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A type of subtlety for P called “A-subtle” is presented and compared
with Menas’ notion “M-subtle”. Using it we prove almost ineffability is
consistencywise stronger than Shelah property although P\ is A-subtle for
every A > k if k is subtle. The following are also shown (i) “{x € P :
zNk < |z|} is A-subtle” has rather strong consequences. (ii) The subtle
ideals are not \-saturated, and completely ineffable ideal is not precipitous.
(iif) NAIn,y = NIn,) and I, ) does not have the partition property if
ASE = 2), (iv) We can not prove “k is A<f-ineffable whenever « is A-
ineffable”.

1 Notations and basic facts

Throughout this papef k denotes a regular uncountable cardinal and A a cardinal
> k. Let A be a set and a a set of ordinals with |a| < |A|. For any such pair
(a, A), P,A denotes the set {z C A : |z| < |a|}. Thus P\ denotes the set
{z C XA:]z| < Kk} and, for £ € P\, Pz = {s C z: |s| < |z N &l}.
Combinatorial properties originated for regular uncountable cardinals have been
translated into P, in [10], [6] and [7]. For z € P\, £ denotes the set {y €
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Pz Cy}. Wesay X C P is unbounded if X N % # @ for all z € P . Let
Iy = {X C P;A: X is not unbounded}.
We say I is an ideal on P, if the following hold:

1.1 C PP,

2.0€land P ¢ 1,

3. I, C1,

4. I is k-complete; UX € I for any X C I with | X| < .

Thus I » is the minimal ideal on PcA.
We say X C P is closed if UD € X for any C-chain D C X with |[D| < k. X is
called club if it is closed and unbounded.

Fact 1.1. Let X C P.)X. Then, X is club if and only if there ezists f : A X X — )
such that C; ;== {x € PA: fYz xz)Cz andzNk € k} C X.

We say X is stationary if XNC # @ for any club C. Let NS, = {X C P.\: X is
nonstationary}. Let It = PP, A\I. For X € I'* I | X denotes the set {Y C P :
Y N X € I}, which is an ideal on P\ extending I. We say an ideal I is normal if
I is closed under diagonal unions; VX :={z € PA:z € {{Xa:a € z}} €1 for
any X = {X,: @ < A\} C I. Note that I is normal if and only if every regressive
function on X € I* is constant on some Y € P(X) NI+, where a function f is
said to be regressive if f(z) € z for any z in dom(f) \ {0}.

The relation < is defined by y < z if y € P,nc2. An ideal I is strongly normal if
for any X € I* and f : X — P, such that f(z) < z for all z € X there exists
Y € P(X)NI* such that f [ Y is constant. This is equivalent to the following:
for any {X,:s€ PA} C I, VX, :={z:z €| J{X,: s <z}} € I. Clearly every
strongly normal ideal is normal. A filter F on P\ and an ideal I on P\ are dual
to each other if the following holds:

X € F if and only if PA\ X € I for every X C P

The dual filter of I will be denoted by I*.
For f : PuA — P, let Cf = {x € P\ : f" Pyt C Penxz}. We define an ideal
W NS, by:

X € WNS,, if and only if X C P.A and X NCy = § for some f : PA — P
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The following are well-known [5], [8] and [1].

Fact 1.2. (1) NS is the minimal normal ideal on P).

(2) WNS,» is the minimal strongly normal ideal on PA and NS,y G WNS, .
(3) WNS,» is proper if and only if k is Mahlo or k = vt with v<¥ = v.

(4) If & is Mahlo, then {z € P.A: z Nk = |z N k| is inaccessible} € WNSy ;.

(5) If h : PoA — X is a bijection, then WNS,;, y = NScz | {2 : h“Ppnst = z}.

(6) If {sa : @ < A<*} is an enumeration of P\ and f : P\ — P A< is defined by
f(z) = {a: sq <z}, then fu(WNS,)) = {X C PX": f"}(X) e WNS,,} =
WNS <« and {z € P : f(z)N A =2} €e WNS;,.

All the notions defined above for P\ can be naturally translated into Ppn.z if zNK
is regular uncountable. For instance, X C Pyn.Z is unbounded if for any y € Penxz
there is 2 € X such that y C 2z, and I;n, . denotes the set {X C Pynz : X is not
unbounded in P;n.z} which is a £ N k-complete ideal on Pyn.z.

First we observe a type of subtlety for P.A: X C P\ is A-subtle if for any
{Sz C Prrwz : z € PA} and C € WNS},, there exist y < z both in C' N X such
that Sy = S, N Byncy.

The following are shown in §2:

Theorem 1.3. (1) « is subtle if and only if P\ is A-subtle for every A > k.

(2) If X C P is A-subtle, there exists {S; C PornT : T € X} such that {r € X :
Sy =SSNz} € WNS!, for every S C P

(3) If K is weakly Mahlo and 2°°" < X for every o < )\, there exists {S, C
Piwz : z € P and x Nk 1is regqular} such that Sy is a club in Pyncx and
{z:8: ¢ C} € NS, for any club C C B).

The last statement is false for A = «.
In the next section we study large cardinal aspects of A-subtlety to prove an

analogue of Baumgartner’s theorem [4] for regular uncountable cardinals:

Theorem 1.4. If X C P\ is A-subtle, then {z € X : X N Pz is IIP-

indescribable} is A-subtle for every m, n < w.

Thus our subtlety takes an appropriate place in P,A combinatorics. The next
follows immediately.
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Corollary 1.5. If cf(A\) > &k and X C P, is almost ineffable, then {z € X :
X N Pynkz is Shelah} is almost ineffable.

Hence “k is almost A-ineffable” is an essentially stronger hypothesis than “k is
A-Shelah”. Kamo [12] already proved:

Fact 1.6. (Kamo) If s is M-ineffable, then {r € P\ : Pynxz is not almost

ineffable} is not ineffable.

Thus we have the same hierarchy of combinatorial properties for P, as for regular
uncountable cardinals. Our proof is applicable for Kamo’s theorem and more
simple than his.

Another corollary is:
Corollary 1.7. If {x € P\ :z Nk < |z|} is A-subtle, then V # L[U]

Note that L |= “k is subtle” if k is subtle.

In §4 we turn to saturation of subtle ideals and show:

Theorem 1.8. (1) The ideals of non-subtle sets are not A-saturated.

(2) The ideal of non-completely ineffable sets is not precipitous

The last section is devoted to almost ineffability and ineffability. Our results might

be surprising comparing with Kamo’s theorem:

Theorem 1.9. Suppose that A<* = 2*. Then, X is almost ineffable if and only if
X 1is ineffable.

As a corollary we get:

Corollary 1.10. (1) We can not prove in ZFC that k is A<®-ineffable whenever
K s A-ineffable.
(2) If x<* = 2*, I, » does not have the partition property

2 The Subtle ideals on P).

Menas [16] tried to introduce subtlety into P\ as follows (we call M-subtle in
this paper):
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Definition 2.1. Let X C P.A. X is M-subtle if for any {S; C z : € P.\} and
a club C C P there exist y G z both in C N X such that Sy, = S, Ny.

This is not an essential generalization as proved in the same paper.
Fact 2.2. For every A\ > k, P\ is M-subtle if and only if k is subtle.

We present a new definition of subtlety for P, and use the word “A-subtle” for
it. In place of the filter of club sets we use W NS x.

Definition 2.3. For X C P\, X is A-subtle if for any {S; C Pk : T € P}
and C € WNSZ,, there are y < z both in C N X such that Sy, = S, N Pynky.

Set Ing = {X C P\ : X is not M-subtle} and I, = {X C P\ : X is not
A-subtle}.

Remark 2.4. If X<* = X\, then {z € P\ : h"P,nxz C z} € WNS;, for any
bijection h : P\ — X. Thus, in this case, X C P\ is A-subtle if and only if for
any {S: Cz:z € PA} and C € WNS; , there arey < z both in CNX such that
S,=8.Ny.

We say & is A-subtle if P\ is A-subtle (in P,A). If P is A-subtle, then it is
M-subtle. So k is assumed to be subtle in the rest of this section.
We collect several facts for subtle ideals:

Proposition 2.5. (1) Iy C I4.

(2) In is a normal ideal on PA.

(3) 14 is a strongly normal ideal on P\

(4) {z € P\ :z Nk is Mahlo} € I}.

(5) If k <6< X and X C P\ is A-subtle, then X [ 6 :={zNd:z€ X} C Pd
is A-subtle.

(6) If 5 'is Mahlo and {z € P.X : X 0 Punex is A-subtle} € WNS},, then X is
A-subtle. | :

(7) Let {sa : a < 8} be an enumeration of P\ and f(z) = {0 : sa < z} for
z € P, Then, f'X C P.6 is A-subtle if and only if X C P\ is A-subtle.

(8) If A is regular, X C P\ and {a < A : X N P.a is M-subtle} € NSy, then X
is M-subtle.
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Proof. We only show (3). Let X C P.\ be subtle and f : X — P.\ such that
f(z) < z for every z € X. Suppose to the contradiction that f~!({a}) is not subtle
for any a € P,A. For a € P, we fix {S? C Pyrwz : 2z € PA} and D, € WNS;
such that S§ # S2 N Pynky for any y < z both in D, N f~1({a}).

Let h: P.X x P.A — P, be a bijection and set T, = h"({f(z)} x S{‘z)) N Pk,
Note that C = {z € P\ : h"(Pprwz X Por) C Ppnez} € WNGS; ,. Since X
is A-subtle and E = CNA(D, € WNS;,, there exist y < 2 both in ENX
such that Ty = T, N Pcy. Then, f(y) = f(2) and S§¥ = ${® N Ppy. Set
a = f(y) = f(z). We have y < z are both in D, N f'({s}) and S = S2, which

contradicts our assumption. O
A natural question arises:

Question 2.6. Can it be proved that Ipg C I4?

It turns out that “A-subtle” is neither an essential generalization.

Theorem 2.7. If k is subtle, then P\ is A-subtle.

Proof. Let S; C Pynyx for x € P,A and D € WNS; ,. Since k<% = k, WNS,+
is proper.

‘We first show {z-€ P+ A: DN Pz € WNS;,} € WNS;, . Let f: Pd — P
such that Cy C D. If {z € P+ A: f'Pox C Pz} ¢ WNSy, , X :={z € P+ ) :
k£ C z Ay, € Pz (f(y) ¢ Pez)} € WNS], ,. Note that & = |z N &| for every
z € X. By strong normality we have y € P.Asuch that Y :={z € X :y, =y} €
WNS:;,,\. YN f@) = (. Contradiction. Thus Z := {x € P4A: Kk Cz A f |
P.ix: Pix — Pz} € WNSi - Forz € Z D, := {s € Pz : f"Pinsz C Pyrz} €
WNS; .. For every x € Z DN Pex € WNS;; | sincce D, C CyN Pz C D.

Note that « is sﬁbtle if and only if Pek is A-subtle. Thus P,y is A-subtle for every
y € Z. Now we consider {S; : ¢ € Py} and D N P,y. There exist z; < ‘$2 both

in D N Py such that S;, = Sz, N Pr,nsZ1- a
The following observations suggest two ideals may be the same. The first appeas

in [16].

Fact 2.8. If X C P\ is M-subtle and S, C for each x € X, then for any club
C C P there exist z,y both in CN X such thatz C y, z Nk < yN kK, and
Sz = Sy Nz.
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Proposition 2.9. If k is subtle, then X = {x € P : z Nk = |z|} is A-subtle.

Proof. Note that X ¢ WNS, , ([1]) . Let f : P.A — PcX and S; C Prngz for all
z € P,A. We build a chain (z4 : a < k) as follows:

Choose zo € X NCy arbitrally and 2441 € X NCy so that o < To41. For limit a

let zo = J{zp: B < a}.

Set = |J{zo : @ < k}. Then, z Nk = |7| = K, PerxZ = U{Prarn®a : @ < K},
and there exists a club D C & such that for every a € D z, Nk = a = |z,]|. Note
that z, € Cf if a is regular. Let g : Pxnez — K be any bijection. Then, we have
aclub E C {a € D: g“Pyzo C a}. Since E is subtle in k, there exist regular
B < v both in E such that g“S;, = g“S;, N 8. Since B and ~ are regular, zg and
z belong to Cy. : O

S. Baldwin[3] and others observed the consistency strength of the stationarity of

{z € P\ : 2Nk < |z|}, the complement of the set we mentioned now.

Fact 2.10. ([3],[14),[1]) .

(1) Ifk is weakly inaccesible and A Ramsey > k, then {x € PA:z Nk < |z|} is
stationary.

(2) If {z € Pus* : 2Nk < |z|} is stationary, then O exists.

(3) If P\ is Shelah, then {z € PA: 2Nk < |z} € NShZ,.

Corollary 2.11. Suppose that 0' does not exist and S = {x € P\ : h“Ppnx = z}
where h : PcA — X is a bijection. Then, Ing | S = Ia. Thus Ipg = I4 of Ipg s

strongly normal.

The same relation holds between subtlety and its another weakening, which relates
to “ethereal” introduced by Kunen: X C k is etherealif for any (S, € [a]® : a < k)
and a club C C k, there are 8 < v both in C' N X such that |Sg N S,| = |B|.

Definition 2.12. Let X C P.\. We say X is weakly subtle if for any {S; €
Irz: 2 € P} and a club C C P, there are y < z both in C N X such that
SyNS; € Lf,. Let Iy = {X C PX\: X is not weakly subtle}.

We have the following:

Proposition 2.13. (1) Iw is a normal ideal.
(2) If P is weakly subtle, then k is ethereal.
(3) Iw [ S =14 where S = {x € P\ : h“Pyncx = z} for a bijection h : PcA — A
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Three subtle ideals are interesting from the view of the diamond principles for P, A.

The following two cardinal version of diamond principle by Jech is wellknown.

Definition 2.14. Let X C P.A. Then,

Oo(X): there exist {S, C z:z € X} such that {z € X : S; = SNz} is stationary
for any S C A. We simply write $o for Oo(Pe)). Let Jo = {X C P : Oo(X)
does not hold}.

The following are known (see [9], [10]):

Fact 2.15. (1) Jo is a normal ideal on PA.
(2) L | “Qo(X) for any X C P, \”.

(3) If 2<% < A, then Jy is proper.

(4) If $o holds, then NSy is not 2* saturated.

In the context of I4 and Iy another version of diamond arises.

Definition 2.16. Let X C P.\. Then,

O1(X): there ezists {Sz C Pprwz : x € X} such that {x € X : Sy = SN Ppagx} is
stationary for any S C P, A. |
Oo(X): there exists {Sy C Pyrwz : £ € X} such that {z € X : S, = SN Pyruz} €
WNSY, for any S C P

J1 and Jy are similarly defined as Jp.

Of course Jy C Jy C Jz and it is easily seen:

Lemma 2.17. (1) J; is a normal ideal on P.A.

(2) J2 is a strongly normal ideal on PcA

(3) If x<* = X and h : P\ — X is a bijection, then J, = Jo | S with S = {z :
h" Pyrwx = x}.

(4) L “J,=WNS,, 2"

(5) If J; is proper, then any ideal C WNS, 5 is not 22~ saturated.

Theorem 2.18. If k is subtle, then Jy is proper.

Pfoof. We show {3(X) holds for every A-subtle X C PA.
By induction on < we define S, C Pyncx for z € X as well as C, C Prni.

If z is a < minimal element of X, then S, = C; = 0.




Suppose S, and C, is defined for every y € X N P2 If there exist S C Pyncx and
C € WNS}., . such that Sy # SN Pyncy for any y € C, then let 5, and C; be any
such S and C. We say this is the substantial case. Otherwise let S; = C; = Prnkr.
To show {S, : z € X} is a witness of {2(X), let S C P.A, D € WNS,, and
Sy # SN Pz for any z € X N D. Since X N D is A-subtle, we may assume that
DN Pyrer € WNS, . for every £ € X N D. Thus SN Pynxz and D N Prnz
witness the substantial case occurs for every z € X N D. However X N D is subtle
hence there exist ¥y < z both in X N D such that Sy = S; N Pyncy. In particular

y € DN P,n.z. Contradiction. , a
Note that ¢, holds if & is ethereal and k<* = k [13].

Question 2.19. (1) Does {1 hold if P\ is weakly subtle?
(2) If k is ethereal, then P\ is weakly subtle?

Let Reg= {z € P.\: Nk is regular}. We conclude this section by:

Propositioh 2.20. Suppose k 1is weakly Mahlo and 20¢°" < X\ for every a < .
Then, there exists {S; : x € P\, z Nk is reqular} such that

1. S; C Pynex club,
2. for every club C C P {x: S; & C} € NS, | Reg.

Proof. Let {Cy : k% < @ < A} = {X : 38 < X X is a club of P8} be an
enumeration and C, a club of P.3(). Set B = {z : Va € = §(a) € z}. Then,
Be NS;,. Let S; = {y € Pisz: Vo €z yN P(a) € Ca}.

For every a {z € P\ : CoN Pane(zNB()) is a club of Pork(zNB())} € (NS |
Reg)*. Thus, {x € P\ : {2z € Poez : 2N B(a) € Cu} is a club of Prex} €
(NS, » | Reg)*. Hence A= {z € P.\:S; is a club of Prnez} € (NSka | Reg)™.
Pick any club C C PA. We have f : A x A — A with Cs C C. Define g by
Ct | B=Cyp) for B < X. Note that 8 = B(g(8))-

Let 2 € AN BN Cj. For every 8 € z g(B) € z. Hence for every y € S; and S €z
we have y N B € Cys) = Cy | B. If {£,¢} C y, then {£,(, f(§,¢)} C B for some
B € z. Choose z € Cf such that y N3 = zN B. Then, f(§,{) € zNB = yNg.
Hence y € Cy. We have shown that S, C C; C C forevery z € ANBNCy. O

‘Remark 2.21. This is false for A = k.

i



3 Subtlety and large cardinals

Recall that X C & is II7'-indescribable if for any R C V. and II sentence ¢
such that (Vj, €, R) |= ¢, there exists a € X such that (V,,€,RNV,) = ¢.

Fact 3.1. (1)Suppose that A\ is weakly compact. Then, X C P\ is M-subtle if
and only if {& < XA : X N P.o is not M-subtle} is not I1}-indescribable.
(2) I is a normal ideal on P\ such that {z € P\ : z0& is not [IT-indescribable} €

Iy for every m,n < w.
Carr(7] defined P, \-version of indescribability.

Definition 3.2. A sequence (V,(k, ) : a < k) is recursively defined as follows:

Vo(k,A) = A
‘/a+1(r"'a /\) = Pn(va(""" A)) U Va("'", A)
Va(k, ) = U{Vs(s,A):B<a}  if aisa limit ordinal

This definition can be carried out for z € P\ if £ N k is inaccessible. For such z

we consider the structure (Vzn«(Z N &, z), €) in the same way as (Vi(k, A), €).

Definition 3.3. We say X C P\ is II-indescribable if for any R C Vi(k, )
and II7' sentence ¢ such that (Vi(k, ), €, R) |= ¢, there exists x € X such that
zNk =|zNk| and (Varu(z Nk, Z), €, RN Vonk(z N K, T)) | .

Lemma 3.4. If X C P\ is A-subtle and Sy C Prnsx for x € P, then {z € X :
{y € XN P : Sy = Sz N Pynwy} is not IIM-indescribable for some m,n} is not
A-subtle.

Proof. Otherwise, by k-completeness of I, Y := {z € X : {y € X N Pysz -
Sy = Sz N Pyncy} is not IIP-indescribable} is subtle for some m,n < w. We
may assume that x N K is inaccessible for all z € Y. For £ € Y there exist
R; C Vore(z Nk, ) and a II7 sentence ¢, such that (Vyn(z N &, ), €, R;) = @0
while (Vjne(y N K,¥), €, Rz N Vyre(y N K,y)) |~y for any y € X N Pynez with
Sy = Sz N Pynex. By k-completeness again, we can assume forall z € Y ¢, = ¢
for some ¢.

Since Y is subtle, there are y < z both in Y such that R, = R, NV, (yNk,y) and
Sy = S:NPycy. Then,y € XNPnez, Sy=SNPpy and (Vyre(yNk,y),€
y R, N Vyne(y N k,y)) E @2, which is a contradiction.. O



As a corollary we have:

Theorem 3.5. {T € P\ : PynyT is not [I™-indescribable} € 14 for every m,n <

w.
This theorem derives strong facts.

Lemma 3.6. If {z € P\ : 2°™ < |z|} is A-subtle, then {z € P.A:o(xNk) > 1}
is A-subtle.

Proof. Note that k is measurable if P.2* is Ili-indescribable ([6],{7]). Let X =
{z € P\ : Pyne2®7" is [T1-indescribable}. Then, X is A-subtle. Forz € X z Nk
is measurable and {y € P;n2""" : y Nk is measurable} is II}-indescribable. Hence
olzNk) > 1. . a

Note that L[U] =“there exist £ < X such that {z € P.X:zNk < |z} € NST,”.

Corollary 3.7. (1) L[U] = “{z € P:A : z Nk < |z|} is not A-subtle”.
(2) LU]  “~3k(k is &*-Shelah)”.

Thus the existence of a cardinal « such that {z € P.A: zNk < |z|} is A-subtle is
rather strong in consistency strength. On the other hand subtlety is a II] property

of P, The following proposition says the size of & is not necessarily large.
Prbposition 3.8. The least cardinal k such that & is r+-subtle is not k*-Shelah.

In the rest of this section we compare the almost ineffability and Shelah property
using I4, which reveals very useful in large cardinal hierarchy.
Carr [6] defined Shelah property as a P\ generalization of weak compactness. We
show: if P\ is subtle then there exist many x € P\ such that Ppn.x is Shelah.

Definition 3.9. Let X C F.A. We say X is Shelah if for any {fx € *z : z € P}
there is f : A — X such that for everyy € P A theset {z e XNg: fly=fe
y} € I},. o .

We say X is almost ineffable (ineffable) if for any {fz € “z : € € P} there'is
f:d—>Asuchthat{z € X : fz=f} eI, (NSI,)

Let NSh.y = {X C P\ : X is not Shelah} and NAIng = {X C FA: X is not
almost ineffable}.

We often say  is A-Shelah (almost \-ineffable) if P is Shelah (almost ineffable).
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Clearly X is Shelah if X is almost ineffable, and X is almost ineffable if X is
ineffable. It is known that NSh,.) and NAIn,, are strongly normal ideals if
cf(A) > k. Moreover, Kamo [12] proved the following:

Fact 3.10. (Kamo) If X C P.X is ineffable and cf(\) > k, then {z € X :
X N Ppngx is almost ineffable} is ineffable.

The following follows immediately from definition and the remark after Definition

2.1 with strong normality of NAIn,.

Proposition 3.11. If cf(A) > & and X C P\ is almost ineffable, then X is |

A-subtle.
Carr [7] proved the following:

Fact 3.12. Let If X C P\ is [1}-indescribable, then X is Shelah. The converse
is also true if cf(\) > k.

Corollary 3.13. If X C P.\ is subtle, thcn Y ={z€ X : XN Pz is.not
Shelah} is not A-subtle. '

Corollary 3.14. Let cf(X) > k. If X C P\ is almost ineffable, then {z € P\ :

X N Pynex is Shelah} is almost ineffable. In particular, {x € P : zNK is

z-Shelah} € NAIn;, , if k is almost A-ineffable.

This corollary tells that almost ineffability is much stronger hypothesis than Shelah
property. For instance, suppose that « is almost x*-ineffable. Then {z € P, :
ot.(z) = (xNk)*} € NAIn}, hence {z € P\ : £ Nk is (z N k)*-Shelah} €
N AlInj, ,. Thus, below the least o that is almost a*-ineffable, stationary many g
which is 3*-Shelah exist. '

4 Saturation of subtle ideals on P. )\

Now we turn to saturation of subtle ideals.

Proposition 4.1. Let I be a normal A saturated ideal on PcX with A regular.
Then, {z € P\ : o.t.(z) is regular} € I* hence {z € P,A:zNk < |z|} € I"*.
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Proof. Let G be Py generic for V. By X saturation the generic ultrapower Ult(V, G)
is well-founded. Let j : V — M = Ult(V, G) be an generic embedding. Since A
is regular in V[G], M |= “X is regular” and [{(0.t.(z)|z € PA)|e = 0.t.(F“A) = A
Clearly {z € PA:zNke€rAz\ Kk # 0} €I O

Theorem 4.2. Neither I4 nor Iy is A saturated.

Proof. First suppose that A is regular. We know X = {z € P\ : 2Nk = |z| and
k € z} is A-subtle. For z € X o.t.(z) is singular. }

Second assume A is singular and the subtle ideal on P, )\, say I, is \ saturated.
In fact I is & saturated for some regular § < A. Then I | § is & saturated énd
{re Pd:zNk=|z|} ¢ I]6. Contradiction. : O

Remark 4.3. By Cummings’ theorem 1, is not A*-saturated if cf(\) < k.

By definition ineffability can be seen as a strengthening of Shelah property. One

Qf the strongest version is complete ineffability defined as follows:

Definition 4.4. An ideal I on P, is (A \)-distributive if for any X € I* and
{Wa : a < A} which is an I-partition of X with |W,| < X there ezistY € P(X)NI*
and {X, : a < A} such that X, € W, and Y \ X, € I for every a < A.

We say k is completely A\ ineffable if there is a normal (A, \)-distributive ideal

on P.A. When k is completely A ineffable, the minimal normal (), /\)-distributibé

ideal on P, say I, is called completely ineffable ideal and X € I* is said to be
completely ineffable. '

If I is a normal (A, \)-distributive ideal on P.\ and X € It, the following hold
[11]:

1.For any {f: €“z:z € X} thereis f : A > Asuchthat {r€ X : fo = f |
z} eIt
2. I is strongly normal.

In the rest of this section we assume cf()\) > & and [ is a normal (), A)-distributive
ideal on P.A. Hence & is Mahlo, A<* = ), and I is strongly normal. Let P; =
(I,C), G C P; be V generic, and j : V < M = Ult(V,G) a generic elementary
embedding defined in V[G].
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By normality of I P(A\)V C M. Moreover [(Penez | T € P = j"PX € M,
J" P = P.j"), and j(X) N j" P = 3"X € M for every X € P(P.\)V by strong

normality. Conversely we have:

Lemma 4.5. For every [flg € 7"V N M there exists g € V such that [fl¢ =
i(g) 15"A=j"g.

Proof. Suppose f € V, X € It with X I+[f]g : "X\ — j”V”. For Y := {s € X :
dom(f(s)) =s} € G, a<Aandz eV, let Xo, ={s€YNa&: f(s)(a) = z}.
Then W, := {X,z : £ € V}NI* is a disjoint I-partition of Y and |W,| < A. By
(A, A)-distributivity there is g : A — V such that for every a < A Y \ X g(a) € I.
Hence Z := AxXq g(a) € ITNP(Y) and for every s € Z and a € s f(s)(a) = g(a),
that is, Z IF“[fle = j(g) I 5"\". O

Remark 4.6. By (A, \)-distributivity of I, A remains a cardinal in V[G] hence in
M.

Corollary 4.7. (1) If X € M, X C j"V, and | X|M < ), then X = j"Y for some
YeV.
(2) Pej"X = j"(PA) and P(Poj" MM = {j"X : X € P(P)\)}.

Proof. (1) Note that the collapsing map 7 . 7"X — )X is a bijection in M. Choose
any surjection f € M from j”A to X. By the lemma f = j(g) | j”A for some

‘g€ V. Then X = j(g)"("\) = {5(9)(§(@)) : @ < A} = {ji(9(a)) : @ < A}. Hence

X = j"Y where Y = g”\. Now (2) is clear. : O
Next we present another characterization of completely ineffable subsets of P\.

Definition 4.8. Let A be a set of ordinals. We inductively define In.(x, A) C
P(P;A) as follows: -
(1) X € Ing(k, A) if X € NS} 4, that is, for every f : A x A — P.A there exists
x € X such that f"(z x =) C P(z).

(2) X € Ingy1(k, A) if for every f : PcA — P.A such that f(x) C = for any
x € P, A there is S C A with {z € X : f(z) = z N S} € Iny(k, A).

(3) If @ is a limit ordinal, Ina(k, A) = (g, Ins(s, A).

Thus X € Iny(k,)) if and only if X C P.) is ineffable. Clearly Ing(x,A) C
Ing(k,A) if B < a. Hence there is a such that Iny(k, A) = Ingi(k, A). If
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Ing(k, A) = Ing41(k, A) # 0, P(P.A) \ Ina(k, A) is the minimal normal (X, A)-
distributive ideal, that is, completely ineffable ideal on P, A.

Definition 4.9. We say I is precipitous if Irp, ‘Ult(V, G) is well-founded”.

Lemma 4.10. Let cf(\) > & and I be a normal (), \)-distributive precipitous
ideal on P.\. For any X € P(P)\) anda, X € Iny(k, ) ifandonly if M = 5"X €
Ing(k,3"2)".

Proof. By induction on a. Assume first X is stationary, f : 7”A x 37X — Pgj"A,
and f € M. Since P.j"\ = j"(PA), f = j(g) | j”A x j”A for some g € V
such that g : A x A\ — P.\. There is ¢ € X such that ¢"(z x ) C P(z).
Then M =“j(g)(a) C j(z) for all a € j(z) x j(z)". Since j(z) = j"z C j'A,
M E=“f(a) C j(z) for all a € j(z) x j(z)". Hence M =“"X € NS} ..,\”.
Assume conversely M |=“j"X € NS}.,\”, f € V, and f : A x A — P\ Since
M E“(f) T "X x 3"X) : j"X X j"X — Pj"\”, there is y € j”X such that
i(f)"(y x y) € P(y). For z € X with j(z) = y, j(f)(i(a)) C j(z) for every
a € z x z. Hence f"(z x z) C P(z), showing that X is stationary.

The case a is a limit ordinal is clear by our definition of Iny(k, A) and Ing(k, 5"A).
We prove for a = § + 1. Suppose first X € Ing(k,A), M E“f : Pj"A — Fcj"A
and f(j(z)) C j(z) for every z € P.X". We have g € V with f = j(g) | 7" P
Since g(x) C z for every z € P.), there is S C A such that Y := {z € X : g(z) =
'zN S} € Ing(k, ). By inductive hypothesis j"Y € Ing(k,j")). For every = €Y
J(@)(@) = 3(g(=) = iz 8) = (=N §) = j(z) N5"S and §"S € M. Now
f(y) =y Nj"S for every y € jY hence j”X € Ina(k,j")\)

Suppose second M =X € Iny(k,5"A)”, f € V, and f(z) C z for every z € FA.
Set j(f) | 7"P<A = g. Since M |=“g(z) C z for all z € j"P.X\”, there is T C j"A
such that S := {y € "X : g(y) = yNT} € Ing(k, j"A). By the fact S € P(P.j"\)
we have Y € P(P.)\)Y with S = j"Y. For every z € Y g(j(x)) = j(x) N T. By
the same reason for S, T = j"T) for some Tj € V. For every z € Y j(f(z)) =
9(j(z)) = j(x)Nj"Th = j"(zNT) = j(zNTh). So f(z) =zNT forallz €Y.
The inductive hypothesis shows Y € Ing(k,\). Hence X € Ing(k, A). O

Theorem 4.11. Suppose cf(\) > & and I is a normal (A, X)-distributive precipi-
tous ideal on P.). Then {z : x Nk is completely o.t.(z)-ineffable} € I*.



Proof. Since V [=“k is completely M-ineffable”, Ing(k,A) = Ingsi(k,A) # 0
for some a. Ing(k,A\) # @ implies Iny(k,j"A) # 0. To show In,(k,j")\) =
Ing;i(k,3"X), assume X € Ing(k,3"\) — Ingt1(k,3"X). Since X € P(P.j" )M,
there is Y € P(P.)\)" such that X = j"Y. Then Y € Ing(k,\) = Ingqi(k, A)
hence X = 7Y € Ing41(k,j"A). Contradiction. O

Lemma 4.12. Let k be Mahlo, X C P\, and o an ordinal.

(1) If {z € PX: X N\ Py € Ing(z N K, x)} € Ing(k, A), then X € Ing(k, N).
(2) If X € Ing(k,N), then {x € P\ : X N Pyrgz € Ing(z Nk, x)} € Ing(k, A).
(3) If X C P, is completely A ineffable, then {x € X : XN Py is not completely
ineffable } is completely ineffable.

Proof. (1) By induction on a. Suppose that {z € P.A: X N Pz € NS}, .} €
N S:: »and f: A2 — P, There is z such that X N Py € NSH, ,and f [z x 2
z x z — P(z). Then we can find y € X N Pynez such that f"(y x y) C P(y).
Hence X is stationary.

Let a be a limit ordinal and Y := {z € P\ : X N Prnez € Inga(z N k,z)} €
Ing(k,A). Forany B < aY C {z € PA: XNPprex € Ing(zNk, )} € Ing(k,A) C
Ing(k, A). By induction hypothesis X € Ing(x,A). Thus X € In,(k, A).

Let o = f+1 and f(z) C z for all z € P,\. Foreach z € Y thereis S, C z

such that {y € X N Pz : f(y) =yNS;} € Ing(zNk,z). Since Y € Inp+1(n,»)_\)_‘

we have S C Asuch that Z :={z €Y : S, = 2N S} € Ing(k,)). Forz € Z
andy € X NPz fly) =yNS;=yNzNS=yNS. So{r e PA:{y€
X : f(y) =yNS}N Pz € Ing(z N K, z)} € Ing(k, A). By induction hypothesis
{ye X : f(y) =yNS} € Ing(k, ) hence X € Ing1(k, A).

(2) We prove this by induction on k. We may assume A := {z € X : X N Py €
Ing(z N k,z)} € Ing(k,A). For any z € A, by inductive hypothesis, B, := {y €
Py : X N PprZ N Py = X N Py & Ing(y N k,y)} € Ing(z Nk, x). By (1)
and the fact By = {y € P.A : X N Py € Ina(y Nk, y)} N Pk, the conclusion
holds.

(3) Let 3 be the least ordinal such that Ing41(k, A) = Ing(k, A) and X € Ing(k, A).
We may assume W := {z € X : X N P,z is completely ineffable } € Ing(k, A).
For z € W let 3, be the least ordinal such that Ing_y1(zNk, ) = Ing (zNk, z) # 0.
By (2), foreach z € W T, := {y € PorZ : X N Pz N Pyry = X N Py ¢
Ing (yNk,y)} € Ing.(xNk,z). Set v = max(B, U,ew Bz) and T = {z € P\ :
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X NPz ¢ Iny(x Nk,z)}. Then T, C T N Pycx for every ¢ € W. Hence
T € In,(k,A) = Ing(k, \) _ O

Now we conclude by the following corollary:

Corollary 4.13. If cf(\) > k&, then the completely ineffable ideal on P is not

precipitous.

5 Ineffability and almost ineffabilty

In this section we show NAIn, ) = NIn,, if cf(\) < k and A<* = 2*. Thus,
two ideals are the same for “small” cofinality points if GCH holds. - ,
Then we use it to prove that for \ with cofinality less than x, “k is A-ineffable”
does not always imply “k is A<¢-ineffable”. This contrasts to the fact “k is A<*-

(super)compact if & is A-(super)compact.

Fact 5.1. (1) WNS,\ C NAIn,, C NIn,,.

(2) If PoX ¢ NAIn, and cf()) > k, then A<® = ).

(3) If cf(A) > &, then {z € PA: Porxx € NAInyne e} € NIng ) and NAlIn,, G
NlIn,». |

We have known quite little when cf(A) < & while the following conjecture. has

seemded reasonable comparing with supercompactness:

Conjecture 5.2. Suppose that cf()\) < & and & is (almost) \-ineffable. Then,
A<t = At and k is At -ineffable.

Lemma 5.3. If \<® = 2, then there exzists X € WNS}, such that Iy | X =
NSK,’A [X.

Proof. Let *AX\ = {f, : s € P,\} be an enumeration and set X = {z € PA:z €
({Cy, : s < x}}. For every s € P.A Cy, € NS, C WNS}, hence X € WNS; .
Let Y ¢ I » [ X. For every club C C P\ there exists s € P\ such that Cy, C C.
We have z € Y N X with s < z. Then, z € C;, NYNX C CNY NX hence
YNXeNSt,. O

Since WN S, » C NAIn, ) we have:
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Theorem 5.4. NAIn, = NIn,, if \<* = 2>,
By lemma 4.12 we have the following:
Lemma 5.5. If k is A-ineffable, then {z € PX : Pont € NInarwa} ¢ Nlnga.

Theorem 5.6. Suppose that A< = 2* and k is A\*-ineffable. Then, {z € P :
z Nk is o.t.(x N A)-ineffable, not o.t.(z)-ineffable, and o.t.(z) = ot.(x NA)*} ¢
NIn,c’,\+. ‘

Proof. We know A = {z € P\t : z Nk is almost o.t.(z)-ineffable, o.t.(z) =

ot.(zNA)*,cflot(zNN) < zNk, and o.t.(z N A)<™ = 204NN} € NIn? |,
([12], [2]) . Every = € A is almost o.t.(z N A)-ineffable hence o.t.(z N A)-ineffable

by the previous theorem. Now the conclusion follows by lemma 5.5. a
We conclude by the negation of I = (I1)? with A<® = 2,

Definition 5.7. For X C P\ let [X]? = {(z,y) € X x X : z G y}. We say
I has the partition property if for every X ¢ Iox and F : [X]? — 2 there exists
H ¢ I, such that F | [H]? is constant.

Theorem 5.8. If A< = 2*, then I, does not have the partitz’oh property.

Proof. Suppose otherwise and let I = I, | X = NS, [ X with X as in [?].
For every X € I* and F : [X]> — 2 there exists H ¢ NS, such that F |
[H)? is constant. Hence NIn.y C I ([15]) . However I C WNS,» C NlIn,x.
Contradiction. |

Remark 5.9. P. Matet proved that I .+ does not have the partition property if
2% = k*. While M. Shioya [17] constructed the model in which I, x has the partition
_property with & supercompact.
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