \in X \cap P_{x \cap \kappa} x$. If there exist $S \subset P_{x \cap \kappa} x$ and $C \in WNS_{x \cap \kappa, x}^*$ such that $S_y \neq S \cap P_{y \cap \kappa} y$ for any $y \in C$, then let S_x and C_x be any such S and C. We say this is the substantial case. Otherwise let $S_x = C_x = P_{x \cap \kappa} x$. To show $\{S_x : x \in X\}$ is a witness of $\diamondsuit_2(X)$, let $S \subset P_{\kappa} \lambda$, $D \in WNS_{\kappa, \lambda}^*$, and $S_x \neq S \cap P_{x \cap \kappa} x$ for any $x \in X \cap D$. Since $X \cap D$ is A-subtle, we may assume that $D \cap P_{x \cap \kappa} x \in WNS_{x \cap \kappa, x}^*$ for every $x \in X \cap D$. Thus $S \cap P_{x \cap \kappa} x$ and $D \cap P_{x \cap \kappa} x$ witness the substantial case occurs for every $x \in X \cap D$. However $X \cap D$ is subtle hence there exist $y \prec z$ both in $X \cap D$ such that $S_y = S_z \cap P_{y \cap \kappa} y$. In particular $y \in D \cap P_{z \cap \kappa} z$. Contradiction.

Note that \diamondsuit_{κ} holds if κ is ethereal and $\kappa^{<\kappa} = \kappa$ [13].

Question 2.19. (1) Does \diamondsuit_1 hold if $P_{\kappa}\lambda$ is weakly subtle?

(2) If κ is ethereal, then $P_{\kappa}\lambda$ is weakly subtle?

Let Reg= $\{x \in P_{\kappa}\lambda : x \cap \kappa \text{ is regular}\}$. We conclude this section by:

Proposition 2.20. Suppose κ is weakly Mahlo and $2^{\alpha^{<\kappa}} \leq \lambda$ for every $\alpha < \lambda$. Then, there exists $\{S_x : x \in P_{\kappa}\lambda, x \cap \kappa \text{ is regular}\}$ such that

- 1. $S_x \subset P_{x \cap \kappa} x \ club$,
- 2. for every club $C \subset P_{\kappa} \lambda \{x : S_x \not\subset C\} \in NS_{\kappa,\lambda} \upharpoonright Reg.$

Proof. Let $\{C_{\alpha}: \kappa^{+} \leq \alpha < \lambda\} = \{X: \exists \beta < \lambda \ X \text{ is a club of } P_{\kappa}\beta\}$ be an enumeration and C_{α} a club of $P_{\kappa}\beta(\alpha)$. Set $B = \{x: \forall \alpha \in x \ \beta(\alpha) \in x\}$. Then, $B \in NS_{\kappa,\lambda}^{*}$. Let $S_{x} = \{y \in P_{x \cap \kappa}x: \forall \alpha \in x \ y \cap \beta(\alpha) \in C_{\alpha}\}$.

For every $\alpha \{x \in P_{\kappa}\lambda : C_{\alpha} \cap P_{x \cap \kappa}(x \cap \beta(\alpha)) \text{ is a club of } P_{x \cap \kappa}(x \cap \beta(\alpha))\} \in (NS_{\kappa,\lambda} \upharpoonright \text{Reg})^*$. Thus, $\{x \in P_{\kappa}\lambda : \{z \in P_{x \cap \kappa}x : z \cap \beta(\alpha) \in C_{\alpha}\} \text{ is a club of } P_{x \cap \kappa}x\} \in (NS_{\kappa,\lambda} \upharpoonright \text{Reg})^*$. Hence $A = \{x \in P_{\kappa}\lambda : S_x \text{ is a club of } P_{x \cap \kappa}x\} \in (NS_{\kappa,\lambda} \upharpoonright \text{Reg})^*$.

Pick any club $C \subset P_{\kappa}\lambda$. We have $f : \lambda \times \lambda \to \lambda$ with $C_f \subset C$. Define g by $C_f \upharpoonright \beta = C_{g(\beta)}$ for $\beta < \lambda$. Note that $\beta = \beta(g(\beta))$.

Let $x \in A \cap B \cap C_f$. For every $\beta \in x$ $g(\beta) \in x$. Hence for every $y \in S_x$ and $\beta \in x$ we have $y \cap \beta \in C_{g(\beta)} = C_f \upharpoonright \beta$. If $\{\xi, \zeta\} \subset y$, then $\{\xi, \zeta, f(\xi, \zeta)\} \subset \beta$ for some $\beta \in x$. Choose $z \in C_f$ such that $y \cap \beta = z \cap \beta$. Then, $f(\xi, \zeta) \in z \cap \beta = y \cap \beta$. Hence $y \in C_f$. We have shown that $S_x \subset C_f \subset C$ for every $x \in A \cap B \cap C_f$. \square

Remark 2.21. This is false for $\lambda = \kappa$.

3 Subtlety and large cardinals

Recall that $X \subset \kappa$ is Π_n^m -indescribable if for any $R \subset V_{\kappa}$ and Π_n^m sentence φ such that $(V_{\kappa}, \in, R) \models \varphi$, there exists $\alpha \in X$ such that $(V_{\alpha}, \in, R \cap V_{\alpha}) \models \varphi$.

Fact 3.1. (1) Suppose that λ is weakly compact. Then, $X \subset P_{\kappa}\lambda$ is M-subtle if and only if $\{\alpha < \lambda : X \cap P_{\kappa}\alpha \text{ is not } M\text{-subtle}\}$ is not Π_1^1 -indescribable.

(2) I_M is a normal ideal on $P_{\kappa}\lambda$ such that $\{x \in P_{\kappa}\lambda : x \cap \kappa \text{ is not } \Pi_n^m\text{-indescribable}\} \in I_M$ for every $m, n < \omega$.

Carr[7] defined $P_{\kappa}\lambda$ -version of indescribability.

Definition 3.2. A sequence $\langle V_{\alpha}(\kappa, \lambda) : \alpha \leq \kappa \rangle$ is recursively defined as follows:

$$\begin{array}{lll} V_0(\kappa,\lambda) & = & \lambda \\ V_{\alpha+1}(\kappa,\lambda) & = & P_{\kappa}(V_{\alpha}(\kappa,\lambda)) \cup V_{\alpha}(\kappa,\lambda) \\ V_{\alpha}(\kappa,\lambda) & = & \bigcup \{V_{\beta}(\kappa,\lambda) : \beta < \alpha\} & \textit{if } \alpha \textit{ is a limit ordinal} \end{array}$$

This definition can be carried out for $x \in P_{\kappa}\lambda$ if $x \cap \kappa$ is inaccessible. For such x we consider the structure $(V_{x \cap \kappa}(x \cap \kappa, x), \in)$ in the same way as $(V_{\kappa}(\kappa, \lambda), \in)$.

Definition 3.3. We say $X \subset P_{\kappa}\lambda$ is Π_n^m -indescribable if for any $R \subset V_{\kappa}(\kappa, \lambda)$ and Π_n^m sentence φ such that $(V_{\kappa}(\kappa, \lambda), \in, R) \models \varphi$, there exists $x \in X$ such that $x \cap \kappa = |x \cap \kappa|$ and $(V_{x \cap \kappa}(x \cap \kappa, x), \in, R \cap V_{x \cap \kappa}(x \cap \kappa, x)) \models \varphi$.

Lemma 3.4. If $X \subset P_{\kappa}\lambda$ is A-subtle and $S_x \subset P_{x \cap \kappa}x$ for $x \in P_{\kappa}\lambda$, then $\{x \in X : \{y \in X \cap P_{x \cap \kappa}x : S_y = S_x \cap P_{y \cap \kappa}y\}$ is not Π_n^m -indescribable for some $m, n\}$ is not A-subtle.

Proof. Otherwise, by κ -completeness of I_A , $Y:=\{x\in X: \{y\in X\cap P_{x\cap\kappa}x: S_y=S_x\cap P_{y\cap\kappa}y\}$ is not Π_n^m -indescribable} is subtle for some $m,n<\omega$. We may assume that $x\cap\kappa$ is inaccessible for all $x\in Y$. For $x\in Y$ there exist $R_x\subset V_{x\cap\kappa}(x\cap\kappa,x)$ and a Π_n^m sentence φ_x such that $(V_{x\cap\kappa}(x\cap\kappa,x),\in,R_x)\models\varphi_x$ while $(V_{y\cap\kappa}(y\cap\kappa,y),\in,R_x\cap V_{y\cap\kappa}(y\cap\kappa,y))\models\neg\varphi_x$ for any $y\in X\cap P_{x\cap\kappa}x$ with $S_y=S_x\cap P_{x\cap\kappa}x$. By κ -completeness again, we can assume for all $x\in Y$ $\varphi_x=\varphi$ for some φ .

Since Y is subtle, there are $y \prec z$ both in Y such that $R_y = R_z \cap V_{y \cap \kappa}(y \cap \kappa, y)$ and $S_y = S_z \cap P_{y \cap \kappa} y$. Then, $y \in X \cap P_{z \cap \kappa} z$, $S_y = S_z \cap P_{y \cap \kappa} y$ and $(V_{y \cap \kappa}(y \cap \kappa, y), \in R_z \cap V_{y \cap \kappa}(y \cap \kappa, y)) \models \varphi_z$, which is a contradiction.

As a corollary we have:

Theorem 3.5. $\{x \in P_{\kappa}\lambda : P_{x \cap \kappa}x \text{ is not } \Pi_n^m\text{-indescribable}\} \in I_A \text{ for every } m, n < \omega.$

This theorem derives strong facts.

Lemma 3.6. If $\{x \in P_{\kappa}\lambda : 2^{x \cap \kappa} \le |x|\}$ is A-subtle, then $\{x \in P_{\kappa}\lambda : o(x \cap \kappa) \ge 1\}$ is A-subtle.

Proof. Note that κ is measurable if $P_{\kappa}2^{\kappa}$ is Π_1^1 -indescribable ([6],[7]). Let $X = \{x \in P_{\kappa}\lambda : P_{x \cap \kappa}2^{x \cap \kappa} \text{ is } \Pi_1^1\text{-indescribable}\}$. Then, X is A-subtle. For $x \in X$ $x \cap \kappa$ is measurable and $\{y \in P_{x \cap \kappa}2^{x \cap \kappa} : y \cap \kappa \text{ is measurable}\}$ is Π_1^1 -indescribable. Hence $o(x \cap \kappa) \geq 1$.

Note that $L[U] \models$ "there exist $\kappa < \lambda$ such that $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\} \in NS_{\kappa,\lambda}^+$ ".

Corollary 3.7. (1) $L[U] \models \text{``}\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\}\ is\ not\ A\text{-subtle''}.$ (2) $L[U] \models \text{``}\neg \exists \kappa (\kappa \text{ is } \kappa^+\text{-Shelah})\text{''}.$

Thus the existence of a cardinal κ such that $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\}$ is A-subtle is rather strong in consistency strength. On the other hand subtlety is a Π_1^1 property of $P_{\kappa}\lambda$. The following proposition says the size of κ is not necessarily large.

Proposition 3.8. The least cardinal κ such that κ is κ^+ -subtle is not κ^+ -Shelah.

In the rest of this section we compare the almost ineffability and Shelah property using I_A , which reveals very useful in large cardinal hierarchy.

Carr [6] defined Shelah property as a $P_{\kappa}\lambda$ generalization of weak compactness. We show: if $P_{\kappa}\lambda$ is subtle then there exist many $x \in P_{\kappa}\lambda$ such that $P_{x \cap \kappa}x$ is Shelah.

Definition 3.9. Let $X \subset P_{\kappa}\lambda$. We say X is Shelah if for any $\{f_x \in {}^x x : x \in P_{\kappa}\lambda\}$ there is $f: \lambda \to \lambda$ such that for every $y \in P_{\kappa}\lambda$ the set $\{x \in X \cap \hat{y} : f \mid y = f_x \mid y\} \in I_{\kappa,\lambda}^+$.

We say X is almost ineffable (ineffable) if for any $\{f_x \in {}^x x : x \in P_{\kappa} \lambda\}$ there is $f: \lambda \to \lambda$ such that $\{x \in X : f \upharpoonright x = f_x\} \in I_{\kappa,\lambda}^+$ $(NS_{\kappa,\lambda}^+)$.

Let $NSh_{\kappa\lambda} = \{X \subset P_{\kappa\lambda} : X \text{ is not Shelah}\}$ and $NAIn_{\kappa\lambda} = \{X \subset P_{\kappa\lambda} : X \text{ is not almost ineffable}\}.$

We often say κ is λ -Shelah (almost λ -ineffable) if $P_{\kappa}\lambda$ is Shelah (almost ineffable).

Clearly X is Shelah if X is almost ineffable, and X is almost ineffable if X is ineffable. It is known that $NSh_{\kappa\lambda}$ and $NAIn_{\kappa\lambda}$ are strongly normal ideals if $cf(\lambda) \geq \kappa$. Moreover, Kamo [12] proved the following:

Fact 3.10. (Kamo) If $X \subset P_{\kappa}\lambda$ is ineffable and $cf(\lambda) \geq \kappa$, then $\{x \in X : X \cap P_{x \cap \kappa}x \text{ is almost ineffable}\}$ is ineffable.

The following follows immediately from definition and the remark after Definition 2.1 with strong normality of $NAIn_{\kappa\lambda}$.

Proposition 3.11. If $cf(\lambda) \geq \kappa$ and $X \subset P_{\kappa}\lambda$ is almost ineffable, then X is A-subtle.

Carr [7] proved the following:

Fact 3.12. Let If $X \subset P_{\kappa}\lambda$ is Π_1^1 -indescribable, then X is Shelah. The converse is also true if $cf(\lambda) \geq \kappa$.

Corollary 3.13. If $X \subset P_{\kappa}\lambda$ is subtle, then $Y = \{x \in X : X \cap P_{x \cap \kappa}x \text{ is not } Shelah\}$ is not A-subtle.

Corollary 3.14. Let $cf(\lambda) \geq \kappa$. If $X \subset P_{\kappa}\lambda$ is almost ineffable, then $\{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \text{ is Shelah}\}$ is almost ineffable. In particular, $\{x \in P_{\kappa}\lambda : x \cap \kappa \text{ is } x\text{-Shelah}\} \in NAIn_{\kappa,\lambda}^*$ if κ is almost λ -ineffable.

This corollary tells that almost ineffability is much stronger hypothesis than Shelah property. For instance, suppose that κ is almost κ^+ -ineffable. Then $\{x \in P_{\kappa}\lambda : o.t.(x) = (x \cap \kappa)^+\} \in NAIn_{\kappa,\lambda}^*$ hence $\{x \in P_{\kappa}\lambda : x \cap \kappa \text{ is } (x \cap \kappa)^+\text{-Shelah}\} \in NAIn_{\kappa,\lambda}^*$. Thus, below the least α that is almost α^+ -ineffable, stationary many β which is β^+ -Shelah exist.

4 Saturation of subtle ideals on $P_{\kappa}\lambda$

Now we turn to saturation of subtle ideals.

Proposition 4.1. Let I be a normal λ saturated ideal on $P_{\kappa}\lambda$ with λ regular. Then, $\{x \in P_{\kappa}\lambda : o.t.(x) \text{ is regular}\} \in I^*$ hence $\{x \in P_{\kappa}\lambda : x \cap \kappa < |x|\} \in I^*$. Proof. Let G be P_I generic for V. By λ saturation the generic ultrapower Ult(V,G) is well-founded. Let $j:V\to M\cong Ult(V,G)$ be an generic embedding. Since λ is regular in V[G], $M\models$ " λ is regular" and $[\langle o.t.(x)|x\in P_{\kappa}\lambda\rangle]_G=o.t.(j``\lambda)=\lambda$. Clearly $\{x\in P_{\kappa}\lambda:x\cap\kappa\in\kappa\wedge x\setminus\kappa\neq\emptyset\}\in I^*$.

Theorem 4.2. Neither I_A nor I_M is λ saturated.

Proof. First suppose that λ is regular. We know $X = \{x \in P_{\kappa}\lambda : x \cap \kappa = |x| \text{ and } \kappa \in x\}$ is A-subtle. For $x \in X$ o.t.(x) is singular.

Second assume λ is singular and the subtle ideal on $P_{\kappa}\lambda$, say I, is λ saturated. In fact I is δ saturated for some regular $\delta < \lambda$. Then $I \upharpoonright \delta$ is δ saturated and $\{x \in P_{\kappa}\delta : x \cap \kappa = |x|\} \notin I \upharpoonright \delta$. Contradiction.

Remark 4.3. By Cummings' theorem I_A is not λ^+ -saturated if $cf(\lambda) < \kappa$.

By definition ineffability can be seen as a strengthening of Shelah property. One of the strongest version is complete ineffability defined as follows:

Definition 4.4. An ideal I on $P_{\kappa}\lambda$ is (λ,λ) -distributive if for any $X \in I^+$ and $\{W_{\alpha} : \alpha < \lambda\}$ which is an I-partition of X with $|W_{\alpha}| \leq \lambda$ there exist $Y \in P(X) \cap I^+$ and $\{X_{\alpha} : \alpha < \lambda\}$ such that $X_{\alpha} \in W_{\alpha}$ and $Y \setminus X_{\alpha} \in I$ for every $\alpha < \lambda$.

We say κ is completely λ ineffable if there is a normal (λ, λ) -distributive ideal on $P_{\kappa}\lambda$. When κ is completely λ ineffable, the minimal normal (λ, λ) -distributive ideal on $P_{\kappa}\lambda$, say I, is called completely ineffable ideal and $X \in I^+$ is said to be completely ineffable.

If I is a normal (λ, λ) -distributive ideal on $P_{\kappa}\lambda$ and $X \in I^+$, the following hold [11]:

- 1. For any $\{f_x \in {}^x x : x \in X\}$ there is $f : \lambda \to \lambda$ such that $\{x \in X : f_x = f \mid x\} \in I^+$
- 2. I is strongly normal.

In the rest of this section we assume $cf(\lambda) \geq \kappa$ and I is a normal (λ, λ) -distributive ideal on $P_{\kappa}\lambda$. Hence κ is Mahlo, $\lambda^{<\kappa} = \lambda$, and I is strongly normal. Let $\mathbb{P}_I = (I, \subset)$, $G \subset \mathbb{P}_I$ be V generic, and $j: V \prec M \cong Ult(V, G)$ a generic elementary embedding defined in V[G].

By normality of I $P(\lambda)^V \subset M$. Moreover $[\langle P_{x \cap \kappa} x \mid x \in P_{\kappa} \lambda \rangle]_G = j'' P_{\kappa} \lambda \in M$, $j'' P_{\kappa} \lambda = P_{\kappa} j'' \lambda$, and $j(X) \cap j'' P_{\kappa} \lambda = j'' X \in M$ for every $X \in P(P_{\kappa} \lambda)^V$ by strong normality. Conversely we have:

Lemma 4.5. For every $[f]_G \in j''^{\lambda}j''V \cap M$ there exists $g \in V$ such that $[f]_G = j(g) \upharpoonright j''\lambda = j''g$.

Proof. Suppose $f \in V$, $X \in I^+$ with $X \Vdash "[f]_G : j''\lambda \to j''V$ ". For $Y := \{s \in X : \text{dom}(f(s)) = s\} \in G$, $\alpha < \lambda$, and $x \in V$, let $X_{\alpha,x} = \{s \in Y \cap \hat{\alpha} : f(s)(\alpha) = x\}$. Then $W_{\alpha} := \{X_{\alpha,x} : x \in V\} \cap I^+ \text{ is a disjoint } I\text{-partition of } Y \text{ and } |W_{\alpha}| \leq \lambda$. By (λ, λ) -distributivity there is $g : \lambda \to V$ such that for every $\alpha < \lambda Y \setminus X_{\alpha,g(\alpha)} \in I$. Hence $Z := \Delta_{\alpha} X_{\alpha,g(\alpha)} \in I^+ \cap P(Y)$ and for every $s \in Z$ and $s \in S$ and s

Remark 4.6. By (λ, λ) -distributivity of I, λ remains a cardinal in V[G] hence in M.

Corollary 4.7. (1) If $X \in M$, $X \subset j''V$, and $|X|^M \leq \lambda$, then X = j''Y for some $Y \in V$.

(2)
$$P_{\kappa}j''\lambda = j''(P_{\kappa}\lambda)$$
 and $P(P_{\kappa}j''\lambda)^M = \{j''X : X \in P(P_{\kappa}\lambda)\}.$

Proof. (1) Note that the collapsing map $\pi: j''\lambda \to \lambda$ is a bijection in M. Choose any surjection $f \in M$ from $j''\lambda$ to X. By the lemma $f = j(g) \upharpoonright j''\lambda$ for some $g \in V$. Then $X = j(g)''(j''\lambda) = \{j(g)(j(\alpha)) : \alpha < \lambda\} = \{j(g(\alpha)) : \alpha < \lambda\}$. Hence X = j''Y where $Y = g''\lambda$. Now (2) is clear.

Next we present another characterization of completely ineffable subsets of $P_{\kappa}\lambda$.

Definition 4.8. Let A be a set of ordinals. We inductively define $In_{\alpha}(\kappa, A) \subset P(P_{\kappa}A)$ as follows:

- (1) $X \in In_0(\kappa, A)$ if $X \in NS_{\kappa, A}^+$, that is, for every $f : A \times A \to P_{\kappa}A$ there exists $x \in X$ such that $f''(x \times x) \subset P(x)$.
- (2) $X \in In_{\alpha+1}(\kappa, A)$ if for every $f : P_{\kappa}A \to P_{\kappa}A$ such that $f(x) \subset x$ for any $x \in P_{\kappa}A$ there is $S \subset A$ with $\{x \in X : f(x) = x \cap S\} \in In_{\alpha}(\kappa, A)$.
- (3) If α is a limit ordinal, $In_{\alpha}(\kappa, A) = \bigcap_{\beta < \alpha} In_{\beta}(\kappa, A)$.

Thus $X \in In_1(\kappa, \lambda)$ if and only if $X \subset P_{\kappa}\lambda$ is ineffable. Clearly $In_{\alpha}(\kappa, A) \subset In_{\beta}(\kappa, A)$ if $\beta < \alpha$. Hence there is α such that $In_{\alpha}(\kappa, A) = In_{\alpha+1}(\kappa, A)$. If

 $In_{\alpha}(\kappa, A) = In_{\alpha+1}(\kappa, A) \neq \emptyset$, $P(P_{\kappa}A) \setminus In_{\alpha}(\kappa, A)$ is the minimal normal (λ, λ) -distributive ideal, that is, completely ineffable ideal on $P_{\kappa}A$.

Definition 4.9. We say I is precipitous if $\Vdash_{\mathbb{P}_I}$ "Ult(V, G) is well-founded".

Lemma 4.10. Let $cf(\lambda) \geq \kappa$ and I be a normal (λ, λ) -distributive precipitous ideal on $P_{\kappa}\lambda$. For any $X \in P(P_{\kappa}\lambda)$ and α , $X \in In_{\alpha}(\kappa, \lambda)$ if and only if $M \models "j"X \in In_{\alpha}(\kappa, j"\lambda)$ ".

Proof. By induction on α . Assume first X is stationary, $f: j''\lambda \times j''\lambda \to P_{\kappa}j''\lambda$, and $f \in M$. Since $P_{\kappa}j''\lambda = j''(P_{\kappa}\lambda), f = j(g) \upharpoonright j''\lambda \times j''\lambda$ for some $g \in V$ such that $g: \lambda \times \lambda \to P_{\kappa}\lambda$. There is $x \in X$ such that $g''(x \times x) \subset P(x)$. Then $M \models "j(g)(a) \subset j(x)$ for all $a \in j(x) \times j(x)$ ". Since $j(x) = j''x \subset j''\lambda$, $M \models \text{``} f(a) \subset j(x) \text{ for all } a \in j(x) \times j(x)$ ". Hence $M \models \text{``} j''X \in NS^+_{\kappa,j''\lambda}$ ". Assume conversely $M \models "j"X \in NS^+_{\kappa,j"\lambda}"$, $f \in V$, and $f : \lambda \times \lambda \to P_{\kappa}\lambda$. Since $M \models "j(f) \upharpoonright (j''\lambda \times j''\lambda) : j''\lambda \times j''\lambda \to P_{\kappa}j''\lambda$ ", there is $y \in j''X$ such that $j(f)''(y \times y) \subset P(y)$. For $x \in X$ with j(x) = y, $j(f)(j(a)) \subset j(x)$ for every $a \in x \times x$. Hence $f''(x \times x) \subset P(x)$, showing that X is stationary. The case α is a limit ordinal is clear by our definition of $In_{\alpha}(\kappa, \lambda)$ and $In_{\alpha}(\kappa, j''\lambda)$. We prove for $\alpha = \beta + 1$. Suppose first $X \in In_{\alpha}(\kappa, \lambda)$, $M \models \text{``} f : P_{\kappa}j''\lambda \to P_{\kappa}j''\lambda$ and $f(j(x)) \subset j(x)$ for every $x \in P_{\kappa}\lambda$ ". We have $g \in V$ with $f = j(g) \upharpoonright j''P_{\kappa}\lambda$. Since $g(x) \subset x$ for every $x \in P_{\kappa}\lambda$, there is $S \subset \lambda$ such that $Y := \{x \in X : g(x) = x \in X : x \in$ $x \cap S \in In_{\beta}(\kappa, \lambda)$. By inductive hypothesis $j''Y \in In_{\beta}(\kappa, j''\lambda)$. For every $x \in Y$ $j(g)(j(x))=j(g(x))=j(x\cap S)=j''(x\cap S)=j(x)\cap j''S$ and $j''S\in M$. Now $f(y) = y \cap j''S$ for every $y \in j''Y$ hence $j''X \in In_{\alpha}(\kappa, j''\lambda)$ Suppose second $M \models "j"X \in In_{\alpha}(\kappa, j"\lambda)", f \in V$, and $f(x) \subset x$ for every $x \in P_{\kappa}\lambda$. Set $j(f) \upharpoonright j'' P_{\kappa} \lambda = g$. Since $M \models "g(x) \subset x$ for all $x \in j'' P_{\kappa} \lambda$ ", there is $T \subset j'' \lambda$ such that $S:=\{y\in j''X:g(y)=y\cap T\}\in In_{\beta}(\kappa,j''\lambda)$. By the fact $S\in P(P_{\kappa}j''\lambda)$ we have $Y \in P(P_{\kappa}\lambda)^V$ with S = j''Y. For every $x \in Y$ $g(j(x)) = j(x) \cap T$. By the same reason for S, $T = j''T_1$ for some $T_1 \in V$. For every $x \in Y$ j(f(x)) = $g(j(x)) = j(x) \cap j''T_1 = j''(x \cap T_1) = j(x \cap T_1)$. So $f(x) = x \cap T_1$ for all $x \in Y$.

Theorem 4.11. Suppose $cf(\lambda) \geq \kappa$ and I is a normal (λ, λ) -distributive precipitous ideal on $P_{\kappa}\lambda$. Then $\{x : x \cap \kappa \text{ is completely } o.t.(x)\text{-ineffable}\} \in I^*$.

The inductive hypothesis shows $Y \in In_{\beta}(\kappa, \lambda)$. Hence $X \in In_{\alpha}(\kappa, \lambda)$.

Proof. Since $V \models \text{``}\kappa$ is completely λ -ineffable", $In_{\alpha}(\kappa, \lambda) = In_{\alpha+1}(\kappa, \lambda) \neq \emptyset$ for some α . $In_{\alpha}(\kappa, \lambda) \neq \emptyset$ implies $In_{\alpha}(\kappa, j''\lambda) \neq \emptyset$. To show $In_{\alpha}(\kappa, j''\lambda) = In_{\alpha+1}(\kappa, j''\lambda)$, assume $X \in In_{\alpha}(\kappa, j''\lambda) - In_{\alpha+1}(\kappa, j''\lambda)$. Since $X \in P(P_{\kappa}j''\lambda)^{M}$, there is $Y \in P(P_{\kappa}\lambda)^{V}$ such that X = j''Y. Then $Y \in In_{\alpha}(\kappa, \lambda) = In_{\alpha+1}(\kappa, \lambda)$ hence $X = j''Y \in In_{\alpha+1}(\kappa, j''\lambda)$. Contradiction.

Lemma 4.12. Let κ be Mahlo, $X \subset P_{\kappa}\lambda$, and α an ordinal.

- (1) If $\{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \in In_{\alpha}(x \cap \kappa, x)\} \in In_{\alpha}(\kappa, \lambda)$, then $X \in In_{\alpha}(\kappa, \lambda)$.
- (2) If $X \in In_{\alpha}(\kappa, \lambda)$, then $\{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \notin In_{\alpha}(x \cap \kappa, x)\} \in In_{\alpha}(\kappa, \lambda)$.
- (3) If $X \subset P_{\kappa}\lambda$ is completely λ ineffable, then $\{x \in X : X \cap P_{x \cap \kappa}x \text{ is not completely ineffable}\}$ is completely ineffable.
- Proof. (1) By induction on α . Suppose that $\{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \in NS_{x \cap \kappa,x}^+\} \in NS_{\kappa,\lambda}^+$ and $f: \lambda^2 \to P_{\kappa}\lambda$. There is x such that $X \cap P_{x \cap \kappa}x \in NS_{x \cap \kappa,x}^+$ and $f \upharpoonright x \times x : x \times x \to P(x)$. Then we can find $y \in X \cap P_{x \cap \kappa}x$ such that $f''(y \times y) \subset P(y)$. Hence X is stationary.
- Let α be a limit ordinal and $Y := \{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \in In_{\alpha}(x \cap \kappa, x)\} \in In_{\alpha}(\kappa, \lambda)$. For any $\beta < \alpha Y \subset \{x \in P_{\kappa}\lambda : X \cap P_{x \cap \kappa}x \in In_{\beta}(x \cap \kappa, x)\} \in In_{\alpha}(\kappa, \lambda) \subset In_{\beta}(\kappa, \lambda)$. By induction hypothesis $X \in In_{\beta}(\kappa, \lambda)$. Thus $X \in In_{\alpha}(\kappa, \lambda)$.
- Let $\alpha = \beta + 1$ and $f(x) \subset x$ for all $x \in P_{\kappa}\lambda$. For each $x \in Y$ there is $S_x \subset x$ such that $\{y \in X \cap P_{x \cap \kappa}x : f(y) = y \cap S_x\} \in In_{\beta}(x \cap \kappa, x)$. Since $Y \in In_{\beta+1}(\kappa, \lambda)$ we have $S \subset \lambda$ such that $Z := \{x \in Y : S_x = x \cap S\} \in In_{\beta}(\kappa, \lambda)$. For $x \in Z$ and $y \in X \cap P_{x \cap \kappa}x$ $f(y) = y \cap S_x = y \cap x \cap S = y \cap S$. So $\{x \in P_{\kappa}\lambda : \{y \in X : f(y) = y \cap S\} \cap P_{x \cap \kappa}x \in In_{\beta}(x \cap \kappa, x)\} \in In_{\beta}(\kappa, \lambda)$. By induction hypothesis $\{y \in X : f(y) = y \cap S\} \in In_{\beta}(\kappa, \lambda)$ hence $X \in In_{\beta+1}(\kappa, \lambda)$.
- (2) We prove this by induction on κ . We may assume $A := \{x \in X : X \cap P_{x \cap \kappa} x \in In_{\alpha}(x \cap \kappa, x)\} \in In_{\alpha}(\kappa, \lambda)$. For any $x \in A$, by inductive hypothesis, $B_x := \{y \in P_{x \cap \kappa} x : X \cap P_{x \cap \kappa} x \cap P_{y \cap \kappa} y = X \cap P_{y \cap \kappa} y \notin In_{\alpha}(y \cap \kappa, y)\} \in In_{\alpha}(x \cap \kappa, x)$. By (1) and the fact $B_x = \{y \in P_{\kappa} \lambda : X \cap P_{y \cap \kappa} y \notin In_{\alpha}(y \cap \kappa, y)\} \cap P_{x \cap \kappa} x$, the conclusion holds.
- (3) Let β be the least ordinal such that $In_{\beta+1}(\kappa,\lambda)=In_{\beta}(\kappa,\lambda)$ and $X\in In_{\beta}(\kappa,\lambda)$. We may assume $W:=\{x\in X:X\cap P_{x\cap\kappa}x \text{ is completely ineffable }\}\in In_{\beta}(\kappa,\lambda)$. For $x\in W$ let β_x be the least ordinal such that $In_{\beta_x+1}(x\cap\kappa,x)=In_{\beta_x}(x\cap\kappa,x)\neq\emptyset$. By (2), for each $x\in W$ $T_x:=\{y\in P_{x\cap\kappa}x:X\cap P_{x\cap\kappa}x\cap P_{y\cap\kappa}y=X\cap P_{y\cap\kappa}y\notin In_{\beta_x}(y\cap\kappa,y)\}\in In_{\beta_x}(x\cap\kappa,x)$. Set $\gamma=\max(\beta,\bigcup_{x\in W}\beta_x)$ and $T=\{x\in P_\kappa\lambda:X\cap P_{x\cap\kappa}x\cap P_{y\cap\kappa}y\in In_{\beta_x}(y\cap\kappa,y)\}$

$$X \cap P_{x \cap \kappa} x \notin In_{\gamma}(x \cap \kappa, x)$$
. Then $T_x \subset T \cap P_{x \cap \kappa} x$ for every $x \in W$. Hence $T \in In_{\gamma}(\kappa, \lambda) = In_{\beta}(\kappa, \lambda)$

Now we conclude by the following corollary:

Corollary 4.13. If $cf(\lambda) \geq \kappa$, then the completely ineffable ideal on $P_{\kappa}\lambda$ is not precipitous.

5 Ineffability and almost ineffability

In this section we show $NAIn_{\kappa,\lambda} = NIn_{\kappa,\lambda}$ if $cf(\lambda) < \kappa$ and $\lambda^{<\kappa} = 2^{\lambda}$. Thus, two ideals are the same for "small" cofinality points if GCH holds.

Then we use it to prove that for λ with cofinality less than κ , " κ is λ -ineffable" does not always imply " κ is $\lambda^{<\kappa}$ -ineffable". This contrasts to the fact " κ is $\lambda^{<\kappa}$ -(super)compact if κ is λ -(super)compact.

Fact 5.1. (1) $WNS_{\kappa,\lambda} \subseteq NAIn_{\kappa,\lambda} \subset NIn_{\kappa,\lambda}$.

- (2) If $P_{\kappa}\lambda \notin NAIn_{\kappa,\lambda}$ and $cf(\lambda) \geq \kappa$, then $\lambda^{<\kappa} = \lambda$.
- (3) If $cf(\lambda) \ge \kappa$, then $\{x \in P_{\kappa}\lambda : P_{x \cap \kappa}x \in NAIn_{x \cap \kappa,x}\} \in NIn_{\kappa,\lambda}$ and $NAIn_{\kappa,\lambda} \subsetneq NIn_{\kappa,\lambda}$.

We have known quite little when $cf(\lambda) < \kappa$ while the following conjecture has seemded reasonable comparing with supercompactness:

Conjecture 5.2. Suppose that $cf(\lambda) < \kappa$ and κ is (almost) λ -ineffable. Then, $\lambda^{<\kappa} = \lambda^+$ and κ is λ^+ -ineffable.

Lemma 5.3. If $\lambda^{<\kappa} = 2^{\lambda}$, then there exists $X \in WNS^*_{\kappa,\lambda}$ such that $I_{\kappa,\lambda} \upharpoonright X = NS_{\kappa,\lambda} \upharpoonright X$.

Proof. Let ${}^{\lambda \times \lambda} \lambda = \{f_s : s \in P_{\kappa} \lambda\}$ be an enumeration and set $X = \{x \in P_{\kappa} \lambda : x \in \bigcap \{C_{f_s} : s \prec x\}\}$. For every $s \in P_{\kappa} \lambda$ $C_{f_s} \in NS^*_{\kappa,\lambda} \subset WNS^*_{\kappa,\lambda}$ hence $X \in WNS^*_{\kappa,\lambda}$. Let $Y \notin I_{\kappa,\lambda} \upharpoonright X$. For every club $C \subset P_{\kappa} \lambda$ there exists $s \in P_{\kappa} \lambda$ such that $C_{f_s} \subset C$. We have $x \in Y \cap X$ with $s \prec x$. Then, $x \in C_{f_s} \cap Y \cap X \subset C \cap Y \cap X$ hence $Y \cap X \in NS^+_{\kappa,\lambda}$.

Since $WNS_{\kappa,\lambda} \subset NAIn_{\kappa,\lambda}$ we have:

Theorem 5.4. $NAIn_{\kappa,\lambda} = NIn_{\kappa,\lambda}$ if $\lambda^{<\kappa} = 2^{\lambda}$.

By lemma 4.12 we have the following:

Lemma 5.5. If κ is λ -ineffable, then $\{x \in P_{\kappa}\lambda : P_{x \cap \kappa}x \in NIn_{x \cap \kappa,x}\} \notin NIn_{\kappa,\lambda}$.

Theorem 5.6. Suppose that $\lambda^{<\kappa} = 2^{\lambda}$ and κ is λ^+ -ineffable. Then, $\{x \in P_{\kappa}\lambda^+ : x \cap \kappa \text{ is } o.t.(x \cap \lambda)\text{-ineffable, not } o.t.(x)\text{-ineffable, and } o.t.(x) = o.t.(x \cap \lambda)^+\} \notin NIn_{\kappa,\lambda^+}$.

Proof. We know $A = \{x \in P_{\kappa}\lambda^{+} : x \cap \kappa \text{ is almost } o.t.(x)\text{-ineffable, } o.t.(x) = o.t.(x \cap \lambda)^{+}, cf(o.t.(x \cap \lambda)) < x \cap \kappa, \text{ and } o.t.(x \cap \lambda)^{< x \cap \kappa} = 2^{o.t.(x \cap \lambda)}\} \in NIn_{\kappa,\lambda^{+}}^{*}$ ([12], [2]). Every $x \in A$ is almost $o.t.(x \cap \lambda)$ -ineffable hence $o.t.(x \cap \lambda)$ -ineffable by the previous theorem. Now the conclusion follows by lemma 5.5.

We conclude by the negation of $I_{\kappa,\lambda}^+ \to (I_{\kappa,\lambda}^+)^2$ with $\lambda^{<\kappa} = 2^{\lambda}$.

Definition 5.7. For $X \subset P_{\kappa}\lambda$ let $[X]^2 = \{(x,y) \in X \times X : x \subseteq y\}$. We say $I_{\kappa,\lambda}$ has the partition property if for every $X \notin I_{\kappa,\lambda}$ and $F: [X]^2 \to 2$ there exists $H \notin I_{\kappa,\lambda}$ such that $F \upharpoonright [H]^2$ is constant.

Theorem 5.8. If $\lambda^{<\kappa} = 2^{\lambda}$, then $I_{\kappa,\lambda}$ does not have the partition property.

Proof. Suppose otherwise and let $I = I_{\kappa,\lambda} \upharpoonright X = NS_{\kappa,\lambda} \upharpoonright X$ with X as in [?]. For every $X \in I^+$ and $F : [X]^2 \to 2$ there exists $H \notin NS_{\kappa,\lambda}$ such that $F \upharpoonright [H]^2$ is constant. Hence $NIn_{\kappa,\lambda} \subset I$ ([15]). However $I \subset WNS_{\kappa,\lambda} \subsetneq NIn_{\kappa,\lambda}$. Contradiction.

Remark 5.9. P. Matet proved that I_{κ,κ^+} does not have the partition property if $2^{\kappa} = \kappa^+$. While M. Shioya [17] constructed the model in which $I_{\kappa,\lambda}$ has the partition property with κ supercompact.

参考文献

- [1] Y. Abe, Saturation of fundamental ideals on $P_{\kappa}\lambda$, J. Math. Soc. Japan 48 (1996), 511-524.
- [2] Y. Abe, Combinatorial characterization of Π_1^1 -indescribability in $P_{\kappa}\lambda$, Arch. Math. Logic 37 (1998), 261-272.

- [3] S. Baldwin, The consistency strength of certain stationary subsets of $P_{\kappa}\lambda$, Proc. Amer. Math. Soc. 92 (1984), 90-92.
- [4] J. Baumgartner, Ineffability properties of cardinals 1, Infinite and finite sets (P. Erdös 60th Birthday Colloquium, Keszthely, Hungary, 1973), Colloquia Mathematica Societatis János Bolyai, vol. 10, North-Holland, Amsterdam (1975), 109-130.
- [5] D. M. Carr, The minimal normal filter on $P_{\kappa}\lambda$, Proc. Amer. Math. Soc. 86 (1982), 316-320.
- [6] D. M. Carr, The structure of ineffabilty properties of $P_{\kappa}\lambda$, Acta Math. Hung. 47 (1986), 325-332.
- [7] D. M. Carr, $P_{\kappa}\lambda$ -generalizations of weak compactness, Z. Math. Logik Grundlag. Math. 31 (1985), 393-401.
- [8] D. M. Carr, J. P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals on $P_{\kappa}\lambda$, Arch. Math. Logic 30 (1990), 59-72.
- [9] H. D. Donder and P. Matet, Two cardinal versions of diamond, Israel J. Math. 83 (1993), 1-43.
- [10] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198.
- [11] C. A. Johnson, Some partition relations for ideals on $P_{\kappa}\lambda$, Acta Math. Hung 56 (1990), 269-282.
- [12] S. Kamo, Remarks on $P_{\kappa}\lambda$ -combinatorics, Fund. Math. 145 (1994), 141-151.
- [13] J. Ketonen, Some combinatorial principles, Trans. Amer. Math. Soc. 188 (1974), 387-394.
- [14] J. P. Levinski, Instances of the conjecture of Chang, Israel J. Math. 48 (1984), 225-243.
- [15] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279-285.

- [16] T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359.
- [17] M.Shioya, Partition properties of subsets of $P_{\kappa}\lambda$, Fund. Math. 161 (1999), 325-329.