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An existence result for some semi-linear elliptic
equation in bent strip-like unbounded domains

RRIERFRFERE BIFHER S£H 48 (Masataka Shibata)
Department of Mathematics,
Tokyo Institute of Technology

1 Introduction and Main Result

Let N > 2 and Q be an unbounded domain in R¥V. We consider the followmg
equatlon

u € Hi(Q), o

where A > 0and 1< p< 0 if N=2,1<p<(N+2)/(N-2)if N>3
are given constants. It is well-known that (1) has a positive solution if € is
bounded. In general, the existence of a positive solution of (1) is unknown if
Q is unbounded. Esteban and Lions showed in [4] that if  satisfies following
condition (EL) then there is no nontrivial solution.

{-Au+,\u=u+ inQ

(EL) There exists a vector X € R¥ such that v(z)-X >0 and v(z)- X 2 0
on z € O}, where v(z) is the outer unit normal vector of (.

On the other hand, many authors showed existence result. (cf. [1, 3, 5, 7]
and references therein). In this paper, we will give an existence result in bent
strip-like unbounded domains. We use following notations.

Sq 1= {:1: = (:z:',xN) € RN; |$'|< d},
S’d = {:1: =‘(.’II',$N) € Sg; TN > 0}

In [6], we conjectured that if A > 0 and Q satisfying the following condition
(€21) then there is a nontrivial solution.

(Q1) Qisadomainin RN and 85 is Lipschitz continuous. There are K € N\
{1}, a bounded set A and congruent transformations A; (1 < j < K)
such that Q = AU A, (Sd) Uu-.--u AK(Sd) and A; (Sd) N A (Sd) @ if
i3 ].

This conjecture is still open. In this paper, we consider the following stronger

conditions (£22), (23) in two dimensional case. Here after, we assume N = 2.
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(22) There are d > 0, a smooth curve {c(s)},cr parameterized by arc length
with the curvature x(s) such that supp{x} is compact and ® : Sq =
is bijective, where ® is defined by ®(y) := c(y2) + y1€(y2) and e(s) is
the unit normal vector of c(s).

(Q3) Q satisfies (21), I C Q s.t. Qq satisfies (22).
Remark. If Q satisfies (22) then

Q = {z € R?% dist(z, {c(s)}) < d}.
So Q is a bent strip-like domain.

Remark. Q satisfies (Q2) then  satisfies (23) with Q = Q.  satisfies
(£23) then ( satisfies (21).

Now we state our main theorem.

Theorem A. Suppose that N = 2, A > 0 and the following equation has
unique nontrivial solution up to z2 transformation.

—Av+dv=v] insS, @
vE HY(S). :

1f (|||l d)? < 1 — 20-P)/(+P) then (1) has a nontrivial solution.

Remark. If A = 0, (2) has unique nontrivial solution up to z; transformation
by (2].

2 Preliminaries

At first, we state notations. For a domain D, we define following notations.

| o 1
I[y] == -;. /}; JVuP e xtdr - [ wPde forue HY(D) C HYRY)

M(D) :={u € H\(D)\ {0}; / |Vu|2+Au dz = / Pty

() = ‘21f~ max Ip[y(¥)),

I:={yeC(0,1]; H (D)),'V(O) = 0,Ip[y(1)] < 0}.

1t is well-known that the mountain pass energy a(D) is well-defined and is
equal to a least energy. i.e.



Lemma 2.1. Let D be a domain. Suppose that D satisfying Poincare’s
inequality or A > 0. Then

*0)= i o

and all nontrivial critical point v of Ip satisfies Ip[v] > (D).
(cf. [9]).

Lemma 2.2. If Q satisfies (U1). Then Poincare’s inequality holds. i.e.
There ezists a constant C > 0 such that

/uzszC/IVulzdm.
) )

By Lemma 2.2, we can use the norm

ol = /,, V|2 dz.

Lemma 2.3. Let K be a complete metric space, Ko C K be a closed set, X
be a Banach space and x € C(Ky, X). DefineT" by

I := {y € C(K, X);7(s) = x(s) if s € Ko}.
For I € CY(X,R), put

c:=infmaxIfy(s)l, e :=maxIx(v)]-

If ¢ > c; then for all € > 0 and v € T with max,cx I[v(s)] < ¢+ ¢, there
exists v € X such that

¢—e < Ifv] < maxIfy(s)], dist(ﬁ,g(K))Se%, 1I'[]] < €.

Especially, there is a Palais-Smale sequence.
For the proof of this Lemma, see [8, Theorem 4.3].

Proposition 2.4 (Concentration Compactness). Suppose (21). Let
{us}2, be nonnegative Palais-Smale (-sequence for Iq in H(). i.e.

Iofus] = B+0(1),  Ihlus]=o0(1)  asn— oo.
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Then there ezist a non-negative number I, ky,... .k € {1,...,k}, {24}, C
Ar.({z = (@', zn); 7" = 0}), u® € H}(Q) with u > 0, u* € H} (A, (S)) with
u* >0 for 1 <i <1 such that
un(z) = u0(z) + ul(z — 22) + - - - +ul(z — 2) + 0o(1)
as n — oo in Hy(RY),
Igfu,) = Ig[u®] + Ign{u'] + - - + Ign [vf] + 0(1) as n — oo,
—Aud + 2 = ()P  in Q,
—Au + b = (WP in Ay (S),

|z = o0 as n — oo.

We can give the proof of Lemma 2.4 by using same argument as in [7].
For reader’s convenience, we give the proof in Appendix. To prove theorem
A, we use the following functional. Take ¢ € C(R",[-1,1]) satisfying

1 ze€ A;(Sp), i:0dd,
#(z) = ¢ —1 z € Ay(So),:even,
0 otherwz'se.

Define the functional A : L*(R") \ {0} — [~1,1] by

Bu] := / s@)u(@)Pde  for u € L2RM)\ {0}.

Tl n,,,(nN)
h is a continuous function in the following sense.

Lemma 2.5. There is a constant C > 0 such that

Clllull2@m) + IIvIIm(nN))I

hlu + v] — hlu]| <
Bl 0] = Alul] Tl

[v|| 2wy

for allu,v € L>(RY) with u # 0 and u+v # 0. Especially, |h[u+v]—hfu]| <
C||”||L2(RN)/”U“L2(RN) if ||”||L2(RN) < ||u||L=(RN)-

We can show Lemmé, 2.5 by elementary calculus. We omit the proof of
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3 Proof of Theorem A and Theorem B

To prove Theorem A, we consider the following mountain-pass value ag(£2).
Put
H = {u € H}(Q); h[u] = 0} U {0},

ap(R?) := inf sup I[y(t)],
7€L0 ¢e(0,1]

To := {y € C([0,1], H); g(0) = 0, I[g(1)] < 0}.

Here, it is easy to see that H is a closed subspace of H}(2). By the definition
of (), () < ap(Q) holds. It is well-known that 0 < a(Q2) < (Sy) if @
satisfies (21) because of a(Ss) = a(Ss). So one of following cases holds.

(a) a(@) <a(Sy).
(b) () = a(S4) and ag(Q) = a(Sy).
(¢) a(Q) = a(Ss) and ag(R) > (Sy).

Proposition 3.1. Suppose that (Q1). If the case (a) or (b) holds then (1)
has a positive solution.

Proposition 3.1 is proved by standard arguments by using concentration com-
pactness principle. We omit the proof of it. By Proposition 3.1, it is enough
to show that Theorem A in the case (c). Hereafter, we suppose (c) and
N = 2. For the proof of Theorem A, the least energy solution on S; plays
important role. Let v € H}(S4) be a least energy solution on S;. i.e.

-Av+dv=v] in S,
v>0 on 0S5y,

Ifv] = a(Sy).

The existence of such solution is well-known. By the moving plain method,
we can assume that '

v(z) = v(z1,22) = v(|z1],|22]) for all z € Sy.

By the equation, we see

Vo2 + M?dz = [ 2ldz. (3)

Sa Sq
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Since (23), ¥ := &' is well-defined. Define v, u; by

v(z) == v(¥1(2), Ua(2) = 1),  wlz) = s(t)vs(2),

where s(t) is uniquely determined positive constant satisfying u:(z) € M ()
for each t. (see Lemma 4.1.)

Lemma 3.2. If (d||&||z=(m))? < 1 — 20-P/(4P) then there ezist constants
to, So > 0 such that

Tuts,) < (a(S) + ao(92)), (4)
Mol >3, hluul < =3, ()
I[sv) <0 if s > so, (6)

Iug) < 2a(S) | forallt € R. (7)

Proof. By elementally calculation for @,

82 1
Isv) =5 /; r_mvﬁ, (Y1, 92 — ) + (1 — yar(ye))v2, (31,42 — B)
d .
+ A1 - pik(y2))v* (Y1, 32 — t) dy

s (1- 'yl"—(yz))F(Sv(yl,yz —t))dy.

d

Since v is even functlon w1th respect to y; and 1/(1+¢)+1/ (1 t)=2/(1- t"’)
we have

32/ 1 2 2 2 1 / 1
= v +02 + Midy— —— | (sv)%dy.
2 Js, 1— (na(pe+2))2 v ¥ v p+1 s.,,( Ty

I[svy) =

Since <L I[svy]|s=s(x) = 0, we obtain

+/\ 24y = s(t)P-1 | P4 8
/Sa 1 — (y1k(y2 +t))2 Uy + v dy = s(t) 5, Yy (8)

Here, the right hand side is increasing with respect to s and

1 .

+v2 4+ d >/ v +v +d / and/
/sd 1- (:l/1»‘€(1/2+t))2 U+, v Sa y= Sa (Z;
, o : 9

s(t) > 1. (10)

by (3). So we have
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By using Lesbergue’s convergence theorem, the left hand side of (9) tends to
Js, IVv> + )?dy as t — too. It and (3) mean s(t) — 1 as ¢ = Foo. It
asserts I[uy) — a(S) as t = +o0o. So (4) holds for sufficiently large ¢,.

(8) and (3) assert

1
s(t)P~1 < )
®yF~ < 1 - (d||&|| 2 m))?

By (8), (11) and the assumption of Theorem A, we can obtain

(11)

— l — 1 2 | 1 22 2 2
Tl =G~ 5o | Tt o+
1
<s(t)? S
< T @25
1 ptl

< ~10(S,

S P e D)
<2a(Sd).

It means (7) holds for any ¢t € R. It is easy to see that

32 1 +1

Isve] < 57— (d|| 6]l Lo (r))2

sP .
Vo2 + Ml dy — d
/';d I l y D + 1 Sa + y
The right hand side is independent of ¢ and tends to —oo as s = 00. So we
obtain (6) for sufficiently large 3.

By the assumption (£23) and the definition of v;, we have

X, (52y0¢ — vellz2ma) — 0 and ||xy, g,y %ell2m2) = llV]|z2m2) # O

Since hxy,(g,)vt] = —1 and Lemma 2.5, we obtain
hlv] =» -1 as t — —oo.
Similarly, |
hlvg] = 1 as t — 0o
holds. It completes the proof of Lemma 3.2. D

Put K := [0, so] X [—to,%0) and define 8 by
f:=inf max I[g(s, )],

Ty :={y € C(S, Hy(R)); g(s,t) = s if (s,t) € OK}.
Then the following Lemma 3.4 and Lemma 3.3 hold.
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Lemma 3.3. Suppose same assumptions as in Lemma 3.2 then
a(S) < B < 2a(S).

Lemma 3.4. Suppose same assumptions as in Lemma 3.2. Then there is a
Palais-Smale (3-sequence {u,}2,. i.e.

Iunl = B+0(1), Wl =ol)  asn— oo

Proof of Lemma 8.8. Put 7(s,t) = sv; for (s,t) € K then 7 € I';. By the
assumption of f, we have I[sv;] < I{u;]. Lemma 3.2 asserts that I[yy(s, t)] <
2a(S) for all (s,t) € K. Hence 8 < 2a(S).

Fix any v € I';, Lemma 3.2 and similar argument as in [10] show that
there is a curve 7 : [0,1] — K such that yo 7 € I'y. So we have

max I[y(s,t)] 2 max Ilyo 7(8)] > ao(S).

It means a(S) < G by the condition (c). a
Proof of Lemma 8.4. Put ~o(s,t) = sv; for (s,t) € K then 4 € I';, Lemma

3.2 asserts

max Ti(s,1)) < 5(a0(®) +a(S) < B

So we can apply Lemma 2.3 to obtain the existence of Palais-Smale 3 se-
quence. ‘ | O

Now we can prove Theorem B in the following Proposition.

Proposition 3.5. Suppose that same assumption as in Theorem A. Then
there is a positive solution.

Proof. Let {u,}3, be a Palais-Smale 3 sequence in Lemma 3.4. By Propo-
sition 2.4, by passing to a subsequence if necessary, there is a nonnegative
number [ such that '

Un(z) =u(z) +ul(z — L) + - +ul(x — z) + 0(1) as n — oo in Hy(R?),

Iu,] =Iu’] + I[ul] + - - - + I[u!] + o(1) as n — 00.

If 4% = 0 then u° is a positive solution. So it is enough to show that u° = 0.
Suppose u =0then!>1and

Iuy) = Ifu'] + -+ + I[u']<+ o(1) > ld(S) + o(1) as n — oo.
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Since Lemma 3.4, we have 8 < 2a(S). So we can obtain ! = 1. It mean that
Iu,) = Iu'] + o(1) as n — 0o.

Hence I[u;] = B. So, wee see that u,(Ay,(x)) is a critical point of I in
H}(Ak,(S4)) with Ifu;(Ag,(z))] = B. It contradicts to the uniqueness of
nontrivial solutions on A, (Sg). Consequently, there exists a positive solution
u®. -0

4 Appendix

In this section, we note well-known facts and give the proof of Proposition
2.4. First, we note some properties for f.

Lemma 4.1. Suppose that D is a domain in RN. Fiz v € H}(D) with
v+ 7 0 in Hyj(D). Then there is an uniquely determined constant sq > 0
such that p

E;I [sv] e 0.
Moreover,

max I[sv] = I[sgu].

Proof. We see

liID[.s;v] =/ |Vo|? + M?dz — s”‘I/ Bt dy
sds D D

if s > 0. Second term of the right hand side is strictly decreasing with respect
to s on (0, 00). Moreover, second term equals to 0 if s = 0 and tends to —oo
as s — 0o. Consequently, we obtain this Lemma. _ o

Proof of Proposition 2.4. By the assumption of u,, we have

< I'[un), un >=|lunl|F ) + MunlZ2@) — /{;(un)zfl dz = o(1)||un|| ()

as n — oo. ’ (12)
So we have
1 1 ' »
C 2 Iu,} = 3~ m)(llunllfqg(m + AMlunl|Z2(q)) +0(1) llunll g3

as n — 0o. (13)
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So we see that u, is bounded in Hj(f2). By using weak compactness for
Hilbert space and Rellich’s compactness, there exists u® € H}(Q2) such that

0

Up = U weakly in H;(Q) as n — oo,
Uy — u° in LY (Q) asn— oo

loc ’
Up — u° a.e. in Q as n — oo,

by passing to a subsequence if necessary. So we obtain
I'luy) = I'[u?) weakly in H~1(R).

It means u? is a critical point of I. Put ¢. := u, — ug then

¢t —0 weakly in HJ(Q) as n — oo, (14)
¢p — 0 in Lf (Q) as n — oo. ~(19)

Moreover, we have

||¢71;”§{g(n) = ”“n”%rg(n) - ||U0||§rg(n) +0(1) as n — 0.

We can apply Brezis-Lieb’s theorem to obtain

I\p+Ll g — +1 .. 0\p+1
[@rride= [ya- [@pte
By using Vitali’s Lemma, we have
I'[¢L] = I'fug] — I'[u’] + o(1) = o(1) in H7}(Q) asn — oc0.  (16)

Suppose ¢. — 0 in H}(?) as n — oo, by passing to a subsequence if nec-
essary. Then the proof is complete since u, — u® in Hj(Q) as n — oo.
So, hear-after, we can assume ¢. is not convergence to 0 in Hj(Q) for any
subsequence. Put

Qo := 0\ (A1(S) U.... Ae(Sa)),
Qm:={z=(2',zn) € S;m -1 < zy < m},

Qﬁn = Aj(Qm)
for m > 1,1 < j < k. Define d, andci,,by
dy = mell;ln,?%chk ”¢'11”L’(Ql.)’ dyp = max{dm “¢111”L’(Qo)}

and show that X
- liminfd, > 0.

n—»00
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Since @?, is congruence we can apply Sobolev’s inequality to obtain
“¢111”Lr(q’,'n) < C(T)||¢3;H1;3(QJ;,,)

for g+ 1 < r < 2* where C(q) is a positive constant independent of n, j. By
using interpolation it holds that

1g+1 : 1(1(1-6)(g+1) g 41 (0(g+1)
IelE s gry S CONBMI e Pllgnllngey

where 1/(¢g+1) = (1-6)/2+0/r. Since§ - 1asr - g+1,0(¢g+1)—2>0
for r near ¢ + 1. Fix such r then we have

/ alP dz < Cd{-NH||g] |02 fQ, Vénl? dz.

m

Similarly for @, we have

A [’ _
(# de < ORI IAED" [ 19eLPdr.
0

Qo
By taking sum, we obtain

a1 "8 —
[ 16ip e < cdi-enyg e [ vaipas

If d, — 0 as n — oo for some subsequence then ||¢}|| L@ — 0asn — oo.
On the other hand, by (16),

o{1) = Tl = 83 1yey + MblEsey — [ (65" da.
By Sobolev’s inequality,
[ @+ ds < Clldh By ey + COIEIEE oy
So, for sufficiently small ¢, we have |
162123y < ClIGIE Ly = 0(1)  asn— oo,
It is contradiction. So we obtain lim inf,._;c,° (f,; > 0.

Here, by passing to a subsequent if necessary, there is j(n) € {1,...,k}
and m(n) € NU {0} such that ||@}|| Q. where @7, (n) = Qo if m(n) = 0.
m(n

We can assume j(n) = j by passing to a subsequence if necessary. We show
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that m(n) — oo as n — oo. Suppose that there is a contant mg such that
m(n) < mg for all n. Then

< D Nl gy = I9nllee),

0<m<mo

where Q = Up<memo@Z,. As n — 00, it contradicts to (15). We can assume
that m(n) is increasing without loss of generality.
Define the map A by

A(z) := Aj(z',zp + m(n) — 1).
Then A(Q,) = an(n), A(Sy) = > m>m(n) @ Put ¢l := ¢! o A then we have
Il mmyy <C, 1 dhllzegn) = dn.
By the weak compactness of H!(RY), there exists 4' € H!(R") such that
oL — @t weakly in H'(RV)

by passing to a subsequence if necessary. Here, we can assume parallel trans-
formation to A; are Aj4y,...,A;,; for some 5 € N U {0}. So there is a cone
V such that V ﬂ Qcvn (A (Sd) UA;,2(Sg)). It means that for no € N,

J+3
B =0 on A7H(V \ (A5(54) U+~ U Ayy5(80)) = (0,m(na) — 1)
201V = (0.m(r0) ~ 1)\ (SaUAT o Apsa(52) - U AT 0 (S0
if n Z Nyg. ' :

As n — 00, we obtain
@' = 0 on (A7'V — (0,m{ne) = 1))\ (SaUA7* 0 Azs1(Sa) -+ -UAT 0 Ay ,5(54)
As ng — 0o, we have

@' =0o0n RN\ (SqUA; 0 Aj11(Sa) -+ UAj 0 A;5(Sa))

It means that there is @}° € H0 (Sa), aM! € HI(A‘1 0 Aj+1(Sa)), - - - Al €

H3(A7" o A;,;(Sa)) such that 4! = 4! + + ﬁl’f
Fix any ¥ € C§°(SqUA; 0A;j41(S4) - - ‘UAj oA, 5(Sa)). Since m(n) — oo

as . — 00, A(suppy) C € for large n. o e b
|, VoV Ad - @iwds
—|f VHLV (o A) + AL (v o A) — (#LY5w o Adz
=| < I'lgp), ¥ o A > | < o(V)||9p o Al mrmwy = o(1) |9l rr2 mevy.-
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As n — o0, we obtain

VilVy + Mty — (@) dz = 0.
RN

It means _
I'a']=0 in H™'(SqU A7 0 Aj1(Sa) -+ UA;! 0 Ay 5(Sa))-
Hence 4!+ is a weak solution of

—AGM 4+ A0 = (@) in A ' o Ajyi(Sa),
al* € HJ(A7" o Aj1i(Sa))

for 0 < i < j. Put u'*!(z) := 4% o A7! and 25! := A;(2’,m(n) — 1) with
Aj(«',0) € Ajpi({y = 0}). for 0 < i < j. Then

{ —Aut 4 dtt = (W2, ut > 0 in Ajea(S),

#l=0 on 9A;4i(S),
oL (z) = ul(z — 22) + - - + ult (g — Z1H) weakly in H*(RY),
OL(z) = ul(z — 21) + - - + ulH (z — 21H) in L? _(RY),
oL (z) = ul(z — 22) + - - + ult (g — 21H) ae inRY  asn— oo

for 0< i <j. If gL — ul(z — 21) + - - + ul+i (z — 21*9) strongly in H} (R")
for some subsequence then the proof is complete.

If not, by using the argument above, inductively, by passing to a subse-
quence if necessary, we have

$(2) = un(z) — u’(z) — v} (z — 23) — - -+ — u'(z — 2,) + o(1) weakly in Hy(R"),
64|z ey = llunll m3eny — 1l myeny — Il lmgeny = -+ = 1o/ llagmey  asm— oo
Since ||u'|| gz mry, - - o e 3 @ay 2 ca(S) and ||u,,||H1(RN) is umformly bounded,
there is some ! > 1 such that un(z) = u0(z) +ul(z —23) +- - +ul(z — 2L) +
o(1) strongly in H}(RY). It completes the proof. O
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