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LOCATION OF BLOW UP POINTS
OF LEAST ENERGY SOLUTIONS
TO THE BREZIS-NIRENBERG EQUATION

FuTosHI TAKAHASHI (EfEX)
Tokyo National College of Technology

CORRLEREHFMFERX FHEE)

1. Introduction. Let £ be a smooth bounded domain in RY ,N > 4 and
p= N2 In this article, we return to the well-studied problem (F):

u>0 in Q,

{ —Au=uP +eu inQ,
UIBQ = 0,

where € > 0 is a parameter. ,

The exponent p is called the critical Sobolev exponent in the sense that
the Sobolev embedding HE () — LP*1(Q) is continuous but not compact. So
from the variational view point, this problem belongs to the limit case of the
Palais-Smale compactness condition, and the classical arguments do not apply
to the questions related to the existence or nonexistence and multiplicity of
solutions of this problem.

In pioneering work [3], Brezis and Nirenberg proved that, in spite of possible
failure of the Palais- Smale compactness condition, (P:) has at least one non-
trivial solution on a general bounded domain 2 when £ € (0, A1), where A,
denotes the first eigenvalue of —A with Dirichlet boundary condition.

On the other hand when ¢ = 0, it is known that problem (FP,) reflects the
topology and the geometry of the domain §. Pohozaev showed that if Q is
star-shaped, then (Fp) has no non-trivial solutions [7]. In other cases Bahri
and Coron [1] proved that (P) has a solution when 2 has non-trivial topology
in the sense that Hy((2, Z2) # {0} for some positive integer d, where Hy((2, Z)
denotes the d-th homology group of Q with Z, coefficients. Furthermore Ding
[5] and Passaseo [8] proved that even if  is contractible, (Fp) can still have a
solution if the geometry of {2 is non-trivial in some sense.

Because of the different nature of the problem when € > 0 and € = 0, it is
interesting to study the asymptotic behavior of solutions u. of (F;) as € — 0.
In this direction, Han [9] and Rey [12][13] proved independently the following
result, which had been conjectured previously by Brezis and Peletier [4].



Theorem 0.(Han [9], Rey [12]) Let u. be a solution of problem (P.) and
assume
Jo |Vue|*dz
(Jo e+ 1) 7

where S is the best Sobolev constant in RN :

=S+0(1) ase—0,

s =2 (K8

Then we have (after passing to a subsequence):
(1) There exzists ao, € ) (interior point) such that
|Vue|> = ST6,. ase—0

in the sense of Radon measures of the compact space Q, where d, is the
Dirac measure supported by a € RY.

(2) The ax above is a critical point of the (positive) Robin function H(a,a)
on Q: ‘

vaH(a'ooy a'oo) =0, | ‘
where H(z,a) is the regular part of the Green’s function G(z,a):

1

H(z,a) := m|

z —af* N - G(z,a),

in which wy = Ig("TN//:) is the (N — 1) dimensional volume of SN~! and

{ —A;G(z,a) = d,(z), = € Q,
G(:I:, a’) ImGBQ =0.

(3) We have an exact blow up rate of the L-norm of u. as € = 0:

AN -4) _s (N —2)3wy

. . - N ‘ .
i el 2y = (V=2 PN fag ), i 2,

%l'_I)I&E log ”ue”L“(Q) = 4“"4H(a'°°) aw)7 if N =4,

where

AP X ¢ )N G )
On =/o T2t = 213(N—22) '
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In this article, we restrict our attention to a particular family of solutions
to (P:), namely the solutions (% )c¢(o,),) Obtained by the method of Brezis and
Nirenberg. We call (%.) the least energy solutions to the problem (P.).

Before stating our main result, we recall the construction of least energy
solutions by Brezis and Nirenberg.

For € € (0, ), define

Se = inf {/9 |Vu|®ds — e/nuzdx}. (1.1)

u€H3(Q)
"u"LP-H (n)=1

Since the constraint on ||u||L»+1(g) is not preserved under weak convergence
in H}(f2), it is not obvious that S, is achieved or not. By using the fact that
S. < S if € > 0, Brezis-Nirenberg proved that any minimizing sequence for
(1.1) is compact in H(Q) and (1.1) is achieved by some positive function
v? € H}(). Furthermore if € < A, then it follows S; > 0 and

Te :=Sc ¢ 02 o (1.2)

is a solution to (F.). . .

By Global Compactness Theorem of Struwe [14], we know that the least
energy solutions %, blow up at exactly one point in { as € — 0. That is, there
exist . > 0 with A\, = 0 (¢ — 0) and a, € Q with )\./dist(a.,9) = 0 (¢ = 0)
such that

”V(‘Us - aNPUAc’as)”L2(Q) —0 ase—0, (13)
where ay = (N(N — 2))%——2
Here for A > 0 and a € (2, we define

N-2

by —z .

and PUy, := Uy, — ©aa € H(Q), where p,, is the harmonic extension of
U,\,alan to

~Aps, =0in Q e
e ! 1.5
{ Paaloa = Uxaloa- (19)

We call any accumulation point of (ac)e>o a blow up point of (Us) Note
that if an, € Q is a blow up point of (%, ).>0, then by passing to a subsequence,
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we see |V, |2 = ST, ase — 0, and by construction, (%.) is a minimizing
sequence for the best Sobolev constant. So from the result of Han and Rey,
we know that a., € Q (interior point) and a, is a critical point of the Robin
function on €.

Our main result is to further locate the blow up point as of the least energy
solutions on a general bounded domain 2 in RY, N > 4.

Theorem 1. Let as be a blow up point of the least energy solutions (u)
obtained by the method of Brezis and Nirenberg. Then a.. s a minimum point
of the Robin function of §2:

H (oo, 800) = ilelsfz H(a,a).

To prove Theorem 1, we will make a precise asymptotic expansion of the
value S, as € — 0. For this purpose, we combine the method developed by
Isobe [10] [11] and technical calculations in Rey [12] [13]. As a by-product of
our method, we prove that the blow up point is the interior point of 2 by using
only an energy comparison argument. Also we can give another explanation
of the exact blow up rate of L*-norm of %, along the line of our context.

Wei [15] treated the subcritical problem:

—Au=uP"¢ in(),
u>0 in Q,
’u|ag =0

where € > 0, and he proved that as € — 0, the least energy solutions to this
problem blow up at exactly one point, and the blow up point is a minimum
point of the Robin function. His method is the usual blow-up (rescaling)
technique and he obtained a second order expansion of the rescaled function,
which leads to an asymptotic expansion as € — 0 of the value

inf {/ |Vu|2da:} .
ueHY(Q) Q |

"“uLP+1 —s(n)=1

In the course of the proof, he used the result of Han and Rey, and a crucial
pointwise estimate obtained by Han for the rescaled function.

We might follow the method of Wei to study the problem (P.) when N >
5, but even in this case, I believe that our method is more consistent and
somewhat simpler because we do not need any use of Pohozaev identity, Kelvin
transformation and Gidas-Ni-Nirenberg theory. See also [6].
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2. Asymptotic behavior of S.. In this section, we obtain an asymptotic
formula of the value S, as € — 0 and derive the suitable upper bound for S..
See Lemma 2.5 and Lemma 2.7. ‘

For € € (0, 1), let v2 € H}(Q) be a solution to the minimization problem

(1.1).
Define
e (2.1)

Then (1.2), (1.3) and S. = S + 0(1) as € — 0 imply

IV(ve —anPUy, o )ll12(@) = 0 ase—0, (2.2)
/ Wi = S¥. (2.3)
Q
Define for n > 0, | _ |
Ja>0,la—ay|<n,Ja€Q,IXA>0
M(n) = v e H}) : with \/d(a,d0) <7
such that |V (v — aPUj.)| 12 < 7.

where d(a, Q) = dist(a, 69).

It is proved in [1]:Proposition 7, that for v € M (n) and n > 0 small enough,

the minimization problem:

' » e NS (CZN—277,0£N+2’I']),
Minimize ¢ |V (v — aPUj,) | 2@ : A > 0,a € , (2.4)
7 A/d(a,09) < 29

has a unique solution (a?, A% a®) € (ay — 29, an +27) X Ry x .

Let ax € 0 be a blow up point of (%.).»o. By definition of the blow up
point, there exist £, = 0,A, = 0,Q 3 a, — ac such that (v, := v.,,dn =
dist(an, 092))

”V(’Un - aNPU)‘man)”LQ(Q) — 0, /\n/dn -0 (n - 00) : (25)

(2.5) implies there exists 7, — 0 such that v, € M(n,). We denote the
unique solution (a2, A2, al) to (2.4) for v = v,,n = 1, again by (an, An, @s).
Then by our choice of (ay, An, ay), if we write -

Un = anPUA,.,a,. +wWp, wp € H(}(Q)7 (26)
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it follows that
= ay = (NN - 2", ap = ae,

— 0 where d, = dist(an, 09),

§ Mg

€ Ei,an, wn— 0in H}(N) (2.7)
as n — oo. Here for A > 0 and a € (,
Ere:={we H\Q): 0= /ﬂ Vw - VPU o do
8 o
- [) Vw-V(z-PUadz (=1, N)
a .
- /Q Vu - V(> PUpq)ds}. (2.8)
In the following, we estimate
. 27 2
I = /ﬂ Venl'ds — e /Q vide (2.9)

by using the expression (2.6).

Lemma 2.1.(Asymptotic behavior of H} norm of the main part)
As n — oo, we have

/ﬂ IVPUy, o Pds = N(N —2)A— (N —2)%w H(ay, a,) \V-2

A
+ 0[Sl
where : r(N/2)
- — p+1 = N/2
A ./RN Uy, a,dT (V) T

Proof. We have
/ﬂ IVPU,, o, [2dz = /,, —APUy,q, - PU, o.dz
= NN =2) [ UF, ., Urnan = @rnan)do

= N(N-2) L UEL dz — N(N — 2) L UL o Oamands

= N(N -2)I; - N(N - 2)I. (2.10)
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Here we have used the fact that PU,, ,, € H}(Q) satisfies the equation
~APUj, e, = N(N=2)UL . inQ. (2.11)
Now,
ho= [Ugdo= [ Upthide— [ Uptl
1 An,an & A,.,a,, RM\Q An,an T
:'A+O</ Uf*},dw)
RN\Bdn(a‘") e
N T=00 rN"l
= A+0 /\n/ —dr r=|z—ay,
([ ) 0leman
)\N
= A+O(dN) (2.12)
We divide I, in the second term of (2.10) as
12 = /f; Ufz\,n,a,. SoAnyandx

U o PrnandT + UR o @rn0,dT
/Q\Bd,,/g(a,.) Ansan PAna Ba,/2(an) Amian :

= I} +1IZ. | (2.13)

Now,

Up An "d:B
/Q\Bd,./z(an) Ansan PAnsa ,

- 0 (Ilsox..,a,.lle(n) fope o P
=2
= ooy e |
= O((dN e
x

Here, we have used the estimate

le2manllLo(@) = O aN=z |’ (2.15)
n - )



which is a consequence of (1.5) and the maximum principle of harmonic func-
tions.

In calculating IZ, we make a Taylor expansion of ¢, 4, on Bq, 2(an):
Prnan = Prnan(@n) + Vr,a.(an) - (¢ —an)
+ O (IV*@rn,a0ll (8, jo(an) | — anl?)
Note that we have

' Ny
N-2 A
Parnan(@n) = (N = 2)wnAn® H(an,an) + O ( ;N ) (2.16)
by [13]:Proposition 1, and
N-2
2 n?
“V Prnan "L°°(Bdn/2(a,.)) =0 ( qN ) (2.17)

by the elliptic estimate dX || V¥py, 4, || Loo(B inj2(@n) < [Prnanllzo(e) (k € N) for
a harmonic function @y, q,.
Then by (2.16), (2.17) and the oddness of the integral, we calculate:
2 = / ' U . oria.de
2 Ba, 2lam) Ansan PAn,an
= UL . Oanan(an)dz
Lo oy UnPhmen (a0)
+ [ VR Vrmen(@n) - (@~ an)da
By, /2(an)

+ [ UR e OUVPrmenl i@ stenn e — anl?)de
Bd,./Q(an) ‘

ot
= {(N 2)wNAn H(an,an) +O0(—5 o )} St Uy, .. dz+0
+ 0 ( dy /Bd,,/z(a,.) Grnanle = an|2d.'z:)
= (N]; 2)w12v)\,1:’-2H(an,an) + O(%) + 0] (%| log(;—:)l) . (2.18)

Here in the last equality, we have used the estimates

N+2

S pidn/2 A o2 ‘
/ Ufﬂ andx = LUN / (ﬁ) TN—ldlr
Ba, /2(an) ’ 0 Az 4T
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/\N+2
— YNy n 2.19
o), s
L R0 - anP)de = 0 (aF" [ T )
e T — a,|*)dzr = n ——Fx7ds
By, ja(an) %" ( 0 (1+s2)™F
N+2

= 0 (,\n‘;‘ | log(-/\—")|> , (2.20)

dn

and the estimate of the Robin function:
1 1 \N_g 1
= —_ d, =0 2.21

(see [13]:(2.8)).
(2.19) is a consequence of

e s d _n@re 1
/0 (1+s24)¥\3_ (&) — N’

where we used the formula

1Ha g—a—-
/ ds = D ) (2.22)
1+ s"’)ﬁ 2I°(B)
fora>0,/>0and28—-a—-1>0.
From (2.10)-(2.18), we obtain the conclusion of Lemma 2.1. a

Lemma 2.2.(Asymptotic behavior of L? norm of the main part)
When N > 5, we have

/ PUZ , dz = wyCn)2 +0o(X2) asn — oo,
Q n g . ..

where
=" _ s

1+ 32)N‘2 2I(N - 2) -
When N = 4, we ha’ve '

/Q PUZ . de = wdl|logAs| + o(AZ]log M)

A 12 An
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Proof (N >5). Weextend PU,, ,, and @, q, to RY by setting PUj,, 4, = 0
in RV \ Q and @, o, = U, 4, in RY \ Q. We denote them again by PU,, ,,
and @), 4, respectively.

Since PUy, a, = U0 = Pan,an, We have

PU2 dx = / U d / 2 g
A An,Qn T | Q Anyan T + Q (70’\1:1(171 -'B
+ o( / Uz ,.dz)3( / o2 ,%dw)m). (2.23)

We estimate the first term in (2.23) as follows: By monotonicity of the
integral, we have

U2 d:c</U2 dz < U2 dz, 2.24
</Ba,.(an) An,an —Ja Anjan 0T = Bgr(an) A, 00 ( )

where R = diam(f2).
Calculation shows

dn A N-2
Vhadz=wy [ (o) ™
/Ba,.(a,.) e ()\?,4-7'2) r "

— )\2 dn/n SN_]'. d
s [

o0 o)
= wN)\i(/ -—/ )
0 dn/An
sN 1.

_ 2
= WNA, (CN +0 l i/ _(1‘+ SN~ —4s

))
)‘N—2
= wyCyA2 40 (dN 4)

here we have used the assumption N > 5.
The same calculation shows

/ . UZ, dz=wyCnA2 +O0(Y2).
BRr(an) ! .

So dividing both the integrals of (2.24) by wyCnA2 and noting (An/dn) = o(1)
(see (2.7)), we obtain

. fQ Uf,, a.,.dx

hm —_

=1
n—o00 wNCN)\% !
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/ U2 . dz = wyCyA2+0(A2) (n — o). (2.25)
Q "“n

'To estimate the second term in (2.23), we divide the integral in two parts:

2 d:c:/ 2 da:-l—/ 2 dz.
~/§1 (p,\,.,a.,. Bdn (a") ‘pAﬂ;an Q\Bdn (a”) <pA'nyan

Then:

Lo oy rin@® = O ([0 loiey  v0l(Bua(an)))

'- )‘%__2 2 V )\N—2
_ n N | n
by (2.15), and

/Q\B,,,,(a,.) Pnsan RN\Bg, (an) Aman™
N-2
_ had An N-1
_ oM ‘
= P ,

since 0 < ¢, 0, < Urn o, In Q and @y, 4, = Uy, 2, on R¥ \ Q.
In conclusion, we have :

| (o2 o ;
/ﬂ 03, 0,4z =0 (d;“’—‘*) =0o(\2) asn—oo. (2.26)

By (2.23),(2.25) and (2.26), we have the conclusion of Lemma 2.2. O

From Lemma 2.1, Lemma 2.2 and the fact that
/ Vv, [2dz = o? / |VPU,, .. [%ds + / Vw,|2dz
Q Q Q

(which follows since wy, € Ej,, ,,; see (2.8)), we have the following lemma, for
example when N > 5. ‘



Lemma 2.3.(Asymptotic behavior of J,) When N > 5, we have
Jp = / Ian|2dm - En/ vidz
Q Q
= o {N(N —2)A — (N - 2)%w% H(an, an)A,]:"z} — en2wyCy A2
2 2 )‘rly An ' 2
+  IVwallzz @) — enllwnllzz@) + O d_Nl log(d—)l + o(enAn)
+  O(enMnllwnllz2@) asn — oo.
To proceed further, we need the precise asymptotic behavior of a,, as n —

oo. This is given by the next lemma.

Lemma 2.4.(Asymptotic behavior of o)
When N > 4, we have

ol =adk+a% (N1; 2) (2112\’) H(an,an)A 240 (IIanH%z(g)) +o (%)
as n — 0o, where ay = (N(N — 2))5.
Proof. After extending vy,, PUj, q,, 8and wy, by 0 outside 2, we have

SN/2 = /Q Py = fR |onPUsy 6, + wal?*dz (2.27)

by (2.3). We set Wy, :== —anpa,,a, + Wn, here as before, @y, q, is extended to
RM by Uy, ., on RV \ Q.
By expanding the right hand side of (2.27), we have

SN2 = /R (@Us o, + Wo)PHids
= optl /RN Ugt, e+ (p+1)ad /RN U3, anWndz

+ 0 (/R UL Wlda + /R . |W,,|”+1da:).f (2.28)

n0n

First, we know

Pt /R URH dp=oPPA (2.29)
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Next, by using the equation —AU), o, = N(N —2)U% ., in R, we calcu-
late

2af
¥4 — n _ d
(p+1)ak [ U2, Wada sy ]R (~AUs, 0,)Wadz
208
= mLN VU,\",a,, . VWnd.'D
2af
= -2 /RN(VP Unian + Vrnan) - (—0nVPrnan + Vn)dz
_2a£:+1
= -22 /RN IVprnan|*de
= 2O (N = 2 H(aman) AV + 0 22 102
- zN_—z)z wN Ay, Oy, n d,’jy g d«n
_ _o.ptl, 2 N—2 AN An
= —207 wyH(an, an)Ay "+ 0 a_N‘l,log(d )1} (2.30)

Here we have used the fact that ¢,, o, is a harmonic function on 2, w, €
E,, ., and :

LN lvaﬂ;anlzdz = LN lVUAnyanlzdx - ~/R.N IVPUI\nyanlzdx

‘ AN A
= (N =2)%w}H(an,an)XV 2+ 0 (d—;;,| log(d—)l) (2.31)
: N N
by Lemma 2.1. ’
Now, we claim that the error term in (2.28) can be estimated as

— AN
0 ( /R JUETL Widz + /R N |Wn|P+1dx) = 0 (| Vwal2e@)) +O (#) . (2.32)

Indeed, we divide the integral as
_1' - —1 .
| U, Wikde = /. g U Wi + [ Ubor Wids. (2.33)
Since W,, = —anUy, 4, on RN \ Q, the first term in.(2.33) is estimated as

-1 y2g. _ 2 +1 +1
/x‘zN\n U% e Wade = o, _/RN\Q Ugr,.dz = O‘(fRN\Bd,_(a,.) Ufn,q”dx) :

Now we compute
N

) b /\N
P+l = I N—ld = O n
/RN\B.s"(an hnand® = o /d,. »(/\i +7‘2) rdr =0,
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so we have
N

A
p—1 2 n
dz = O(=x
/R g Ui Witz = O(5). (2.34)
Substituting W by —OpPrn,an + Wn in the second term in (2.33), we have
[V Wide = a2 [ R4 G, uda+ [ UZL wlda
+ O ( /ﬂ Uf; wldz) /3 / US . 5 a"da:)l/?) . (2.35)
Now by Holder and Sobolev inequality, we find
[ thwids = O(([, URih da) ([ wrtide)r)
= O(|Vwn||22q))- (2.36)

On the other hand, when we estimate the first term in (2.35), we divide the
integral as

yr-t dz = / Pl 2 g / yr-1 dz. (2.37
‘/S; Anyan¢Anyan Bd"(aﬁ) ,\n,a,.(PA,.,a.,. x+ Q\Bd”(aﬂ) An,ﬂﬂ(’oA" an T ( ' )

First term in (2.37) is estimated as

2 -1
lPAnan | () * /Bd" () U?\)",and“;)

N-2\ 2
A7 2 jN—4
Nz Andy, ( ) (2.38)
Here We havé ﬁsed the fact '

/) 2 ;
-1 n N-17. _ ()2 N—4
deﬂ(a”) Uy .. de = wN/O ()‘i T 1_2) r dr = O(A\:d, %),

since N > 5.
Second térm in (2.37) is estimated as before:

R AN

. -1 2 ‘ p+1 n
U3 dz =0 / Us ' o.dz ) = O0(=%)- 2.39
L\B.( ) Ansan Phn,an & (RN\B (@) Amon 13) (dN) (2.39)

By (2.37)-(2.39), we have

yr-! dz =
/;d” (an) )\",a..so)‘,.,a,.

o
|

P T ) | (2.40)
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Combining (2.35),(2.36) and (2.40), we obtain

_ Ay
/ Us e Widz = (||an||2Lz(n)) +0 (Enﬁ) : (2.41)

Finally, by Sobolev inequality and convex inequality (a —l— b)! < C(a*+ b*) for
some C > 0 (a,b > 0,t > 1), we have

' 2l
/ \Wa|P*ldz = O (( / |VWn|2da:) )
RN RN ‘ :
-0 (( S 1V Ormanlida+ [ |Vw,,|2dx)%—‘)
— 2 5 \BEL ' 12, \ P
-0 (( [ d:c)T> +0 (( [ 19wl da:)T) . (242)

(Recall we extend ¢y, ¢, to RN \ Q by Uy, ,)- So by (2.42), (2.31) and the
estimate H(an,an) = O(?"vl:g) (see (2.21)), we obtain

WolPHde — O A o(|Iv “75:'!5
RNl ‘nl T dN + W, L2(Q)

= 0 (2:;) +o0 ([IanHLz(m) . (243)

Combining (2.33),(2.34),(2.41) and (2.43), we conclude the claim (2.32).
Returning to (2.28) and using (2.29),(2.30) and (2.32), we obtain

AN 2\
SN2 = oPt1 A — 202%1 . W H(ap,an) A2 4+ 0O (||an||§2(n)) +o0 (dzv-z)
N -2

Dividing the both sides by A and noting that ‘%ﬁ = o', we have

ap+1 — qPtl _ Pt 2(41%, H( AN—2 +0 (||Vw ”2 ' ) + O' A,,]:,_2 ‘
N — Q4 n A aﬂ)a'n) n n |l L2() d"I:I—Z :
From this we can derive the conclusion. - O

Combining Lemma 2.3 and Lemma 2.4, we obtain:

Lemma 2.5.(Asymptotic behavior of S.,)
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Asn — oo,
— . 2, 2
Se, UG}E&Q) {/QIVU| dz en/Q'v da:}

II”“LP+1(Q)=1

- S.8°%J,

N -2\ [w? SwnCn

= s+8(= )_’!H,., N-2_g (_DUNON )5

MR (A) (an 8n)A ™" ~&n \ v =294 ) *

N-2

ss,._s+-2-(1)ﬂ(an,an)xn en (32) Maltog Al

O (| Vwalts) +o (2;) +0(enX2|log M) . (N =14)

As for the “w-part” of v,, we have the following estimate due to Rey
[13](Appendix C:(C.1)).

Lemma 2.6. Asn — oo, we have

?é

IVan ey = o Gimg) + olend?).

n

Now, we need the appropriate bound of the value S, from the above. The
restriction that we con51der only least energy solutions is essential in the next
lemma.

Lemma 2.7.(Upper bound of S;)
For any a € Q and p > 0, there exists g9 = eo(a p) such that if € € (0,&0),
then the following holds:

Se = inf {/ |Vv|2d:1:—5/ v2da:}
veH3(RQ) Q - Ja

"v"LzH-l(n):l
g _ (N - 4‘) VE SwyCn - 2CNe ¥
N—2) \NIN =24 °[ |(N=2PwyH(a,a)

when N > 5.
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Sew, ( 8wsH(a,a) + /e + 2p)
- exp | — .

when N =4,

Proof (N > 5). For a €  and € > 0, define ¢, , € H3(Q) as

—(N-2)

Yea: =81 aNPU)‘a(s),a, (244)
where .
2CN€ N1
— 2.45
Aa(e) (N — 2)3wNH(a, a)] ( )
Note that A,(e) is the unique minimum point of the function ‘
f(X) = K1H(a,a)AN=2 — KpeA? for A > 0,
and it gives the minimum value
2
. N-—-4 ' 2K2€ =1 -
50 fO) = fale)) = - (N - 2) Kae ((N - 2)K1H(a,a))
o (N— 4) _(_SwnCn 2Ce v (2.46)
B N-2 N(N -2)A ) \(N —2)3wnH(a,a) ’ '
Here; we denote
N -2\ (W% SwyCn |
=S |{—— | = = 2.47
= S( N )(A)’ K= yov—2)a (2.47)
Define 9 2

| (fo plp+1dz) T
for ¥ € H}(Q) \ {0}.

Now, we claim that:
v . ‘ 9
B N -4 SwnCn 2CNe |
Je(Wea) = S— (N - 2) € {N(N - 2)A} [(N —2)3wyH(a, a)]
N O(E%%?‘) o (2.49)
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Indeed, as in the calculation in the proof of Lemma 2.1, Lemma 2.2 (note
now d(a, 0N2) is a constant independent of £), we have

| 1Vealde = §- 5740y [ |VPU 0o
= §—- S(NN 2) (“i}lv) H(a,a)AY=%(e) + o(AN2(e)), (2.50)
/Q’tlbéz',adx = S . S—ga%’-/ PUfa(e),ad:L‘
SwNC’N

= —N(Tm X3(€) +o(X3(e)) (2.51)

ase— 0.
Also by an argument similar to the one in the proof of Lemma 2.4, we have

A e ol dz = S~ F o L |PUxe)al" ' dz

1
- A {./ U'{H_(i) a'dx + (P + 1)/ U'z\,a(e),a(p'\a(f‘),adw

+0 (/ U,\.,(e) a‘P,\..(e) 24T + /n |<p'\a(€),alp+ldm)}

- % {A — 2032\ () H(a,a) + o(/\,’,"“?(s))}

- 1- (3“1"1_%) AV-2(e)H(a, a) + oAV 2(e)). (2.52)

Note that SN/2 = o N(N — 2)A = o' A.

So, by (2.50)-(2.52) and (14 z)~#+T rz =1— 23+ 0(z) as £ — 0, we obtain

p+1
Je(Ye,a)
= {S S (NN 2) (A) H(a,a)AY2(¢) +0(AN"2(5))

% ) 2(e) + o(e2 (e))}

<
x .{1 tor (-A—) H(a;a)AY~%(e) + o(Af-z(e))}

~ S+8 (% (—izl) H(a,a)A¥2(e) — & (F}g%) X(e)
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+ o(eXg(e)) +0(A~*(e))

- - (=) e [l
§ 0<EN_:4) C (2.53)
as e — 0.

" This proves the claim. The last equality in (2.53) follows from our choice
of As(€) (see (2.46)) and the fact .

[~

eX2(e) = C1AN2(e) = Coe V4

by the definition of A,(g) (see (2.45)), where C1,C, are constants independent
of e.

From (2.49) and the definition of S;, we obtain the conclusion of Lemma
2.7. ' a

3. Proof of Theorem. In this section, we prove Theorem 1 by using

lemmas we prepared in the previous section.
First, we will show that the blow up point as is in the interior of Q.
Indeed, suppose the contrary. Then a., € 9Q and d,, = d(a,,dQ) — 0 as
n — 0o0. Then by Lemma 2.5, Lemma 2.6 and the estimate (2.21), we can find
constants Cy, Cy, Cs > 0 such that

S.. = S+S(NN2)(A)H(a,, ) AN (ﬁ%),\g

N-2

+ O (llenH%z(Q)) +o0 (2—%’:2-) +o0 (En/\i)

AN -2
> S+Cl( )—CzEnAZ

N3
=1
> - (N 4) Chen 2C5%¢e, i
N -2 (N - 2)Ci(g5=)
N-2 2(N-2) N-2

= S—Cien ‘dn"* =S +o(en ?), » (3.1)

since we assume d,, — 0.
Here as in the proof of Lemma 2.7, we have used the fact that ) =

2
CsAN~2—(C5)? has the unique global minimum value — ( ) Cs (Uv—zga) V=
for A > 0, where Cy = Ci(gv=z), Cs = Csen.
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N2 N2

On the other hand, we know that S,, < S — Cey * + O(En ) for some
C > 0 (see Lemma 2.7 (2.49)). This contradicts (3.1), so we conclude that ae
is in the interior of (2.

Now, since we have proved that d, > C for some constant C > 0 uniformly
in n, we may drop d, in the asymptotic formulas Lemma 2.5 and Lemma 2.6.

Therefore, we can find p, > 0,p, — 0 and ¢, > 0, ¢, — 0 such that

N-2\ (v} 2 SwnCn
+ o(AN"H +o0 (en)\fl) '
> S+ (KiH(an,an) = pa) X 7> = (K2 + gn) €a X,
N-4 2(Kz + gn)en L
> S - (m) (K2 + q’n)sn [(N — 2)(K12H(an,a,,) _pn)] (32)

where K, K, are defined in (2.47). The last inequality of (3.2) follows again
by the property of the function f(\) = C4ZAN—2 — C5)2.
Combine (3.2) with Lemma 2.7, we have

- (]]z__;) (Kz + @n)en [(N 2)(([?;2};_(2:,)2:) Pn)] a
< S, <

En

g (x 2)(K2 )E"[(N—Zggf;f(“’“)]m

for any a € Q and p > 0, if n sufficiently large.
From this we obtain

2 2

2(K2+q'n)5n ¥ —pe 2Kzen N
(N—2)<K1H<an,an)epn>] > (Ke=0)en | (=)

’ N_z B
Dividing both sides by X% and letting n — 0o, we have

(K2+gn)en [

2 2

Ky [(N = 2)1?1[2(%, aw)] "2 (- [(N - 2)211{(12H(a, a)] a (33)

‘For p > 0 can be arbitrary _smail, (3.3) ,implies

H(ae, ) < H(a,a)
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for any a € 0.

Therefore we conclude that a., minimizes the Robin function H(a,a). This
completes the proof of Theorem. a
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