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1 Introduction and Maln results

In this paper we consider the following F1tzHugh-Nagumo type elhptlc system
| —Au=A(f(u)-v) inQ,
(Px)

-Av=Au-yv) inQ,
u=v=0 on 99,

where Q C RV(NV > 1) is a bounded domain with smooth boundary 852, 6, 'y are positive constants, '

A > 0 is a parameter and f is given by f(u) = u(u — a)(1 — u) where 0 < a < 1/2 Thas problem
is the statlona.ry problem for the FltzHugh-Nagumo equation:

us— A 1Au=f (u)—v ' mR“'xQ,'-
(D») v — A 1Av =du—yv ; in Rt x Q,
A u=v=0 on R+ x 8Q,.

u(0, z) = up(z), v(0,z) = vo(z).

These equation are used as a model for nerve conduction and other chemical and biological systems.
See [15] and the references therein about the case where the diffusion constant of u is much smaller
than the diffusion constant of v. ‘

If we set § = 0 in (P,), then the problem is reduced to the scalar problem

Ss ){ —Au—)\f(u) :x%n,

where the function f is the one given in the above. It is well known that for large )& > 0 there are
at least two positive solut1ons One is obta.med as the global minimizer of :

Inw) = /n SIVul? = AP(u)ds

and has a boundary layer of width O(A~1/2). The other is obtained as a mountain pass solution
and has a spiky shape if © is convex (see [11]). Moreover if  is a ball, Ouya.ng a.nd Shi {16]
obtained the exact multiplicity of solutions to (S,) for any A > 0. :

Our study is motivated to understand the complete dynamics of’ solutmns for (D ;‘) Although
the Lyapunov functional has been obtained in [7], we need to study the structure of solutions to
(P,) in details to understand the complete dynamics of solutions to (D). In this paper we focus
on the study of the asymptotic profiles of solutions to (P,) as a first step of this program.

Now we recall briefly two approaches to construct solutions to (P»). See section 2 for the
details. Since the second equation can be inverted to solve v in terms of u, the problem (P) can
be then written as a single equation for u including a nonlocal term. More precisely, if we define
the operator By := (—A71A + )71 : L2(Q) — H} (), then the problem (PA) is reduced to the
following problem:

(NLs ){ Au+A6Bxu = Af(u) :)IL%Q
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Klaasen and Mitidieri [13] obtained two nontrivial solutions (u,,v,) and (@x,7») in some
parameter range as a critical points of the functional

Ia(u) = /Q %|Vu|2 + %J(Bxu)u — AF(u)dz

on H}(Q), where F(u) = [ f(s)ds. Using an a priori estimate for the solution to (PA), the
function f will be modified for large |u|, so that the functional Jy is well defined on H}(Q).
The pair (@, 7)) is obtained as a global minimizer and (u,,v,) is obtained by the well-known
Mountain Pass Theorem. We will often call (u,,v,) a mountain pass solution. See section 2 for
details.

On the other hand recently in [20] Reinecke and Sweers discovered a nice transformation
(P») to a quasimonotone system and obtained a solution (U, Vy) by using the method of sub-
supersolutions for a somewhat restricted parameter range. This solution (Ux,V)) is stable and
has a boundary layer of width O(A\~1/2). Moreover (Ua, V3) is a unique solution in certain order
interval. Hence we will call (Ux,Vy) a boundary layer solution. However the relation between
these solutions obtained by these different approach was unclear.

In this paper, we show the global minimizer (U, ¥») coincides with the boundary layer solution
(Ux, V) for sufficient large A > 0. Moreover, we prove that a mountain pass solution (u,,y,) has
a spiky asymptotic profile for large A > 0 when ( is ball.

To state our main results precisely, we need to assume the following three conditions on the
parameters v, § and a. '

Conditions . (C1) % <a<qy- 28.

(C2) y—2vE6> M := a 2a)~ +1;a1/(1—a)2+4%+3%

2 _ -
(03) =225 pm Ly - M) - VO - M-

Remark . De Figueiredo and Mitidieri [6] showed that under the condition (C1l) every non-
trivial solution to the problem (NL,) is positive(see Proposition 2.4). Next we will use the the
condition (C2) to transform (P)) to some quasimonotone system and use the condition (C3) to
construct a subsolution to the quasimonotone system. We also note that the condition (C3) im-
plies (2a% — 5a +2)/9 > (8/7) (see (2.2) in Section 2). If § is sufficiently small and 7 is sufficiently
large then all condltlons (Cl) (C2) and (C3) are sa.t1sﬁed

Remark . Smce we compere the globa.l minimizer ¥, with bounda.ry layer solution Uy obtained
by the quasimonotone method as in [20], we assume shghtly stronger conditions than the condition
as in [20] and use mllder modxﬁcatxon of f.

Now we state our main results "First one is a new charactenzatmn of the boundary layer
solution (Uj,VA).

Theorem 1.1. Suppose that conditions (02) and (C8) hold. Then there ezist € > 0 and M > 0
such that if (u,\,v,\) isa posztwe aolutwn of (Px) with maxq u) € (p5 /o — €1 P5 /7) and A > M\ then
uy = Us.

Using Theorem 1.1, we can show that the glebal minimizer (T, ) coincides with the bouhda.ry
layer solution (U, V3) for sufficiently large A > 0.
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Theorem 1.2. Suppose that conditions (C1), (C2) and (C8) are satisfied. Then there exists
X > 0 such that for A > \°, Uy = Uy holds.

Lastly, we show a spiky profile of a mountain pass solution (u,,v,), when  is a ball.

Theorem 1.3. Let Q = B;(0) be the unit ball in RN and conditions (C1), (C2) and (C3) hold.
And let (uy,v,) be a mountain pass solution to (P)). Then the followings hold.

1) u (0) 2 Ps/ys where p, / 18 6 positive constant independent of A and will be defined in Section

(2) If we set @x(z) = uy(A"V2z), Gr(z) = u,(\"1/2x), the set of functions {@,}, {B\} are
precompact in Cloc(]RN ) and have subsequences which converge to a positive radially symmetric
- solution to the problem

-Au = f(u)—v inRY,

(P) -Av=0u—~yvs inRV,
u(z) = 0 as |z| = oo,
v(z) = 0 as |z| = oo.

(3) uy =0, vy, = 0 as A = +o0o uniformly on every compact subset of B, B (0)\{0}.

This paper is organized as follows. In section 2, we recall preliminary known results. In section
3 we first establish an a priori bound for positive solutions. Next we prove Theorems 1.1 and 1.2
and we show a lower bound estimate for the maximum of the positive solution. Finally we prove
Theorem 1.3. In section 4 we state open questions for the problem (P,).

2 Preliminary known results

In this section we collect some preliminary known results. First we define the operator By :
L2(Q) — L?(9) as follows: for all w € L?(Q), v = Byw is the unique weak solution to

{ A Av+yw=w inQ, 1)

v=_0 ' _onaﬂ.

Then the second equation of (P)) is equivélent to v = §B)u and by substituting into the first
equation of (P») we obtain the single equation including a nonlocal term

—Au+ MByu= in 0,
(NL*){ ST B =AW Om;laﬂ

The definition of By implies that f (Bau)udz > 0 and B, is bounded operator in L2(Q) with
[IBallzcza(@)) < 1/7. See [13] for proofs of these results.

First we describe how to construct the variational solutions in our setting. For the construction
we just impose the following weaker condition:

2a? -5a+2 4§
ares 9 2.2
5 > 5 (22)

than the condition (C3). Condition (2.2) is equivalent to the following:
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g(u) := f(u) — ;u has three roots 0 < pj,., < pj/,y < 1 and satisfies

/0”:/1 (f(u) - %u) du > 0.

Next we state a priori estimate for the solutions to (P)).

Proposition 2.1. ([14, Lemma 3]) Suppose that there ezists m = m(8/v) > O such that

fly) &
—_— - ory . >m
” e fory: |yl

and let (u,v) be a solution to (P»). Then |u(z)] < m for all z € Q.

To obtain the variational solution, we have to define the energy functional. We have to modify

the function f as follows so that it is well defined and its critical points are the solution to the
problem (NL,). Now we assume furthermore condition (C1):

)
—-<L<a<y—- 2V/6.
o 7
We note that the direct calculation for f(u) = u(u — a)(1 — u) yields

m=m(5/7) = “'2”. + %\/(av-— 1)2+4%, | (2.3)

M=M(/y) = max{—f(u)|0<u<m(/y)}
o

(1-a)? 1+ 2 40 o0 B (2.4)
3 + 2 (1 ‘a) +47+3

->1-a>a.
v
(see Figure 1).

Figure 1:

Using this estimate we modify the function f to f satisfying the following conditions



(1) f(u) = f(u) for 0 < u < m.

@) f(U)

s
< —— for |u| > m.
Y

(3) fllu)=-a< —-% for large u > m and for all u < 0.

(4) fi(u)+ M >0 forall u€eR.
(5) f is smooth.

Since we are interested in positive variational solutions, we use the modified function f instead
of f in the problem (NLy). And later we show that for every nontrivial solution to (NLy) with
modified function f is positive. Hereafter we consider the problem (NL,) with f.

Next we define the following functional:

Ia(u) = f SIVul? + ga(BAu)udz — AF(u)dz, | 2.5)

where F(u) = I f(s)ds. Then we can show that if u € HE(R) is a critical point of Jy if

and only if u is a weak solution to the (NLy). Moreover by the standard bootstrap a.rgument

(u,v) = (u, 6By u) is a classical solution of (P,). ,
Now we state the existence result.

Proposition 2.2. ([13, Theorem 1, Theorem 2]) Let us assume conditions (2.2) and ( C1). Then
there ezists At > 0 such that for all A > At there exist two nontrivial solutzons (ux,v)\) ( _,\, vy)
to (P») satisfies Jy (@) < 0, Ja(zuy) > 0.

We note that (@, 7») is obtained as a global minimizer of Jy and (u,,v,) is obtained by the
Mountain Pass Theorem (see [3]).

Actually existence of these two nontrivial solutions to (P») has been proved in [13] without
condition (C1). We can show that the solutions obtained by the same procedure as in [13] to (P5)
with the modified function f are solutions to (P,) with the original f by Proposition 2.1 and the
following argument. '

Namely we can show that the variational solutions obtained by the procedure as in [13] to
(P») with the modified f are positive.

Since the positivity of the solutions is invariable by the scaling:

#a(z) =u(A"V2z), da(z) = v(A"%2)
for z € A\Y/2Q := {y € R¥|A\Y?y € Q}
we may assume A = 1 and we consider the problem (NL;). Let us define the operator
T := —A + 6B, with D(T) := H2(Q) n H} ().

T is a closed and a self adjoint operator. ‘Let us denote by 0 < p; < pz < pz < --- the eigenvalues
of —A with Dirichlet boundary condition and by {¢:} the corresponding eigenfunctions. It is
easily seen that

ﬂ'k=“k+ ’ k=1!2""3

¥+ i
are the eigenvalues of the operator T'. Since {¢x} is a complete orthonormal system in L?(f2), it
is readily shown that {/ix} are the only eigenvalues of T
The following proposition follows from the positivity of the resolvent operator of T' (see [6,
Corollary 1.3]).
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Proposition 2.3. ([6, Remark 1.3]) Let us v+ p1 > V3, and 2V6 —y < p < . If z € L*(Q),
z >0 a.e. and w is a weak solution to

-Aw+6Biw—pw==z in
w=20 on 890,

then w > 0 a.e. Moreover, if 2 € C(Q), 2> 0in Q, thenw > 0 in Q and the outward normal
derivative satisfies (Bw/8v) < 0 on 09

Now we show the positivity of solutions to problem (NL,) with the modified function f. We
note that our modification implies that f(u) > —au for all u € R. And we can easily check that
all conditions of Proposition 2.3 with 4 = —a are satisfied. Therefore every nontrivial solution u
to -

—Au+6Bju— (—-a)u = f(u) +au inQ,
u=0 on 99

is positive. Hence the following proposition holds (see [6, Remark 2.8]).

Proposition 2.4. ([6]) Let us assume the condition (C1). Then every nontrivial solution to
(NL,) with the modified function f is positive.

Next we recall the other construction of a solution to (P,) due to Reinecke and Sweers [20].
Since our assumption and the modification of f is slightly different from the one in [20], we present
it in details, although the strategy is the same one as in [20]. Problem (P,) can be transformed
to quasimonotone system in some parameter range. At first we state the definition and properties
of a quasimonotone system.

Definiton 2.5. Let Fy, F> € C*(R x R). An elliptic system

—Au = Fi(u,w) inQ, _
{ —Aw = Fy(u,w) nQ (2.6)

is called quasimonotone if
4] 3

Bu |’

oF,
Bw“

for some K > 0 and
8F1
(u w) >0 and —(u w) >0, for all'(u,w) € R xR.

Definiton 2.6. (u,w) € C(?) xC(1) is called a subsolution(supersolution) to the elliptic problem

—Au=Fi(u,w) in®,
—-Aw = F(u,w) inQ, (2.7
u=w=0 " on 9N o : '
if it satisfies
(1)

-Au < (2)F(u,w) in D'(),
—-Aw < (2)Fz(w,w) inD'(Q)
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(2) (w,w) <(>)(0,0) on 890

(u,w) € C(Q) x C(N) is called a C-solution to the problem (2.7) if it is a subsolution and a
supersolution.

Proposition 2.7. ([20]) Let @ C RN be a bounded domain with smooth boundary and assume
(2.7) is a quasimonotone system.

If (u,w) and (T, W) are a supersolution and a subsolution to (2.7), respectively, with (u,v) <
(@, v) on 0N, then there exists a C-solution (u,w) to (2.7) with

(w,w) < (u,w) < (B,D).

We note that since  is a bounded domain with smooth boundary 92 and F, F; are C!, any
C-solution (u,w) is actually in C?(Q) x C2%(f0).

Next proposition is an extension of the result of Gidas, Ni and Nirenberg [9], due to Troy [21]
to the quasimonotone system. ‘

Proposition 2.8. ([21, Theorem 1]) Suppose that @ = Bg(0) and (2.7) is quasimonotone. If
u >0, w > 0 is a solution to this system with u,w € C*(Bg(0)), then u,w is radially symmetric
and Ou/0r,8w/8r <0 on (0, R).

Next we explain how to transform (P)) to some quasimonotone system.
Under the condition (C2):

. y-2V8> M,
we can define 8 and o by '

B :=;%('y'—- M) - %\/ (v —'M)2'— 46 >0,
a=7—ﬁ>0k |
Note that —3(8 + M) = § — v8 and that

PR
:=1--——>0.
7B

One may verify that (u,w) is a positive solution to

—Au=A(f(u) - fu+PBw) inQ,
Q) { ~Aw = A(f(u) + Mu—aw) inQ,
u=w=0 on N

if and only if (u, Bu — Bw) is a positive solution to (P,). We note that from our modification of
f, we have f/(s) + M > 0 on R and hence f(s) + Ms is monotone increasing on R. Moreover f'
is bounded on R. Therefore the system (Q,) is quasimonotone.

Next we construct a solution for (Q,). We assume the condition (C3):

2a2 — 5a + 2
—9 >4

It is easy to see that the condition (C3) implies the condition (2.2).

Next to construct the subsolutions to (Q,) we also need the following proposition. The fol-
lowing proposition corresponds to the proposition 3.1 of [20]. Althogh our modification of f is
different from the one as in [20], we can show similar way as in [20]. For readers convenience, we
give the proof of the proporistion.
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Proposition 2.9. Suppose that conditions (C2) and (C8) are satisfied and let B = B1(0) := {z €
RY : |z| < 1}. Then there ezists \g > 0 such that

—Au = Ag(f(u) — Bu+ Bw) in B,
—Aw = Ap(f(u) + Mu — aw) in B, (2.8)
u=w=0 on OB

has a solution (Ug, Wg) with following properties:
(1) 0< (Us, Ws) < (63,803}, with 8 = 1-5/(xB).
(2) Ug,Wpg is radially symmetric with
Ug(0) = Wg(0) =0 and Ug(r),Wg(r) <0on (0,1]. °

(3) UB(0), Wa(0)) > (55/,+003),) and Wa(0) 2 8U3(0).

Proof. Since the condition (C3) holds,'for fixed large A = Ap; there exists a positive solution u to

{ ~Au=A(f(u)—Bu) inB
u=0 on OB

with maxy € (pj,pj) (see [5]), where p;, pj are the positive roots of f(u) — Bu. Since (u,0) is a
subsolution to (2.9), and (p;*'h, 80}, is a supersolution with (u,0) < (p}"/,,, 0p}'/,,) there exists a
solution (Up, Wg) with u < U < p}'h and 0 < Wg < Bp}'/,, to (2.9), see [20, Proposition A.3.).
By Proposition 2.8 we have that Up and Wp are radially symmetric with Ug(0) = Wg(0) =0
and Uj(r), W§(0) < 0 on the interval (0,1). Also (—A + Apa)Wp = Ap(f(Up) + MUp) > 0
and by the strong maximum principle Wg(1) < 0. Let 7 := Up(0) and Vp := B(Up — W) it also
follows from the maximum principle that

max Vg < %1‘. (2.9)
Indeed, (—A + Ag7Y)(Ve — 67'/7) = Ap(Ug — 7) < 0in B with Vg = 0 on 8B. Since by (2.9)
]
VB(0) = B(r — Ws(0)) < it

we have

5 -
Ws(0) > (1 - %) =67 > 0p;)..

Since (—A+Ap7Y)Vs = AgdUg > 0, V(1) = B(Up(1) —Wg(1)) < 0 and hence Up(1) < Wx(1) <
0. ‘ a

Using the solution obtained above, we construct subsolutions to (Q»). First we fix z* €  and
set,
A(z*) := Apdist(z*,80Q) 2.

Next for all A > A(z*) ,we set

Us,Wg) ((A\/AB)/%(z - 2z*)) f —2°| < (A/A)V/2,
Zx(2) ’={ (() 1) (4/26)" = ) fg; ::_z'{ >§,\z§)\;1/2
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with (Ug, Wg) as in Proposition 2.9. Next we set
ZY(@) = Za(z + 2" — )
for y € O satisfying dist(y, 892) > (As/)A)!/2 and define the following family of functions:
Sy = {Z¥ : y € Q such that dist(y, 89Q) > (Ap/A)*/?}.
We recall that since 0 is smooth, () satisfy the following uniform interior sphere condition:

there exists g > 0 such that

Q= U{B(y,e) :y € Q and dist(y,d0) > eq}.

We may suppose that
‘ Q, := {y € N : dist(y,00) > v}

is connected for all € < eq (see [5]).
The following statements, especially the part (2), are included implicitly in [20].

Proposition 2.10. ([20, Lemma 3.2]) Suppose that conditions (C2) and (C3) are satisfied. Then
(1) For all A > X(2*), Z» is a subsolution to (Q,) and

Y :=(pf,,,008,)

is a supersolution to (Q,) with Z, < Y. Hence there erists a solution (Ux,W)) to (Q,) in
the order interval (Z),Y].

(2) There ezist \* > A(2*) such that for all A > \* every element in Sy is a subsolution to (Q.).
Moreover if (u,w) is a solution to (Q,) in [Z),Y] then for every Z} € S», (u,w) ts a solution

to (Qy) in [Z},Y]).

Proof. (1) It follows directly that Y is a supersolution. Next denote 2y = (2}, 22),Y = (Y1,Y?)
and take p € C§°(?) with ¢ > 0. Then if we set B = By, /)1/2)(;+), We obtain by the Green’s
identity '

f 2(-apis = [ Zi(-Ap)is

- - [ atjpss- [ (522-2B0) a
< | (F23) - 824 + )i,

A similar result holds for Z%.

Finally max Z} = Z}(2*) < Ps/q =Y, max 22 = Z2(2*) < 0p;'/ =Y?2 Hence Z)<Y.

(2) We can show that ZY is a subsolution in a similar way as in (1). Next we show that for large
A > 0if (u, w) is a solution to (Q») in [Zy, Y] then for every y € Q satisfies dist(y, Q) > (Ap/A)/2,
(u,w) is a solution to (Q) in [Z},Y]. Let XX := {A(2*), Ageg>}. Suppose that (u,w) € [Z),Y]
is a solution to (Qa) with A > A*. As in [5] there exists for every y € £(5;/)1/2, a curve in
Q(rg/)1/2 connecting y with z*. Using the sweeping principle (see [20, Proposition A.6.)), it
follows that (u,w) > Z3 for all y e Q(n/xg)1/2- (]



Using the earlier notation, we arrive at the important results in [20].

Proposition 2.11. ([20, Theorem 2.1, Lemma 4.2]) Suppose conditions (C2) and (C3) are sat-
isfied. Then there exists \* > 0 and a function

A € CY([A*, +00), C%(0) x C2(N))
such that (Ux, Vi) := A()) is a positive solution to (Py) for all A > X\*. Furthermore
(1) (Ux,Ws) = (U, B(Ux — V1)) is unique solution to (Q») in the order interval [Z,,Y].

— 5 ~
(2) maxU, € (ps/,y,p;'h) and maxV) € :;(P‘;/,Y,PI/,,);

‘ 5 ,
. - + + .
3 Ah_x)x(:o A(N) = (p5 oy ','Y'Ps /7> uniformly on compact subsets of .

Using the results of Propositions 2.10 and 2.11, we can obtain the following proposition.

Proposition 2.12. Suppose that conditions (C2) and (C8) and A > X* are satisfied. Let y,,y2 € -

Q be such that
dist(y,00), dist(ys,00Q) > (Ap/A)*/2.

Then (u,w) is a solution to (Q») in [2¥,Y) if and only if (u,w) is a solution to (Qy) in [Zf\”,Y].

It is shown that the solution U, obtained by Proposition 2.11 has a boundary layer of width
O(A\1/2) (see [20] for details). Hence we often call this solution a boundary layer solution.

3 Proof of main results

In this section we prove the main results. We need some lemmas and propositions.Hereafter we
also use the same notation f and F for the modified function f and F'.

Lemma 3.1. Suppose that conditions (C2), (C3) hold. Then for every posc‘tc've. solution (u,w) to
(Qx) we have

B
u@) <Pl w@) <003, = (1= 35) bl

Proof. Let us assume that ug := maxq u > p;"/,,
Step 1. First we show that w(z) < fuo. From the second equation of (Q,) we have

—A(w — Bug) + Aa(w — ug) = A(f(u) + Mu — abug).
Next we have '
abup — (f(uo) + Muyo)
)
= (1-5) (1 - 7—/,) wo — (F(uo) + Muo)

=. ('Mﬁ_‘s -—ﬁ+%) uo — (f(uo0) + Muo)

(ﬂ+M'—B+§) o — (f(uo) + Muo)

= - fw) >0
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Here we use the relation —3(8 + M) = § — 8v. Hence by the monotonicity of f(s) + Ms we have
—A(w — Oup) + da(w — Gug) < 0.

By the maximum principle w(z) < 6ug follows.
Step 2. Next we show that at a maximum point zo of u, —Au(zg) < 0. In fact from the first
equation of (Q,)

A(f(u(z0)) — Bu(zo) + Bw(zo))
A(f (u(zo)) — Bu(zo) + Bbu(zo))

A (f(u(zo)) = u(eo) + Suteo) - puteo) + ﬂau(zo))
A (f(u(-'vo)) - gu(za) <0

—Au(zy)

A

On the other hand, —Au(zo) > 0, since z¢ is maximum point. This is a contradiction. Hence we
can conclude u(z) < p","/,y.

Step 3. Finally we show that w(z) < 0,pg'/ - At first, from the second equation of (Qn), we
have

—Aw + daw = A(f(u) + Mu).

Next we note that
Subtracting and using the monotonicity of f(s) + Ms it follows that

—Aw - 8p8,,) + daw = 8p3;,) = \(f(w) + Mu = (£(s};,) + Mp},)) <O.
Hence by the maximum principle w < Bp“,"/7 follows. | o
By the strong maximum principle we obtain the following result.

Proposition 3.2. Suppose that conditions (02), (C8) hold. Let Q2 be any domain and the pair
(u,w) be the positive solution to

~Au=p(f(u) - fu+Pw) i Q

—-Aw = u(f(u) + Mu—aw) inQ
with u(z) < Pa/-y’ w(z) < 0p6/ in Q, u>0. And if u(zo) = P5/7 (resp. w(zo) = 0p;,"/7) at some
point g € Q, then u(z) = pﬁ/'y (resp. w(z) = 0”6/7) on Q hold.

To prove Theorem 1.1 we also need the following lemma.

Lemma 3.3. Suppose that conditions (C2), (C3) hold. And let Z3, Z2 be the first and second
components of Zy, respectively, and Y1, Y2 be the first and second components of Y, respectively.
Let (u,w) be the solution to (Q») such that Z, <u<Y'inQ. Then Z: <w<Y2in Q.

Proof. First, since the condition implies that u is a pos1t1ve solution, from the second equation of
(Q») we have

—Aw + Aaw = A(f(u) + Mu) >0 in Q.

Since w = 0 on 8Q by the maximum principle we obtain that w > 0 in .
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Next we show that Z} < w in Q. Since on Q\B,/x)1/2(2*), Z3 = 0 (see Proposition 2.10),
we have only to show it on By, /x)1/2(2*) (Note that Zy is smooth on B, /x)1/2(2*)). Indeed Z)
is a subsolution to (Q)) and w is a solution to (Q,) we have

—AZ} +XaZy £ AMf(Z})+MZ}) in By, aye(2*)
—Aw+daw = A(f(u)+ Mu) in B,/ x/2(2%)
Subtracting we have
—A(Z3 — w) + Aa(Z3 — w) S Mf(Z3) + MZ} - (f(u) + Mu)) <0,

since Z! < uand f(s)+Ms is an increasing function. And we have Z2—w < 0 on OB(5, /a3 (2*).
By the maximum principle we can conclude that 22 < w in Q. We can show that w < Y% in a
similar way as in the proof of Z2 < w. a

Now we prove Theorem 1.1.

Proof of Theorem 1.1. If the result is false, there exists {\,} C Ry such that

A /oo and uy, # U, and maxuy, —)p;'/,y.

Let uy, (zn) = maxq uy,. For convenience, we divide the proof into two case.
Case 1. {z,} is bounded away from 5
Case 2. z, 2 T€ N asn — o0

In this article we prove only for Case 1. Case 2 is proved by the standard blowup argument.
See [18] for details.
Case 1. {z,} is bounded away from 99, that is, there exists C > 0 such that

dist(z,,00Q) > C >0, forallne€ N (3.1)

Let us set

fia, (z) = ur, O7Y2%z + 2,), Oa(x) = va, A%z + 2,,) in B, (0),

where R, = \Y2dist(zn,89). Fix R > 0, since R, — 00 a8 1 = 00, #ia,, s, is well defined in
Bgr(0) if n is sufficiently large. By Lemma 3.2 and the positivity of uy,

0 <ix, <Py, and @, (0) = maxuy, — P3j, 88 n—00.

For fixed R > R' > 0, (iix, , 9, ) satisfies

—Adiy, = f(@ir,) — 9, in Bgr(0),
—ADy, =0y, —vUx, in Br(0)

and (@, ,®W»,) = (@a,, 8, — (1/8)9»,) satisfies

—Ady, = f(@x,) = Biia, + B,  in Bg(0),
—Awy, = f(iia,) + Miiy, — oy, in Bg(0)

for sufficiently large n. Note that {f(#x,)} is uniformly bounded in L*°-norm, thus {i,, }, {@x, }
is uniformly bounded in C*(Bg(0))-norm for some 0 < a < 1, by elliptic L? estimates. Thus,
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by Schauder’s estimates, {f@x,},{@,} is uniformly bounded in C%*(Bg/(0)), and is relatively
compact in C2(Bg:(0)). Hence there exist U, W € C?(Bg/(0)) with 0 < U < p:;/,y satisfying

—AU = f(U)-BU + W  in Bg/(0),
~AW = f(U) + MU — oW in Bg:(0),
U) = p:s"h.

Then by Proposition 3.2 U = p;"/,y on B/ (0).
On the other hand, by (3.1), if n is sufficiently large, 2* and z, € ) satisfies

dist(z*,89), dist(zn, Q) > (Ap/An)/2.

Hence by Proposition 2.12, Uy, is the first component of the unique solution to (Q,) in the order
interval [Z5",Y]. Then by Lemma 3.3 and the assumption u,, # U, we have

U, (2) < Z3™'(2) = Up((Aa/AB)"/*(z — 2n)) < UB(0) < 43,

at some z € B(,/x.)i/2(Zn), Where the function Z3~*! is the first component of ZZ" and the
functions Up and constant Ap are as in Proposition 2.9. Thus

i, () < Us(0) < 53,
for some z € BA;/z (0) and therefore %y, cannot possess a subsequence which converges to p:,*/,y
uniformly on BA;/g (0). This leads to a contradiction and completes the proof for the Case 1. O
Next we prove Theorem 1.2.
Proof of Theorem 1.2. First if u is the first component of the solution to (P,) then
—Au + MByu = Af(u). |

Multiplying u and using Green’s forrhula., we have
/r; |Vu|? + A(Bau)u — Af(u)udz = 0.
Substituting this into the energy functiona.l
Ia(w) = fn %qul’ + %J(Bxu)u — AF(u)dz,

we have 1
Ja(u) = ,\/n Ef(u)u — F(u)dz.

We set H(u) := (1/2) f(u)u — F(u) and let u* be such that

) _ ).

ut

Then we note that the assumption on f implies that H is decreasing on (u*,+00) and p;"/,y > ut.

Next we set “ “
Glu) = /0 g(v)dv = jo (f(v) - %v) dv.
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Claim 1. H (p}'/v) < 0. In fact our condition implies that

+ + p:/_,
y(Ps/.,) =0 and G(psh) = /0 g(v)dv > 0.
Then we have
1
H(p;-/‘v) = §f(p}'/7)pg’/., - F(p}'/v)
1 ) )
= 5903/, + 5,7(;’?/,,)2 - G(p3/,) — 5(!’}*/7)2

1
= 5903/,)03 — G(P}}5)

Claim 2. There exists A’ > 0 such that for A > X*, T, = Uy. If not, there exists a sequence
{An} such that

An /oo and Ty, # U,

From Theorem 1.1, there exists € > 0 and A* > 0 such that if (u,v) is a positive solution to (P,\)
with maxqu € (p‘,h &, pé/,y) and A > M then u = U.

Since by Proposition 2.4, @, is positive, sufficiently large n, maxq @, € (F, /v — € Ps) 7).

Next we choose €1,62 > 0 and ' CC Q by the following way.
First we choose €2 > 0 such that

(1) 0> H(pz,, —€) > H(p}), —€2), €<ea.

We note that by taking ¢ > 0 small, if necessary we may assume that H (p}'h —€) < 0 and we
also note that H(u) is decreasing near p;"/ - Next we choose £; > 0 so small that

(2) (supypo H(u) = H(py),))er < (H(pg/y =€) — H(p3;, — €2))9,
where || denotes the measure of Q. Finally we choose Q' CC € so that
@) 1Y < 1.
Then by Proposition 2.11 there exist A' > 0 such that for all A > A" and for all z € @'
p;"/,y —g2 < Un(z) < pj'/,y.
Then we have |
Tra(@n) = M [ H@0 )2 2 MlUH (0, ~ )

and

Io(Un) = An / H(U»,)do = M. / H(U».)dz + An / H(U.)dz
Q 7Y o\’

< Aa(H(pf), — )| + sup H (u)e1)

< Aa(H(pE, —e2) (0] - &) + sup H(u)e)

= An(H(pd), = €2)|0 + (sup H(u) — H(p), — 2))e1)
<

An(H(pf, — €2)I] + (sup H(w) - H(pF,))en).
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Here we used that || > |Q| — &; and H(p}'/,y —e9)|¥| < H(p}'/,y —€2)(|| — €1). Therefore

A, (Ua,) = o, (Br,))

< (H(p5p, = )l + (sup H(w) — H(py,))er — [QUH (6, ~ )
= (supH(u)-H (03, )1 — (H(p,, —€) — H(p},, — £2))|9]
< 0.
This contradicts to the fact that %@, is the global minimizer of Jj,,. O

To show Theorem 1.3, we prepare two lemmas. The following lemma shows that the maximum
of any positive solution is bounded away from 0 uniformly in A.

Lemma 3.4. Suppose that conditions (C2), (C3) hold. Then for every positive solution (u,v) of
(P») satisfies
mg.xu 2 P /y°

Proof. If we set w = u — (1/8)v, then
-Au=Af(u)—Bu+pPw) inQ,
—-Aw = A(f(u) + Mu—aw) inQ,

u=w=0 on 6.

Now we assume that maxq u < Ps; and set ug := maxqu > 0.
Step 1. We show that w(z) < § maxgq u = fug. In fact we have

(—A + Aa)(w — Bug)
= —Aw+ daw — Aabug

= A(f(w) + Mu) - (v B) (1 _ —"—) o

B }
= A (f(u) - %_uo,+ Mu - (Zﬁ-ﬂ—_a —ﬂ) uo)
- (10~}
<- 0. . : :

Then by the maximum principle w(z) < fuo follows. _
Step 2. If u(zg) = maxq u = up then —Au(zg) < 0. In fact we have

—Au(zo)
A(f (u(2o)) = Bu(zo) + Bw(zo))

A (#0200 = Sutee) + utan) ~ Butan) + Bouteo)

Al

A (f(a(xo)j - Zuta)) <o.

On the other hand since zo €  is a maximum point of u, then we have —Au(zo) > 0. This
is a contradiction. ' O
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Next by using Proposition 2.8, we obtain the following proposition.

Proposition 3.5. Let Q = Bg(0) and (u,v) is a positive solution to (P»). Then u, v are radially
symmetric,
u'(r), v'(r) <0, on (0, R]
and : ’
4'(0) ='(0) =0,

where ' is the derivative in r = |z|.

Proof. Let us set w = u — (1/8)v. (u,w) satisfies the quasimonotone system (Q.) and we note
that w is positive in Br(0) since u is positive. Then by Proposition 2.8 4 and w are radially

symmetric and decreasing in r = |z|. We also have v is radially symmetric. Next we note that v
is the solution to the problem

-A"1Av +qyv = du in Bg(0),
v=0 -on OBg(0).

By the regularity of solutions, we differentiate the above equation in r, then we have

0 on 8Bg (0),

(3.2)

!
v = —
8V<

since u is decreasing in r, where v is an outward unit normal vector of 8Bg(0). Then we can

conclude v’ < 0 on (0, R]. Indeed if max,¢g(o,r) v'(r) > O then we have max,¢(o,r) v'(r) = v'(r0o)
for some r¢ € (0, R). Then we have

-A"1Av'(rp) + (N—_21 + 7) v'(ro) 2 0.
Ar

This contradicts to (3.2). The proof is completed. a

We can obtain Theorem 1.3 by ixsing a similar argument as in [19]. For readers convenience,
we give the proof of Theorem 1.3 in details.

Proof of Theorem 1.3. First we note that from Proposition 2.8 and Lemma 3.4, we have u, (0) >
P5/ which is (1) of Theorem 1.3. And from Theorem 1.1 we have maxu, is bound from above
by p}'/ y uniformly for sufficiently large A\. And also we note that from Proposition 2.8 u, and
are radially symmetric, decreasing in r = |z| and satisfy u/(0) = v'(0) = 0, where ' represents a
differentiation with respect to r = |z|.

Part 1. Proof of (2).
Step 1.1. Let A; > 0 be sufficiently large. The functions {&y : A > 2);} and {@x : A > 2\ }

satisfy
—Atiy, = f(ia) — 9 in B 557(0),
—Avy =0G) — Dy in Bm(O)

and from Lemma 3.1 we have

- : . )
lEsllze(B zro) < P37y IBallLe=(B rion < ;P}"/.,
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i oo < K;:= su x)l.
1F @)z (B (o)) < K5 Oszrél |f ()]

Using interior elliptic estimates, Schauder’s interior estimates, and the fact that f is locally Lip-
schitz, we find that {@ : A > 2A;} and {0 : A > 2)\;} are bounded in C’z""(B\A;(O)) for some

0 < @ < 1 and hence precompact in C?(B, /5-(0)). Then there exists a sequence {A; »} such that
A1 <Apn /oo asn — 0o and {i, , }, {Da,,, } converge in C%(B,/x(0)). We set for z € B /x;(0)

uy(z) = ,.li{goa*l'” (z), vi(z):= '.1;11'20'5»\1," (z)f

On B, /5-(0) the functions u;, v, are solutions of the equation

—Au1 = f('ul) -0
—-Av; = du; — Y1

Let Az := A1,1 and repeat the argument in Step 1.1 to obtain that {d@,,} and {9y, ,} are
bounded sequence in C?%< (m) and precompact in C?(B, /5;(0)). Again we extract subse-
quences {2} from {\,,} such that {ii,,} and {#,,} converge in C?*(B x;(0)) We extend
the functions u; and v; to B /x;(0) by defining for z € B, /5;(0)

uz(z) i= lim fia, . (2), va2(2) = lim Ox,,(2)-

These functions satisfy the equations on B /5-(0).

By repeating this process we obtain for every k € N subsequence {)\¢ ,} from {Ax—1n} such
that {@,,} and {@,,} converge in C?(B x:(0)). And we obtain the function ux and v such
that for B, 5~(0)

'U.z(.’b) = nll’nolo ﬁkk,n (:L'), 1)2(37) = nll)ngo ﬁAh,u (.’D)

satisfy the equation on B /x-(0). And we can choose A so that Ax o0 as k — oo.
Step 1.2. We define the function U,V defined on R¥ as follows. For z € R there exists
k € N such that z € B /5;(0). Then we define U(x) = ux(z) and V(z) = vi(z). Therefore U,V
satisfies
-AU = f(U)-V onRY,
—-AV =6U~-~4V onR".
By Lemma 3.4, we have
By 2 Pi/x
and hence

xg%xU 2 Ps/y > 0.

Consequently U,V # 0.

Step 1.3. It remains to show that u(z),v(z) = 0 as |z| & oo. By Proposition 3.5 all the
functions iy and ¥y are radially symmetric. We will consider iy, %x,U,V as functions of one
variable r = |z|, in particular we have that U’(r) < 0,V'(r) < 0 for r > 0 and U’(0) = V'(0) = 0.
Let

L= fim V) = B0, L= B V) = V), ®3)

In Step 1.4 we show that _ 5
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Then by Lemma 3.1 and Theorem 1.1, there exists € > 0 for sufficiently large A
@i(2) < p7), — € < PF)

Hence we have [, < p}’/ y—€< p}L/,Y and I, # p}'h. To exclude the possibility I, = Ps/y WE show
in Step 1.5 that

/0 . ( f(s) - %s) ds = F(la) - %lﬁ >0, (3.5)

Then it cannot be I, = p;/ » Then the only remaining possibility is that I, =1, = 0.
Step 1.4. We prove (3.4). Because of the radial symmetry we have that

—U”—E-;_—-I-U'=f(U)—V r>0,
-y — H"_l = JU W or>0, (3.6)
v'(0) = v/(0) =

Multiplying the first equation with U’ and the second equation with V' and integrating on (0, R)
one finds that forall R > 0

R 12 : R
U@+ - [ UL e = Fw(O) - FOR) + /0 U'Vdr

and

1y B2
-2-V(R)2+(N—1)/0 ——dr

= —8(U(RV(R)-UO)V(0) +6 /0 v+ -;—(V(R)z ~V(0)%).

Addmg the above identities we find that

U’(R)2+6'1V’(R)2 (N 1)/ (U:)z +6—1(VI)2 / U'Vdr

2
- FUO) - FU®) - URVE -UOVO) 3.7
+55(V(B)? = V(0))

and subtracting that

ORIV RN+ W=D [ TR,
= F (U (0)) - F(U(R)) -U(0)V(0) + U(R)V(R) . (38
B VR -VOD.
Because U’(R), V'(R) < 0 and U(R), V(R) stay bounded as R — oo we have that from (3 7) that
U'(R)—0 and V'(R) »0 as R —00.
Also we see from (3.6) that | |
~U"(R) = f(la) =1, and —V"(R) = 6l, —~l, as R = oo



so that f(l,) — I, = 0 and él, — vl, = 0 and hence (3.4) follows.
Step 1.5. Next we prove (3.5). We first note that (v/§/8) — 1 > 0. In fact

2
Next we set @y = iy — (1/8)5x. Then we have
@ =67 = @ - (VE/8) e + (VB/B) T,
= (V&/B)(V3/B ~ 1)d + (V3/B) '} < 0
and hence we have
@y (r)? = 67155 (r)? = (@\(r) - 6 1204(r)) (@A (r) + 67?8} (r)) > 0.

From (3.8) we see by letting R — oo that

(N -1 /0 AUk 'f_lvl(’)zdr

= F(U(0)) - F(l,) - U(0)V(0) + %z?, + %V(O)z.

On the other hand, for every solution (i, ¥ ) it holds that :

V3 1
SEVA? = 5D + (N - 1) / @)’ - ST
0 r

= F(r(0) — G(0)3a(0) + oa(0)2.

Hence from (3.9), for all K > 0 and all A > K? it holds that

N -1) / B(r)? - 6—1 B 4 < F(@ix(0)) -—ux(O)v,\(O)+ X52(0)"

so that

(N - 1) / ey - J_IV'("V«! r < FEUO) - VOV + LVO2.

Letting K — oo we find that

(N =1) / U'(’)z J_IV,(T)2d < FU(0) = UOV(©0) + £V (0)*

From (3.10) and (3.11) we have
F(U(0) - F(l,) = UQV(0) + o 12 + 3 V(o)2
< FU©) - U(0)V(0)_ + §V(0)2, |

which is precisely (3.5).

(3.9)

(3.10)

©(3.11)
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Part 2. Finally we prove the (3), i.e., uy — 0 and v, — 0 as A = +o00 on every compact
subset of B1(0)\{0}. We prove only for u,. If the result is false, there exist ' CC B1(0)\{0},
€ > 0 and a sequence {\,} C R* such that

A Sfooasn—= oo

and
sup |z, (2)] 2 €. (3.12)

Since (¥ is compact in B1(0)\{0}, there exists ro > 0 such that
re' <|z|<ro foralzel.
Then since u,, is decreasing in r = |z|, we have
0<uy,(ro) Suy, (2) Suy, (rg?) forallz el

where u,_(ro) and u, (rg 1) are the values of the function u,_ considered as a function of one
variable r = |z| at 7 = ro and ry'. Hence

0 € fia, (AY?ro) < wy_(2) < i, 025y forallz eV

and
sup |u,, (2)] < G, A 2r5?). (3.13)
w

On the other hand since iy, is decreasing in r, for fixed r > 0 and sufficiently large n we have
s O/2r5%) < i (1) (3.14)
Letting n — oo in (3.13) and (3.14), if necessary taking a subsequence, we have
B sup s, (2)] < T o, O7r5") S UCP).
Letting r — oo we 6bta.in .
0< J;‘E’éosg“rf’ s, (z)| < 0.
This contradicts to (3.12). The proofs of (3) and Theorem 1.3 are completed. |

From the proof of Theorem 1.3, we can obtain the following corollary.

Corollary 3.6. Suppose that the all conditions of Theorem 1.3 hold and let (ux,vx) be a solutions
to (Py) such that uy # Uy for all sufficiently large A > 0. Then the same results of Theorem 1.3
hold. .

4 Open questions

By Theorem 1.2 and 1.3, we obtained the asymptotic profiles of variational solutions at least for
the case Q = Bg(0) is a ball. However, in order to understand the complete dynamics of solutions
for (D)), the following problems still remain:

(Q1) Linearized stability of solutions.
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(Q2) Exact multiplicity of solutions.

(Q3) Asymptotic profile of the mountain pass solution when  is not ball.

At first we state about Problem (Q1). In Reinecke and Sweers [20], linearized stability is considered
in the space X := C(Q) x C(Q). First we define the linearized operator Ax(U, V) : D(Ax(U,V)) C
X — X around the solution (U, V) to (P)) is given by ‘

AA(U,V)(Z):(—OA i)(”'*,( i s )(:)

D(A) := {(u,v) € X | u=v =0 on 89, (Au,Av)eX}, _

where in the definition of D(A,), Au and Av are to be understood in dlstnbutlona.l sense. If the
spectrum (A (U, V)) is contained in {v € C | Re v > 0} the solution (U, V) to (P,) is called
linearly stable and o(A\(U,V))N{r €e C|Rev < 0} # 0 then (U, V) is called linarly unstable. In
Reinecke and Sweers [20] it is shown that the boundary layer solution (U, V) is linearly stable,
that is, the following results holds.

Proposition 4.1. ([20}, Theorem 2.2) Assume that the all conditions (C1), (C2), (C3) hold and
-let \* and A be as in Theorem 2.11. For every A > \* the solution A(A) = (Ux,V3) to (P,) is
linearly (ezponentially) stable stationary solution to the initial value problem (D)) i.e., for every
X > \* there exists vy > 0 such that the spectrum o(Ax(Ux,Vh)) is contained in {v € C | Re v >
VA} .

Hence by the Theorem 1.2, the global minimizer is linearly stable for suﬁcxently large A > 0.
However, the linearized stability of the mountain pass solution is not yet known, although we
believe that a mountain pass solution is linearly unstable.

Next about Problem (Q2), in the scalar case (S,), if Q2 is ball it is shown that there exists
Ao > 0 such that for A > Ao, the problem (S,) has exactly two positive solutions, exactly one
nontrivial solution for A = Ao and no solution for A < Ao(see [16]). Taking into account that
the quasimonotone system would have similar properties as in the scalar equation, we can expect
that problem (P) has exact two nontrivial solutions in our parameter range. Especially, Gardner
and Peletier [8] have shown that the problem (S)) has exactly two solutions for sufficiently large
A > 0. In [8], the exact multiplicity of solutions was investigated based on the uniqueness of
positive radially symmetric solutions of the problem:

(S){ —Au= f(u) inRV,

u(z) -0 as |z| = oo,

(see Peletier and Serrin {17]). Hence when considering Problem (Q2), it would be necessary to
consider the uniqueness of positive radially symmetric solutions for the problem

~Au=f(u)~v inRV,

(P) -Av=4d0u—~yv inRV,
u(z) =0 as |z| = oo,
v(z) =0 as |z| — oo.

simultaneously. We believe that the solution to (P) is unique at least for small § > 0. However,
it seems no result for the uniqueness of positive radially symmetric solution to (P) as far as we
know. :

Finally about Problem (Q3), when Q is general domain, the asymptotic profile of the mountain
pass solution is not yet known. We believe that a mountain pass solution has a spiky profile when
() is convex as the result about the scalar case in [11].
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