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Eigenvalues of elliptic operators on
singularly perturbed domains

- deEE KRFEENAR  PERE (Satoshi Kosugi)
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Graduate School of Science,

Hokkaido University

Abstract. In this note we discuss eigenvalues of elliptic op-
erators in divergence form on domains which have a thin tubular
hole. We derive an approximate formula for the eigenvalues as
the hole degenerates into a one-dimensional manifold.

1 Introduction

This is a joint work with Shuichi Jimbo (Hokkaido University).
Let Q be a bounded domain in R? with a smooth boundary Q. We deal
with eigenvalue problems of elliptic operators:

Lo+ pu®=0inD, ®=0o0ndD (1.1)

where D means one of some subdomains of 2 and L is a uniformly elliptic
operator in divergence form:

3
o ( . . 00 ,
L® = 3_.’II, (a,,(x)gx—J) y Qij € C (Q), a;j = Qjj.

Let Y be an embedding of S* into 2 and () a subdomain of  with a thin
tubular hole defined as _
QQ) =Q\Y(Q)

where Y(¢) is a tubular neighborhood:
Y(¢) = {z e R®: dist(z,Y) < ¢} € for ¢ € (0,(*).

The domain Q(¢) is a singularly perturbed domain of {2 and ¢ is a pertur-
bation parameter. We consider eigenvalues u,(¢) of (1.1) for D = Q(¢). It
is well-known that each eigenvalue 1, (¢) converges to an eigenvalue of (1.1)
for D = Q since the codimension of Y is 2 (see Lemma 2.1). The purpose of
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this paper is to find a precise asymptotic expression of u,(¢) at ( = 0, that
is, we will show that u,(¢) satisfies

#n(€) = pm + p) (log(1/€)) " + 0((log(1/))™")  as ¢ —0

and ugl) is an eigenvalue of a certain matrix.

Many authors have studied the continuous dependence of eigenvalues
of operators under singular variations of domains. Rauch and Taylor [12]
showed that the spectrum of the Laplacian on a bounded domain does not
change after imposed Dirichlet B. C. on a compact subset of Newtonian ca-
pacity zero. Ozawa [11] studied the asymptotic behavior of eigenvalues of
the Laplacian subject to the Dirichlet B. C. on domains with a small hole
when the hole degenerates into a point. He gave an asymptotic expression of
the eigenvalues. Chavel and Feldman [3] derive an approximate formula of
the eigenvalues of the Laplacian on compact Riemannian manifolds with a
neighborhood of a closed submanifold removed. The codimension of the sub-
manifold is greater than or equal to 2. If the codimension of the submanifold
is 2, the approximate formula is given in the form

‘ 21 9 1 a5 ¢
() =t = Toe D) /yq’" de +o (1og'<1/5)> (=0

where {®,}32, is an arranged complete system of eigenfunctions on the man-
ifold and Y means the submanifold. See also Flucher [7] and references
therein.

- To state our main result, we use the following notation. Let u, (n =
1,2,...) be the eigenvalues of (1.1) for D = Q arranged in increasing or-
der with counting multiplicity and {®,}%; a complete system of corre-
sponding L2-orthonormalized eigenfunctions which is realvalued. Let n(k)
(k =1,2,...) be natural numbers defined by

n(1)=1, n(k+1)=min{n € N: yin > pingiy}

and m(k) the multiplicity, that is, m(k) = n(k + 1) — n(k). Let u,(¢)
(n=1,2,...) be the eigenvalues of (1.1) for D = Q({) arranged in increasing
order with counting multiplicity. Let N(z) be the normal space at z € Y
and P, the projection from R3 into N(z) and I the inclusion from N(z) into
R3. We define the function Son Y as

B(z) = \/det(P; A; I;) (zeY)

where A, means a linear mapping on R3 defined as the coefficient matrix
(aij()),<; j<3 @nd Pz Az I is a composite mapping from N(z) into N(z).
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Theorem 1.1. Assume the above. Then for all n € N there exists

) = lim (n(C) = pn) Log(1/C)

and for each k the limits u$ (n(k) < n < n(k + 1)) are eigenvalues of an
m(k) square symmetric matrix

M = (27T ‘/y Do (k) +i-1(Z) Prry4i—1(T) ﬁ(fv)dlz)

1<i,j<m(k)

Here dl, means the standard line element.

We remark that the eigenvalues of the matrix M are independent of
choices of systems of eigenfunctions.

2 Notation and Preparation

To prove Theorem 1.1, we use the following notation. Let s be an arc length
parameter of Y and [ > 0 the length of Y. Let p € C®°(R;R3) such that

Y={zeR¥:z=p(s), 0<s<l}, p(s+1)=p(s)
and g; € C®(R;R?) for i = 1,2,3 such that g3(s) = p/(s), ¢:i(s +1) = qi(s)
and that the series {g1(s),g2(s), g3(s)} is an orthonormal basis of R® with
det (*q1(s), *q2(s), *q3(s)) = 1. Let T(r) be a cylindrical domain
T(r) = {z = (z1,T2,23) € R® : 1,* + 1% < r*}
and T'(r; s) a cylindrical domain with a height s |
T(r;s)=T(r)N{0 < z3 < s}.
We define a mapping @ : T'(r) — 2 as
Q) = y1 q1(ys) +y292(ys) + p(v3), ¥ = (¥1,92,93) € T(7).

We remark Q(¢) = Q\ Q(T'(¢)) for small ¢ > 0.
Let Ay, be the symmetric matrix

- 71(ys) “fa(ys)\
Ay, = | 92(y3) | Aoy | 92(v3)

a3(ys) q3(y3)
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and By, a matrix such that
bia(ys) bia(ys) O N 0
By, = b21(y3) b22(y3) 0 y By, Aya tBya = 0},
ba1(ya) baz(ys) bss(vs) 1

det(By;) >0, b € CP(R), bij(ys +1) = bij(ys), bas(ys) > 0.

o O =
O = O

We note that the existence of B, is shown by the following simple argument.

Since the matrix Z,,a is a positive definite symmetric matrix, there exists an
orthogonal matrix P such that

_ AL 0 0
PA,P=(0 A, 0].

0 0 A3
Let
_ 1/VAi 0 0
P = (*py *p2 *Ps) = 0 1//A; 0 P
» | 0 0 1/VAs

and {p, ﬁﬁ, P3} an orthonormal system such that

pa=|Ps|7'ps and det(*p; ‘o *Ps) = 1.

AW
B, = |5 | P.
D3

We define a mapping z = (21, 2, 23) = B(y) as

Then

z1 = bu(ys) ¥1 + b12(y3) Y2,
22 = b1 (y3) Y1 + ba2(y3) y2,

Y3
z3 = b31(y3) y1 + bs2(y3) y2 + bss(s) ds.
0

We note that the inverse mapping B! : B(T'(r)) — T(r) exists for some
r > 0 since the Jacobian det(0z/3y) = det(B,,) > 0 on the ys-axis.

Let G = Qo B! : B(T((")) — Q(T(¢*)) and ©4(C) = 0\ GAGT))
for small { > 0 where ¢* is a positive constant such that G|+ is a
one-to-one mapping and

‘ 1
- / baa() ds.
0
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It is obvious that there exist constants ¢ > 1 and (o > 0 such that

T(¢/c) € B(T(¢)) € T(cC) € B(T(¢*)) for ¢ €(0,o)

and hence

Q¢*) € () € 2(¢) € Q(¢/c) for ¢ € (0,¢o). (2.1)

Let wa(¢) (n = 1,2,...) be the eigenvalues of (1.1) for D = Q;(() ar-
ranged in increasing order with counting multiplicity and {¥,¢}32, a com-
plete system of corresponding L2-orthonormalized eigenfunctions which is
realvalued. Then we have the following.

Lemma 2.1. The eigenvalues ya, pn(¢) and w, () satisfy

tn < wn(C/c) < pnl€) S wn(c¢) for 0 < ¢ < (o, (2.2)
P_{H)P’n(C) = ggrg)_wn(C) = fin. (2.3)

Proof. By a standard mini-max principle,

fin = sup inf Vo A, tV<I’dav//|<1>|2d:1; (2.4)
pe, 2 Ja @

where &1 K means

/<I>\Ildx=0 forall ¥ € K.
Q

The eigenvalues y,(¢) and w,({) are given by (2.4) when (2 is replaced with
(¢) and 24() respectively. Since (2.1), we have (2.2).

Let
1 z € 0\ Q(T(%)),
he(a) = f—g%% z € QT(() \QTQ),
0 z € QETO),

where r = dist(z,Y) = /112 + y22 for y = Q!(z). Then we have
 he®, € Hy(2(C)),

/ ~ |Yhe[*dy = O ((log(1/¢))7") , (2.5)
TCoNT(GD) . |

/ - hePdy=0((log1/Q)?)  (26)
T(Cos\T'(¢50)
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and hence

/ he? @y @ d = b + O ((log(1/C))™),
2(¢)

Vx(h(q)n) A, V',;(h(q)m) dz = pndnm + O ((108(1/C))_1) )
Q(¢) ' '

where 0, ., is Kronecker’s delta symbol. Thus

‘un(C) < pin + O ((log(1/¢))™") foreachn € N
and we obtain (2.3). o | 7 O

Next, we will observe the behavior of the eigenfunctions ¥, ¢ as ¢ — 0.
It is well known that each eigenfunction converges to an eigenfunction of
(1.1) for D = 2 by choosing a subsequence.

Lemma 2.2. For any positive sequence which converges to zero, there
exist a subsequence {¢;}$2; and a complete system of orthonormalized eigen-
functions {¥,}22, of (1.1) for D = Q such that ¥, converges to ¥, in
H}(Q) as i — oo where ¥, ¢, is extended to vanish on G(T'(¢;)).

Proof. By the estimate in the proof of Lemma 2.1, there exists a constant
c1 = ci(n) > 0 such that ||¥n¢|lmyq) < ¢ for all ¢ > 0. By the Rellich
theorem, there exist a sequence {¢(1,¢)}$2, with {(1,4) — 0 as 4 — oo and
U, € H}(Q) such that :

¥y e, — U1 weakly in H}(Q) as i — oo,
U, ca,) — V1 strongly in»L2(Q) as ¢ — oo.

Since (2.5), (2.6) and
| VAT (ohe) — Q) B (phe)dr =0 for sl p € OF(@),
we have |
/QV\Ill AWV — iy Uy pdz = 0 for p € CP(Q), /n |¥,2dz =1
where c is the constant defined in (2.1). This means ¥, is an eigenfunction
associated with u;. Inductively, by choosing subsequences {{(n,%)}2, C

{¢(n —1,7)}2, for n > 2, we have

/ VU, A, "V — i, ¥, o(z) dz = 0 for ¢ € C§°(Q),
Q
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/ U, V,,dz = 6py for 1 <m < n.
Q

Let ¢; = ((¢,%). Then we have for alln € N
U, ¢, — U, strongly in L*(Q) as i — oo,
Wne, — U, weakly in Hj(Q) as i — oo.

Since L is uniformly elliptic, there exists a constant c; > 0 such that

e / V(U ¢ — U,)[2dz < / V(s — Up) As 'V (Un — Un)do
Q

= wn(0) / (G 2dz — 2 / U, U, dz
Q Q

+ pin / |, |%dz.
Q

Therefore we obtain Lemma 2.2. ‘ O

If there exists a limit of (w,(¢) — pa) log(1/¢) as ¢ — 0, there exists
a limit of (u,(¢) — pn)log(1/¢) as ¢ — 0 and those limits are equal by
Lemma 2.1. Therefore we consider wy,({) instead of u,(¢). To obtain an
accurate approximation of w,({), we construct an approximate function of
the eigenfunction ¥, ¢. For that purpose, we introduce a solution to a certain
elliptic boundary value problem on a tubular neighborhood of Y. We define
a(s) (s € R) as :

a(s) = \/det (Ag(o,(),s)) |
and for ¥ € C*(Q), let U = U(¥,() = U(¥,¢; 2) be a unique solution to

div (a(23)VU) =0 ‘in T'(¢o) \E,

U(z1, 29,23 +1') = U(z1, 22, 23) in'T((o) \ T'(¢), 27)
U=0 on 9T (o),

U=ToG on 9T (¢).

By the separation of variabies method, we have

Rye(r)
U(T,¢;2) Fe(¥;7,€) ,,(9)Z(s) (28)
ZWEZ ¢ Rag(0) ¢

where z = (21,22,23) = (rcosé,rsinf,s) and ©,(0) = e™®/vV2r (n =
0,+1,%2,...). Z is an eigenfunction of

1 d dZE \ . ’ v :
o(s) ds (a(s) Is ) +AZe=0inR, Zg(s+1!) ¢(s) in



ll
/ZE Zg/ ads = 5551
0

and {Z¢} is a complete system of L%((0,’), ads). Here Ay = 0 and we arrange
the eigenvalues A¢ (£ = 0,1,2,...) in increasing order counting multiplicity.
R, is a function defined as

o 1
Roclr) = Soe(r) | st (0<r <o (2.9)

for

1 plinl Ae 72\
Spo(r) = i, Sne(r) = Z k! t(zl.:;:ﬂ ( e ) (€ #0),

which is a solution of

2

r dr

Ryg(r) >0 (0<7 <o),  Rug(o)=0
F.(¥;n,§) is the Fourier coefficient

(2.10)

F(Wim,€) = fo ' /_ " W(r,0,5)0,(=0) Ze(s)a(s)ddds  (2.11)

where \Il('r 8,s) = ¥ o G(rcosf,rsinb, s).
First we state several well known results w1thout proof.

Lemma 2.3. There exists a constant ¢; > 1 such that E/c1 < A <
0152.

Lemma 2.4. There exists a constant c; > 0 such that

sup|Z¢(s)] <cz and  sup|Zg(s)| < cav/ e
s€R ' s€R

By standard arguments of self adjoint operators, a system of eigenfunc-
tions o T : ’ ;
{©4(0)Z¢(s) : n=0,%1,+2,...,6=0,1,2,...} (2.12)

is a complete orthonormal system of L?((—m,7)x(0,1’), a df ds) and we have
the following Parseval equality and Bessel inequalities.
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Lemma 2.5. Assume the above. Then we have

U pr

S IR (T, 62 = | (r, 0, s)|* a(s) db ds, (2.13)
n,€ /0 '/_”

U pr ~
D AR (T, )2 < / / 18,%(r, 0, s)|? a(s) df ds, (2.14)
€ 0 -

U px .
S PR, 6 < / / 009 (r, 0, 5)2a(s)dods,  (2.15)
e 0 -

U pw
Z/\enler(\If;n,ﬁ)Ps / / |0:05% (r, 8, 5)|? a(s) dB ds
n,€ 0 -7

and

™ | 8y(cls) 8,9 (r, 8, 5)) |

a(s) a(s)df ds.

D NIF (62 <
/X3

Next we prove several estimates of Ry needed later.

Lemma 2.6. Let R, be the solution of (2.10) defined as (2.9). Then

log(Go/¢) (") ,’2‘8 <log(co/r) (0<C<r <o), (2.16)
Rog(r) < log(Go/r) (0 <1< (o), (2.17)
R |log(¢o/r) = Rog(r)] < 2¢ov/Xe-  (218)

Proof. Let

1o Bue(r) _ (oo
w(r) g(C/OR,,(g) log(Go/)-

Then w({) = w(¢) = 0 and

w"+%w’ = ( +)\5) log(¢o /C)R"E( r) >0 ((<r<G).

Rye(€)

By the maximum principle, we obtain (2.16).

Since
o (1og(<o/t)) _ _ So(t) + ¢t log(Go/t) Sie(t)
dt \| Soe(t) t Soe(t)? ’
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we have

0 S, — - log((o .
log(¢o/T) — Roe(r) = Sog(r)/r 5 e(t) L :;0:(5)(5 /1) St dt (2.19)

and hence we obtain (2.17).
It is clear that

r*Sge(r)? = X¢ ('rz,S‘oﬁg(r)2 -2 /(; ' tSo'E(t')zdt>

so that Sg(r) < v/A¢ So¢(r) and hence Soe(t) — 1 < /A¢t Soe(t). By (2.19),

we have

[log(¢o/7) — Roe(r)| < Soe(r) \/—tSOEIEt;(()El("; log (Co/ t))
< \/—/ @ +108(Co/t)) dt
and hence we obtain (2.18). L | ]

Lemma 2.7. Let Ry be the solution of (2.10) defined as (2.9). Then

TRy (7) ’ : 2 (log(Cn/r))? 2
(1o6t6o/0) G255 ) <1+ 217 (og(Go/r))* + X (2.20)
o ‘ V(Q<CSTSC0),
(rRee() <1+ Xl (0<r<), (2.21)
8 + (oA |
I Bog(r) +1] < 5 log(Co/:) 0 <7< () (222

Proof. 1t is clear (r?Ry.(r)?) = ' (n? + )\rz)(R,,g(f)2)’ and (rRp.(r)) =
(m?/r + Ar)Rye(r) so that _ _

(o)’ + s o)
2

o
= (” + Aer®) Rye(r)® + W t log(Go/t) Rue(t)* dt

log(co/r) / : ( + *et) Rrg (8" .
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_Rye(r) 1/ Rye(r) \* 1 R
log(Co/7) TR (r )’ = 2 (10g(<0/,~)) +2( (M)

we have
R < (ol ) 4207 + Xer™) R

4 )¢ o .
+m ; t;og(Co/t)ng(t) dt.

By (2.16), we have

)Y ? r? )2
R«z&(C))S 1+2(n° + A¢r") (log(¢o/r))

(log(Co/ ¢)
+4 )¢ / “ t (log($o/t))%dt

and we obtain (2.20). Similarly we obtain (2.21).
It is clear that

TRgg(T)—rR{,f(r)=/\5/TtR0¢(t)dt S |

so that | |
r o o
TRy(r)+1=1- IOI;‘("C(() /)T) - log()\Cf) 7 / log(Co/t) t Rog(t) dr.
Hence we obtain (2.22) by (2.17) and (2.18). o | I:l

It is clear that finite sums of the right hand side of (2.8) satisfy (2.7)
except the boundary condition on T'(¢). Since the above Lemmas and stan-
dard convergence theorems of solutions of elliptic partial differential equa-
tions, U(¥, () is the unique solution to (2.7).

Next we consider the limit of log(¢o/¢) U(¥,¢) as ¢ — 0.

Lemma 28 Let

V@) = V(&)=Y e O he) Ze(s), (229

£=0
z = (rcosf,rsinb,s) € T({o) \ {z1 = 22 = 0}.



Then there exists a constant ¢3 > 0 such that

[V(¥; 2)| < czlog(Go/r) (0 <7 <o) (2.24)
and
2. Fy(¥;0, ,
o =3 ) rer) 24), (225)
(¥ =3 R e, en)
div (a(z3)VV(¥;2)) =0 in T'({o) \ {z1 = 22 = 0},
V(¥; 21,20, 23+ 1) = V(¥; 21, 22,23) inT(Go) \ {21 =22 =0}, (2.27)
V(@) =0 on 9T (o),
and : o
V(¥), rV,V(¥) € L3 (T (¢o; 1), o(z3) dz).
Proof. By Lemmas 2.3 to v2.7, we obté,in the conclusion. B a

Lemma 2.9. Let V(¥,¢) = V(¥,¢;z) = log(l/¢)U(¥,(; 2) which is
extended to vanish on T'(¢). Then

V(T,() = V(¥) as ¢ — 0 in L(T(Co; 1), o(23)dz),  (2.28)
rVV(¥,() —_rrVV(\II) as( =0 in L*(T(¢o;1), a(z3)dz).  (2.29)

For each 0 < r < (o, 7 ,
0,V(¥,(;rcosf,rsinb, s) - 0,V(¥;rcosf,rsinf,s)as( -0 (2.30)
in L2(-("—7r ™) X (0,0) a(s)d ds). |
Proof Clea.rly, we have |

Rog(r)

R ©(0) Ze(s)

V(,0)-V(9) = ZI ¢,¢) log(co/c)

€=0

+ 3 3 R los(a/) ﬁ"ﬂﬁg 64(6) Zc(s)

n#0
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where I(¢,€) = (¢, &) + I2(¢,€) and
I1(C,€) = FC(\II,Oag) - FO(\I’?Oag))

B(¢,€) = Fo(w;0,¢) 20 —slt),

so that

IV(¥,¢) = V()| Z2rcor\ i), ates) d)

(Z 11(¢,€)|? +Z|F<(\If n,€ ) %,

n#o

By the orthogonality of the eigenfunctions, we have
U
SIn@ors [ [ 196, - 40.6,5)Pals)d0ds,
E 0 -7

by (2.18) and (2.14), we have

U pr ~
z|12(< O < o g‘(lg" k) 18,9(0, 6, s)|? a(s) do ds,

and by (2.15), we have

Y 1R (T, €)|? < Z|F<<w n, €)|*n?
n,§
n#0 n#o

l'
< / / 82 + 10, a(s) df ds.

Therefore we obtain (2.28). Similarly we obtain (2.29) and (2.30) by Lemmas
2.5 and 2.6.. ‘ } D

3 Proof of Theorem 1.1

Now we prove Theofem 1.1 by using the abov;e lemmas. Let
0 : : z € G(T((;1)),
Ymi(z) = § Im(2) —U(¥m, )0 G} (z) z€G (T(Co; M\ T (G l’)) ;
Upn(2) . z€ 0\ G (T 1))



where ¥,, is the eigenfunction of (1.1) for D = Q and {(;}$2, are the su
quence given in Lemma 2.2. U(¥,,, () is the solution of (2.7) for ¥ =
Clearly we have

V6 A "V — wa(G) W, Yrm da = 0.

¥

By a simple calculation, we have

VU, A, 'V de = i / Up e, U d

Q1 (¢:) Q1(¢:)
and
- VU (AU (U, G) da
/G(T(co;t')\“_r(c.-;z')) S o
= [ M) VUG
T(Cost\T'(¢s5') ‘
= / Ui, O U (U, G) (23) dS;.
8T (¢o)N{0<z3<l'} .
where , o 3 L .
. 0z| "0z 0z
J(Z) = |det % a_mAG(z) a—x,

Let J'(s) = J(0,0, s). By the definition of G, we have

.10 0\
J'(s) = a(s) (O 1 O) .
0 0 1

Let U (\Pm,ci) - log(¢o/ C,-)'U (¥, G). By the above, we have

108(60/6) (n(G) = tm) [ g W = L(G) + BG) + 1(G)

where _
L&) = / Vg, (F(28) — T(2)) T (Y, &) diz,
T (o )\T (¢i5l")

L(G) = - / Up e, 0.0(Upm, ) a(23) dSs,
 Jor(confo<zs<t’} |
-1

det _8_51_ dz.

B(G) = wn(@) [ U, (W, ) |det 5

T(Coil T (Cisl')
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By Lemma 2.2 and (2.29) and that
sup{r~" |J'(23) — J(2)| : 2 € T(Go) \ {21 = 22 = 0}} < oo,

we have

lim 1,(G;) = / U, (J(28) = J(2) "WV (Urn) dz.
e T(Coil")\{z1=22=0}

By Lemma 2.2 and the trace theorem and (2.30), we have

lim I,(;) = — / 0,8,V (T,,) azs) dS..
oo 3T (Lo)N{0<z3<l'}

By (2.3) and Lemma 2.2 and (2.28), we have

-1

det % dz.

}E& I3(G) = pa | v, V(V‘I’m) o

T(¢ost')\{z1=22=0}

Combining the above, there exists a limit of (wn({;) —pn ) log($o/G) as i — oo.

Let ,A}’ denote the limit. For m,n with y, = g, we have
WD = / VU, (' (2) — J(2)) "V (Ur) dz
T(Cost" )\ {21=22=0}

- / ¥, 8,V (Unm) o 23) dS,
8T (Co)n{0<z3<!'}

+ L / v, V(\I’m)
T(Cost' )\ {z1=22=0}

Let § € (0,(p). By the divergence theorem and (2.27), we have

-1

det§ 4

p dz.

/ VU, (2) "WV (V,0) dz,
T(Co;l)\T(6;1") :

- / 0,8,V (W,) alzs) dS.
8T (8)n{0<z3<li'} ‘

+ / | ¥, 0,V (¥) alzs) dS..
OT(Co{0<zs<l}

By (1.1), we have

/ VU, J(2) 'V (Urn) dz
T (o' \T(8;1) '
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— / VU, J(2) ' (2) V(®m) dS,
8T (§)N{0<z3<l'}
oz |
+ fin U, V(D) |det == | d.
Tt \T(Sil) oz
By (2.24),
/ VU, J(2) () V(&) dS, = O(61og(1/8)) as 6 — 0.
8T (6)n{0<2za<!'}

By (2.11), (2.22), (2.23) and (2.14), we have

M6, = —lim 0,0,V (V) af23) dS,
. 60 JaT(6)n{0<23<l'}

=l ; 8 Roe(6) Fo(¥m; 0,€) F5(¥n; 0,€)

=" Fo(¥m;0,8) Fo(¥5; 0, ).
£=0

By the completeness of the system (2.12), we have
! pw
pD 8 = / T,,(0,0,5)¥,(0,0,s)a(s)ddds
0 -
ll
= 27r/ ¥, 0 G(0,0, 23) ¥,, 0 G(0,0, z3) a(z3) dz3.
. Jo :

Since *By, By, = Ay;', we have

(bas(ys))? = —= (‘11(3/3)Awtql(y3) ) (ya)Ath'z(ys))
det(Ay,) \22(¥3)Az*q1(y3)  92(y3)Ac'qa(ys)
_ det(P A, IL) _ :
= der(A) for £ = Q(0,0, y3).
Since | ) . .
]
23 = bss(s)ds on the 23-axis,
0
we have

v v ‘
/ ¥,0G(0,0, 23) ¥,,0G(0,0, 23) a(z3) dzg = / v, V,,0dl,.
0 Y



Accordingly, we have

p6, = 27r/ U, VU, fdl, forn,m with u, = pim.
Y

Since
n(k+1)-1
Un= Y (¥n,®)2y®; forn=n(k),...,n(k+1)—1,
j=n(k)
we have M
Fonk) o
Te, = PMktP
1
o : “ﬁz()k+1)—1

where

P = ((Zn(e)+i-1, Pr(e)+i-1)13@) 14 jmii) -

These eigenvalues are independent of choices of sequences {(;}, we obtain
Theorem 1.1. g
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