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0. Introduction

This note is based on my joint works [JT1, $\mathrm{J}\mathrm{T}2$ , $\mathrm{J}\mathrm{T}3$ , $\mathrm{J}\mathrm{T}4$ ] with L. Jeanjean and we
consider the following nonlinear elliptic problem:

$-\Delta u=g(u)$ in $\mathrm{R}^{N}$ ,
(0.1)

$u\in H^{1}(\mathrm{R})$ .

Here $g$ : $\mathrm{R}arrow \mathrm{R}$ is acontinuous function. Problem (0.1) and similar problems in a
bounded domain appear in various problems in mathematical physics etc.

We are mainly interested in least energy solutions of (0.1). Asolution $u_{0}\in H^{1}(\mathrm{R}^{N})$

of (0.1) is said to be aleast energy solution if it satisfies

$I(u_{0})=m$ ,

where
$m= \inf${$I(u);u\neq 0$ , $u(x)$ is asolution of (0.1)}. (0.2)

Here $I(u)\in C(H^{1}(\mathrm{R}^{N}), \mathrm{R})$ is afunctional corresponding to (0.1), that is,

$\mathrm{I}(\mathrm{u})=\frac{\mathrm{I}}{2}\int_{\mathrm{R}^{N}}|\nabla u|^{2}dx-\int_{\mathrm{R}^{N}}G(u)dx$ , (0.3)

$G(s)= \int_{0}^{s}g(\tau)$ dr.

The main purpose of this note is to give acharacterization of least energy solutions through
mountain pass theorem and give an application to asingular perturbation problem for
nonlinear Schr\"odinger type equations
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1. Mountain pass characterization of least energy solutions

First we recall s0-called Mountain Pass Theorem. Let $E$ be aHilbert space and $I(u)\in$

$C^{1}(E, \mathrm{R})$ . We say that $I(u)$ has amountain pass geometry if it has the following properties:
(i) $I(0)=0$ .
(ii) There exist $\rho_{0}>0$ , $\delta_{0}>0$ such that

$I(u)\geq\delta_{0}$ for all $||u||_{E}=\rho_{0}$ .

(iii) There exists $u_{0}\in E$ such that

$||u_{0}||_{E}>\rho_{0}$ and $I(u_{0})<0$ .

For afunction $I(u)$ with mountain pass geometry we can define the following minimax
value (Mountain Passs value):

$b= \inf_{\gamma\in}\max_{t\in[0,1]}I(\gamma(u))$ ,

where
$\Gamma=\{\gamma(t)\in C([0,1], E);\gamma(0)=0, I(\gamma(1))<0\}$.

Our main question is the following:

Question: For afunctional $I(u)\in C^{1}(H^{1}(\mathrm{R}^{N}), \mathrm{R})$ defined in (0.3), does Moun-
tain Pass Theorem give aleast energy solution? In other words, does it hold

$b=m^{7}$ (1.1)

Here $m$ is defined in (0.2).

Remark 1.1. (i) If $I(u)\in C^{1}(E, \mathrm{R})$ satisfies the Palais-Smale compactness condition,

then $b>0$ is acritical value of $I(u)$ by the Mountain Pass Theorem. That is, there exists
$u_{0}\in E$ such that $I(u_{0})=b$ and $I^{f}(u_{0})=0$ .
(ii) For afunctional $I(u)$ defined in (0.3), working in the space $H_{r}^{1}(\mathrm{R}^{N})$ of radially sym-
metric functions, we can get some compactness. However under the conditions (gO)-(g3)

below, we don’t know whether $I(u)$ satisfies the Palais-Smale condition or not.

The standard way to insure (1.1) so far is to assume that

$s \mapsto\frac{g(s)}{s}$ : $(0, \infty)arrow \mathrm{R}$ is non-decreasing. (1.2)

We remark that under suitable conditions in addition to (1.2) the above property (1.2) we
can make use of the Nehari manifold: $\mathcal{M}=\{u\in H^{1}(\mathrm{R}^{N})\backslash \{0\};I’(u)u=0\}$ and we can
get aleast energy solution through minimizing problem: $\inf_{u\in \mathrm{A}4}I(u)$ .

Our first theorem ensures that (1.1) holds without assumption (1.2)
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Theorem 1.2. ([JT1]) Assume N $\geq 2$ and

(gO) $g(s)\in C(\mathrm{R}, \mathrm{R})$ is continuous and odd.

(gl) $- \infty<\lim_{sarrow}\inf_{0}\frac{g(s)}{s}\leq\lim_{sarrow}\sup_{0}\frac{g(s)}{s}<0$ for $N\geq 3$ ,

$\lim_{sarrow 0}\frac{g(s)}{s}\in(-\infty, 0)$ for $N=2$ .

(gO) When $N \geq 3,\lim_{sarrow\infty}\frac{|g(s)|}{s^{\frac{N+2}{N-2}}}=0$ .

When $N=2$, for any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$|g(s)|\leq C_{\alpha}e^{\alpha s^{2}}$ for all $s\geq 0$ .

(gO) There exists $s_{0}>0$ such that $G(s_{0})>0$ .
Then $I(u)$ given in (0.3) has amountain pass geometry and (1.2) holds. Moreover for any
least energy solution $\omega(x)$ of (0.1) there exists apath $\gamma\in\Gamma$ such that

$\gamma(x)\in\gamma([0,1])$ and $\max I(\gamma(t))=I(\omega)$ . (1.3)
$t\in[0,1]$

Remark 1.3. Under (gO)-(g3), it is shown in Berestycki-Lions [BL] (for $N\geq 3$) and
Berestycki-Gallouit-Kavian [BGK] (for $N=2$) that $m>0$ and the existence of least en-
ergy solutions. We remark that (gO)-(g3) are almost necessary conditions for the existence
of solutions (see [BL] and [BGK]).

When $N=1$ , we have the following result.

Theorem 1.4. ([JT4]) Suppose $N=1$ and assume (gO), (gl) and
$(g\mathit{3}’)$ There exists $s_{0}>0$ such that

$G(s)<0$ for all $s\in(0, s_{0})$ ,

$G(s_{0})=0$ ,

$g(s_{0})>0$ .

Then (0.1) has aunique solution $\mathrm{o}\mathrm{j}(\mathrm{x})$ up to translation and it has amountain pass char-
acterization, that is,

$I( \omega)=\inf_{\gamma\in}\max I(\gamma(t))t\in[0,1]$

Remark 1.5. When N $=1$ , conditions (gO), (g1), (g3’) are necessary and sufficient for
the existence of solutions of (0.1)
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Here we explain an idea of the proof of Theorem 1.2 just for $N\geq 3$ . We make use of
properties of the dilation $u_{t}(x)=u(x/t)(t>0)$ as in [BL] and [BGK]. Actually for any
least energy solution $\omega(x)$ of (0.1), apath defined by

$\gamma(t)=\{$
$\omega(x/t)$ $t>0$ , (1.4)
0 $t=0$

gives acontinuous path in $H^{1}(\mathrm{R}^{N})$ and

I(u) $= \frac{t^{N-2}}{2}\int_{\mathrm{R}^{N}}|\nabla u|^{2}dx-t^{N}\int_{\mathrm{R}^{N}}G(\omega)dx$ . for all $t\geq 0$ .

Thus we can see that $I(\gamma(t))arrow-\infty$ as $tarrow\infty$ and $\tilde{\gamma}(t)=\gamma(Lt)$ satisfies (1.3) for large
$L>1$ . In particular, it ensures $b\leq m$ . To show $b\geq m$ , we introduce the set of non-trivial
functions satisfying Pohozaev identity:

$\mathcal{P}=\{u\in H^{1}(\mathrm{R}^{N})\backslash \{0\};\frac{N-2}{N}\int_{\mathrm{R}^{N}}|\nabla u|^{2}dx-N\int_{\mathrm{R}^{N}}G(u)dx=0\}$.

We can show

(i) $m= \inf_{u\in P}I(u)$ ,
(ii) $7([0,1])\cap P$ $\neq\emptyset$ for all $\gamma\in\Gamma$ .

$b\geq m$ easily follows ffom the above 2properties.

Remark 1.6. When $N=1,2$ , the situation is alittle bit different. For example, apath
given in (1.4) is not continuous at $t=0$ . So we need further aruguments. See [JT1, $\mathrm{J}\mathrm{T}4$].

Remark 1.7. Under the condition (1.2), we can see easily that apath define by $\gamma(t)=$

$\mathrm{t}\mathrm{L}\mathrm{u}\{\mathrm{x}$ ) $(L>>1)$ satisfies $\gamma\in\Gamma$ and (1.3).

2. An application to asingular perturbation problem

Mountain Pass characterization of least energy solutions is useful in various situations.
Here we give an application in asingular perturbation problem.

We consider the existence of positive solutions of nonlinear Schodinger equations:

$-\epsilon^{2}\Delta u+V(x)u=f(x)$ in $\mathrm{R}^{N}$ ,
(2.1)

$u\in H^{1}(\mathrm{R}^{N})$ ,

where $f(s)\in C^{1}(\mathrm{R}, \mathrm{R})$ and $V(x):\mathrm{R}^{N}arrow \mathrm{R}$ is aHolder continuous function satisfying

(V) $\inf_{x\in \mathrm{R}^{N}}V(x)>0$ .
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We try to find afamily of solutions $u_{\epsilon}(x)$ concentrating around agiven local minimum of
the potential $V(x)$ as $\epsilonarrow 0$ . This problem is studied in various situations. See [ABC,
$\mathrm{D}\mathrm{F}1$ , $\mathrm{D}\mathrm{F}2$ , DFT, $\mathrm{F}\mathrm{W}$ , Gr, Gu, $\mathrm{K}\mathrm{W}$ , YYL, $\mathrm{N}\mathrm{T}1$ , $\mathrm{N}\mathrm{T}2$ , Ol, O2, $\mathrm{P}$ , $\mathrm{R}$ , $\mathrm{W}$ ] and
references therein.

If we introduce arescaled (around $x_{0}\in \mathrm{R}^{N}$ ) function $v(y)=u_{\epsilon}(\epsilon y+x_{0})$ , equation
(2.1) becomes

$-\Delta v+\mathrm{V}(\mathrm{c}\mathrm{y}+\mathrm{x}\mathrm{o})\mathrm{v}=f(v)$ in $\mathrm{R}^{N}$

Taking alimit as $\epsilonarrow 0$ , it appears an autonomous problem:

$-\triangle v+V(x_{0})v=f(v)$ in $\mathrm{R}^{N}$ (2.2)

(2.2) is very important is the study of (2.1). For example, if ground state solutions of the
limit equation (2.2) are unique and non-degenerate, we can apply aLyapunov-Schmidt
reduction method to find afamily of concentrating solutions. See [ $\mathrm{F}\mathrm{W}$ , Ol, O2, ABC,

YYL, Gr, $\mathrm{P}$].
In what follows, we argue without assumption of uniqueness and non-degeneracy of

solutions of (2.2). We take avariational approach, which was first done by Rabinowitz [R]

and developed considerably by del PinO-Felmer [DF1]. Mountain pass characterization of
least energy solutions for (2.2), which is aconclusion of our Theorem 1.2, is very helpful

and it enables us to deal with asymptotically linear equations as well as superlinear ones.
To state our result, we need the following assumptions:
$(\mathrm{f}\mathrm{O})$ $f(s)\in C^{1}(\mathrm{R}, \mathrm{R})$ .
(f1) $f(x)=o(s)$ as $s\sim \mathrm{O}$ .
(f2) For some $p \in(1, \frac{N+2}{N-2})$ if $N\geq 3$ and for some $p\in(0, \infty)$ if $N=1,2$

$\frac{f(s)}{s^{p}}arrow 0$ as $sarrow\infty$ .

Our main result is the following

Theorem 2.1. ([JT3]) Suppose N $\geq 2$ and assume (V), $(f\mathrm{O})-(f\mathit{2})$ and one of the following
2conditions:

(f3) There exists $\mu>2$ such that

$0< \mu\int_{0}^{s}f(\tau)d\tau\leq f(s)s$ for all $s>0$ .

(f4) $s \mapsto\underline{f}\bigcup_{s}s$ ; $(0, \infty)arrow \mathrm{R}$ is non-decreasing.

Let A $\subset \mathrm{R}^{N}$ be abounded open set satisfying

$\inf_{x\in\Lambda}V(x)<\min_{x\underline{\in\partial\Lambda}}V(x)\nearrow$
(2.1)
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and, if a $\equiv\lim_{sarrow\infty}\frac{f(s)}{s}<\infty$ under the assumption (f4), we assume moreover that

$x\in \mathrm{A}\mathrm{i}\mathrm{n}V(x)<a$ .

Then there exists an $\epsilon_{0}>0$ such that for $\epsilon\in(0, \epsilon_{0}]$ , (2.1) has asolution $u_{\epsilon}(x)$ satisfying
$1^{\mathrm{o}}u_{\epsilon}(x)$ has unique local maximum (hence global maximum) in $\mathrm{R}^{N}$ at $x_{\epsilon}\in\Lambda$ .
$2^{\mathrm{o}}V(x_{\epsilon}) arrow\inf_{x\in\Lambda}V(x)$ .
$3^{\mathrm{o}}$ There exist constants $C_{1}$ , $C_{2}>0$ such that

$u_{\epsilon}(x) \leq C_{1}\exp(-C_{2}\frac{|x-x_{\epsilon}|}{\epsilon})$ for $x\in \mathrm{R}^{N}$

Remark 2.2. (i) Condition (f3) is called Ambrosetti-Rabinowitz’ superlinear growth
condition and it implies

$f(s)\geq Cs^{\mu-1}$ for all $s\geq 1$ .

In particular, it implies $\underline{f}\coprod_{S}sarrow\infty$ as $sarrow\infty$ and $f(s)$ has asuperlinear growth.
(ii) Condition (f4) does not require superlinear growth of $f(s)$ . In particular, we can deal
with aclass of asymptotically linear equations. For example,

$f(s)= \frac{s^{2}}{1+s}$

satisfies $(\mathrm{f}\mathrm{O})-(\mathrm{f}2)$ and (f4).

Remark 2.3. (f4) can be generalized to the following condition (f5):

(f5) (i) There exists $a\in(0, \infty]$ such that

$\frac{f(\xi)}{\xi}arrow a$ as $\xiarrow\infty$ .

(ii) There exists aconstant $D\geq 1$ such that

$\hat{F}(s)\leq D\hat{F}(t)$ for all $0\leq s\leq t$ ,

where
$\hat{F}(\xi)=\frac{1}{2}f(\xi)\xi-F(\xi)$ .

It is easily observed that (f4) implies (f5) with $D=1$ . We remark that the condition (f5)

is due to Jeanjean [J], in which the existence of positive solutions for asymptotically linear
elliptic problems is considered. In particular, boundedness of Palais-Smale sequences is
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obtained under (f5) via concentration-compactness type argument. We also refer to [JT1]

for asymptotically linear elliptic problems.

Remark 2.4. We remark that our result give ageneralization of the result of del PinO-

Felmer [DF1], in which afamily of solutions $\mathrm{u}\mathrm{e}(\mathrm{x})$ is found under conditions (V), $(\mathrm{f}\mathrm{O})-(\mathrm{f}2)$

and both of (f3) and (f4).

When $N=1$ , the existence of solution concentrating in abounded open set $\Lambda\subset \mathrm{R}$

satisfying (2.3) can be shown under weaker conditions, namely, under $(\mathrm{f}\mathrm{O})$ , (f1) and the

following condition:

(f6) There exists $\xi 0>0$ such that

$- \frac{\sigma}{2}\xi^{2}+F(\xi)<0$ for $( \in(0, \xi_{0})$ ,

$- \frac{\sigma}{2}\xi_{0}^{2}+F(\xi_{0})=0$ ,

$-\sigma\xi_{0}+f(\xi_{0})>0$ ,

where $\sigma=\inf_{x\in\Lambda}V(x)$ .

For the proof we follow the argument in [DFT] where broken geodesic type argument
is developed for 1-dimensional nonlinear Schrodinger equations. We can also construct
solutions with clustering spikes as in [DFT].
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