多段抽出法による正規分布の平均の推測

熊本大学 工学部 高田 佳和 (Yoshikazu Takada) Faculty of Engineering, Kumamoto University

1 序

 X_1, X_2, \cdots は互いに独立で、正規分布 $N(\mu, \sigma^2)$ に従う確率変数列とする。母分散 σ^2 が未知のもとで、母平均 μ に関する次の3つの推測問題を考察する。

(1) (長さ一定の信頼区間) $\alpha(0<\alpha<1)$ 、d(>0) が与えられたとき、全ての $\theta=(\mu,\sigma^2)$ に対して、

$$P_{\theta}\left(|\bar{X}_n - \mu| \le d\right) \ge 1 - \alpha$$

を満たす標本数nの決定。ここで、 $ar{X}_n = \sum_{i=1}^n X_i/n$ 。

(2) (有界リスク問題) W>0 が与えられたとき、全ての θ に対して、次の条件を満たす標本数n の決定。

$$E_{\theta}(\bar{X}_n - \mu)^2 \le W$$

(3) (仮説検定問題) 帰無仮説 $H_o: \mu = \mu_0$ を対立仮説 $H_1: \mu = \mu_1$ ($\mu_0 < \mu_1$) に対して検定する問題において、第一種の過誤の確率を $\alpha(0 < \alpha < 1)$ 以下、第二種の過誤の確率を $\beta(0 < \beta < 1)$ 以下となる検定方式の決定。

 σ^2 が未知であるので、問題 (1)、(2) に対しては、標本数を予め固定しておくことはできない。問題 (3) に対しても、 $\alpha+\beta<1$ ならば、標本数を予め固定しておくと条件を満たす検定方法は存在しない (cf. Takada, 1998)。これらの問題に対して、スタインの 2 段階抽出法 (Stein, 1945) を適用すれば、条件を満たす標本数、検定方法が構成できる。

スタインの 2 段階抽出法を適用したとき、標本数に関する 2 次の漸近有効性が成立するかどうかについて考える。すなわち、 2 段階抽出法による標本数と最適固定標本数(σ^2 が既知ならば用いることができる)との差の期待値が漸近的((1) の場合は、 $d \to 0$ 、(2) の場合は、 $W \to 0$ 、(3) の場合は、 $\mu_1 - \mu_0 \to 0$ のとき)に有界になるとき 2 次の漸近有効であるという。しかし、スタインの 2 段階抽出法は 2 次の漸近有効ではないことを示すことができる。 Holm (1995) は、Hall (1981) の 3 段階抽出法を修正して、問題 (1) に対する解を構成した。その修正 3 段階抽出法が 2 次の漸近有効になることを示す。問題 (2)、(3) に対しても Holm の修正 3 段階抽出法を適用して解を構成し、それらが 2 次の漸近有効になることを示す。

第2節では、長さ一定の信頼区間を取り上げ、スタインの2段階推定法、修正3段 階推定法の理論的性質を示す。第3節では、シュミレーションにより、それらの抽出 方法の特性を調べる。有界リスク問題、仮説検定問題は、第4節、第5節で取り上げることにする。

2 長さ一定の信頼区間

 σ^2 が既知ならば、標本数 n を $n_d=u^2\sigma^2/d^2\left(1-\Phi(u)=lpha/2
ight)$ 以上にとると、

$$P_{\theta}\left(|\bar{X}_{n} - \mu| \leq d\right) = P_{\theta}\left(\sqrt{n}|\bar{X}_{n} - \mu|/\sigma \leq \sqrt{n}d/\sigma\right)$$

 $\geq P_{\theta}\left(\sqrt{n}|\bar{X}_{n} - \mu|/\sigma \leq u\right)$
 $= 2(1 - \Phi(u)) = 1 - \alpha.$

となり、(1) の条件が満たされる。ここで、 Φ は標準正規分布の分布関数。しかし、 σ^2 が未知であるので、最適標本数 n_d を用いることはできない。そこで、次のスタインの 2 段階抽出法により標本数を決める。

 $m(\geq 2)$ を初期標本数、 X_1,\ldots,X_m を初期標本とし、不偏分散 $S_m^2=\sum_{i=1}^m(X_i-\bar{X}_m)^2/(m-1)$ から、全標本数を

$$N = \max\left\{m, \left[\frac{t_{m-1}^2 S_m^2}{d^2}\right] + 1\right\}$$

とする。ここで、 t_{m-1} は自由度 m-1 の t 分布の両側 $100 \times \alpha\%$ 点、[x] は x を超えない最大の整数を表す。N>m ならば、更に N-m 個の標本 X_{m+1},\ldots,X_N を抽出する。このとき、標本平均 \bar{X}_N は (1) を満たすことが次のようにして示される (Stein, 1945)。

$$P_{\theta}\left(|\bar{X}_{N} - \mu| \leq d\right) = P_{\theta}\left(\sqrt{N}|\bar{X}_{n} - \mu|/\sigma \leq \sqrt{N}d/\sigma\right)$$

$$\geq P_{\theta}\left(\sqrt{N}|\bar{X}_{n} - \mu| \leq t_{m-1}S_{m}\right)$$

$$= P_{\theta}\left(\sqrt{N}|\bar{X}_{n} - \mu|/S_{m} \leq t_{m-1}\right)$$

$$= 1 - \alpha$$

ここで、 $\sqrt{N}(\bar{X}_N-\mu)/S_m$ の分布が自由度 m-1 の t 分布になるということを用いた。 次に、標本数の 2 次の漸近有効性について考察しよう。初期標本数 m を、d と無関係に定めたとしよう。そのとき、次の不等式

$$E_{\theta}\left(N-n_{d}\right) \geq \frac{\sigma^{2}(t_{m-1}^{2}-u^{2})}{d^{2}}$$

 $\xi, t_{m-1}^2 > u^2 \, \xi \, b$

$$\lim_{d o 0} E_{ heta} \left(N - n_d
ight) = \infty$$

となり、2次の漸近有効性が成立しない、このことから、初期標本数mは、dに依存して

$$m \to \infty$$
 as $d \to 0$

となるように定める必要がある。しかし、次の定理が示すように、スタインの2段階推定法は、2次の漸近有効とはならない。

定理 1 初期標本mをどのように決めても、次の条件を満たす θ が存在する。

$$\lim_{d\to 0} E_{\theta}\left(N-n_d\right) = \infty$$

証明 最初に、 $md^2 \to 0$ as $d \to 0$ の場合を考える。このとき、t 分布のパーセント点の展開式より

$$t_{
u}^2 = u^2 + rac{u^2(u^2+1)}{2
u} + o\left(rac{1}{
u}
ight) \quad ext{as} \quad
u o \infty \quad (
u = m-1)$$

が得られ、

$$\lim_{d o 0} E_{ heta}\left(N-n_d
ight) \geq rac{\sigma^2(t_
u^2-u^2)}{d^2} o \infty$$

となり、全ての θ に対して、2次の漸近有効とはならない。

次に、 $md^2 \to a(>0)$ as $d \to 0$ の場合を考える。このとき、 $\sigma^2 < a/(2u^2)$ となる θ に対して、

$$P_{\theta}(N=m) = P_{\theta}(S_m^2 < md^2/t_{\nu}^2) \to 1 \quad \text{as} \quad d \to 0$$

となり、

$$egin{array}{ll} rac{E_{ heta}(N)}{n_d} & \geq & rac{mP_{ heta}(N=m)}{n_d} \ & = & rac{md^2}{u^2\sigma^2}P_{ heta}(N=m) \end{array}$$

より、

$$\lim_{d\to 0} \frac{E_{\theta}(N)}{n_d} \ge \frac{a}{u^2 \sigma^2} > 2$$

となり、

$$\lim_{d\to 0} E_{\theta}\left(N-n_d\right) = \infty$$

このことから少なくとも、 $\sigma^2 < a/(2u^2)$ となる θ に対して、 2 次の漸近有効とはならない。

 Holm (1995) は、この問題に対して、次の修正 3 段階推定法を提案した。 $m(\geq 2)$ を初期標本数とし、第 2 段階までの標本数を

$$M_2 = \max\left\{m+\ell, \left[rac{cu^2S_m^2}{d^2}
ight]+1
ight\}.$$

とする。ここで、 ℓ (\geq 2) は整数、c (0< c< 1) は実数で、どちらも定数。第2段階で、 M_2-m 個の標本を抽出し、その標本だけから計算される不偏分散を \tilde{S}^2_{ν} ($\nu=M_2-m\geq\ell$) とし、全標本数を

$$M = \max\left\{M_2, \left[rac{t_{
u-1}^2 ilde{S}_
u^2}{d^2}
ight] + 1
ight\}$$

とする。 $M>M_2$ ならば、更に、 $M-M_2$ 個の標本を抽出する。このとき、 \bar{X}_M は、(1)を満たすことが次のようにして示される。

$$P_{\theta}\left(|\bar{X}_{M} - \mu| \leq d\right) = P_{\theta}\left(\sqrt{M}|\bar{X}_{n} - \mu| \leq \sqrt{M}d\right)$$

$$\geq P_{\theta}\left(\sqrt{M}|\bar{X}_{M} - \mu| \leq t_{\nu-1}\tilde{S}_{\nu}\right)$$

$$= E_{\theta}\left\{P_{\theta}\left(\frac{\sqrt{M}|\bar{X}_{M} - \mu|}{\tilde{S}_{\nu}} < t_{\nu-1}\middle|S_{m}\right)\right\}$$

$$= 1 - \alpha$$

ここで、 S_m を与えたとき、 $\sqrt{M}(\bar{X}_M-\mu)/\tilde{S}_{\nu}$ の分布が自由度 $\nu-1$ の t 分布であることを用いた。

Holm の修正 3 段階推定法は、初期標本 m を適当に選べば 2 次の漸近有効になることが示される。

定理 2 初期標本数 m を $m = O(d^{-2/r})$ as $d \to O(r > 1)$ となるように定めると

$$\lim_{d\to 0} E_{\theta}(M - n_d) = \frac{1 + u^2}{2c} + \frac{1}{2}.$$

証明 N_2 、U を次のように定義する。

$$\begin{split} N_2 &= \left[\frac{t_{\nu-1}^2 \tilde{S}_{\nu}^2}{d^2} \right] + 1 \\ U &= \left[\frac{t_{\nu-1}^2 \tilde{S}_{\nu}^2}{d^2} - \left[\frac{t_{\nu-1}^2 \tilde{S}_{\nu}^2}{d^2} \right] \right] \end{split}$$

このとき、次のことが示される。

$$E_{\theta}(M) = E_{\theta}(N_2) + o(1)$$

$$= E_{\theta}\left(\frac{t_{\nu-1}^2 \tilde{S}_{\nu}^2}{d^2}\right) - E_{\theta}(U) + 1 + o(1)$$

$$= E_{\theta}\left(\frac{t_{\nu-1}^2 \sigma^2}{d^2}\right) - E_{\theta}(U) + 1 + o(1), \text{ as } d \to 0$$

t分布のパーセント点の展開式と、 $n_d/\nu \to 1/c$ as $d \to 0$ より

$$E_{ heta}\left(rac{t_{
u-1}^2\sigma^2}{d^2}
ight)=n_d+rac{u^2+1}{2c}+o(1) \quad ext{as} \quad d o 0$$

が得られ、又、Uが(0,1)上の一様分布に収束することが示されるので、

$$E_{\theta}(U) = \frac{1}{2} + o(1)$$
 as $d \to 0$

これらの結果を $E_{\theta}(M)$ の式に代入すると、

$$E_{\theta}(M) = n_d + \frac{u^2 + 1}{2c} - \frac{1}{2} + 1 + o(1)$$

= $n_d + \frac{u^2 + 1}{2c} + \frac{1}{2} + o(1)$, as $d \to 0$

となり、定理が示される。

3 シュミレーション

次に、2段階推定法と修正3段階推定法の特性をシュミレーションを通して見てみよう。信頼区間の被覆確率、標本数の分布は、母平均 μ に依存しないので、シュミレーションでは、正規乱数 (N(0,1)) を用いた。先ず、最適固定標本数を $n_d=25,50,100,200,400$ に設定し、そのときのdの値から、初期標本数mが $md \approx 4$ となるように選んだ(定理 2 の初期標本数の選び方で、r=2 に相当する)。又、信頼区間の信頼度は 95% とした。またシュミレーションの繰り返し数は、5000 回とした。

表 1 は、 $E(M-n_d)$ 、 $E(N-n_d)$ と被覆確率 (CP) の推定値とその標準誤差 (SE) を表している。ただし、修正 3 段階推定法においては、c=0.5、 $\ell=10$ としている。最後の行の数値は、定理 1 の証明、及び定理 2 の結果から次の値

$$\lim_{d\to 0} E(N - n_d) = \infty$$

$$\lim_{d\to 0} E(M - n_d) = 5.34$$

を表している。シュミレーションの結果から、dが小さいところでは、修正3段階推定法の標本数は、2段階推定法の標本数よりも少なく、理論的な結果に合っていることがわかり、その有効性が認められる。しかし、dが小さくないところでは、2段階推定法の方が標本数は少なくてすむ傾向が見られ、修正3段階推定法が2段階推定法を一様に必要な標本数を少なくしているとはいえない。

次に、修正 3 段階推定法における定数 c、 ℓ の影響について、シュミレーションで調べてみる。表 2 は、c=0.5 としたときの、 ℓ の違いについて調べた表である。ここでは、 $\ell=10$ と $\ell=2$ の場合を取り上げた。 ℓ の値が小さいときは、シュミレーションの結果は理論的結果(定理 ℓ 2 から、標本数の期待値に関する漸近的な結果は ℓ の選択に依存しない)と一致しているように見られるが、 ℓ の値が小さくないときの標本数の大きさには、かなりの違いが見られる。例えば、 $\ell=10$ のときは、 $\ell=10$ のときななりのときななりのときななりなりなりまた。

表 1: 95% 信頼区間 ($\ell=10, c=0.5$)

			M		N			
d	n_d	m	$\frac{E(M-n_d)}{(\mathrm{SE})}$	CP (SE)	$\frac{E(N-n_d)}{(\mathrm{SE})}$	CP (SE)		
.392	25	10	9.14 (.20)	.958 (. 003)	8.50 (.22)	.957 (.003)		
.279	50	15	13.32 (.37)	.959 (.003)	10.06 (.32)	.949 (.003)		
.196	100	20	13.13 (.52)	.946 (.003)	14.75 (.53)	.951 (.003)		
.139	200	30	8.73 (.55)	.948 (.003)	18.20 (.81)	.950 (.003)		
.098	400	40	7.67 (.67)	.952 (.003)	26.17 (1.37)	.955 (.003)		
			5.34		∞			

表 2: 修正 3 段階推定法 (信頼度 9 5 %, c=0.5)

			$M(\ell=1$	0)	$M(\ell=2)$			
d	n_d	m	$E(M-n_d) \ (ext{SE})$	CP (SE)	$\frac{E(N-n_d)}{(\mathrm{SE})}$	CP (SE)		
.392	25	10	9.14 (.20)	.958 (.003)	565.26 (17.09)	.974 (.002)		
.279	50	15	13.32 (.37)	.959 (.003)	469.23 (.32)	.956 (.003)		
.196	100	20	13.13 (.52)	.946 (.003)	67.52 (.53)	.953 (.003)		
.139	200	30	8.73 (.55)	.948 (.003)	9.02 (.81)	.951 (.003)		
.098	400	40	7.67 (.67)	.952 (.003)	6.70 (.69)	.955 (.003)		
			5.34		5.34			

表 3 ($\ell=2$)、表 4 ($\ell=10$) は、それぞれ 10 回の実験を細かく分析した結果である。ただし、d=0.392、 $n_d=25$ 、m=10 とする。例えば、表 3 の 2 列目の値は、初期標本数 m=10 に基づく不偏分散が $S_m^2=1.67$ であり、その値から、第 2 段階までの標本数を求めると $M_2=21$ となり、第 2 段階での標本数が、 $M_2-m=11$ となる。新たに抽出した 1 1 個の標本から不偏分散を求めると $\tilde{S}_{\nu}^2=0.92$ となる。このとき t 分布の自由度は 10 であるので、 $t_{\nu-1}=2.63$ となり、全標本数が M=42 となる。したがって $M-n_d=17$ となる。表 3 で、特に $M-n_d$ の値が大きいところを調べてみると。 $M_2-m=2(=\ell)$ となっていることがわかる。すなわち t 分布の自由度が 1 となり、 $t_{\nu-1}$ の値が大きくなるところに原因があると考えられる。そのことは、表 4 と比較することでわかる。表 4 では、すべて $M_2-m=10(=\ell)$ となり、 $t_{\nu-1}$ の値がさほど大きくならないことがわかる。すなわち、表 2 の結果は、 ℓ の選択に原因があることがわかる。この問題に対しては、少なくとも t 分布の自由度は、 $7(\ell \geq 8$ 以上確保する必要がある。

表 3: $\ell = 2$ の場合の修正 3 段階推定法の振る舞い (信頼度 9 5 %, m=10, c=0.5)

	1	2	3	4	5	6	7	8	9	10
S_m^2	1.67	0.6	0.95	1.81	0.58	0.96	1.56	1.24	1.00	0.92
M_2	21	12	12	23	12	13	20	16	13	12
M_2-m	11	2	2	13	2	3	10	6	3	2
$ ilde{S}^2_ u$.92	.06	2.18	1.25	0.36	1.99	0.60	0.49	0.70	1.43
$t_{ u-1}$	2.63	25.5	25.5	2.56	25.5	6.21	2.69	3.16	6.21	25.5
M	42	233	9207	54	1533	498	28	33	176	6049
$M-n_d$	17	208	9182	29	1508	473	3	8	151	6024

表 4: $\ell=10$ の場合の修正 3 段階推定法の振る舞い (信頼度 9 5 %, m=10, c=0.5)

	1	2	3	4	5	6	7	8	9	10
S_m^2	0.78	0.76	0.59	1.44	0.30	0.61	1.34	0.46	0.88	1.35
M_2	20	20	20	20	20	20	20	20	120	20
M_2-m	10	10	10	10	10	10	10	10	10	10
$ ilde{S}^2_ u$.93	.83	0.42	0.31	0.51	0.66	2.13	0.97	1.07	0.42
$t_{ u-1}$	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69
M	44	40	20	20	24	31	100	46	51	20
$M-n_d$	19	15	-5	-5	-1	6	75	21	26	-5

次に、定数 c の効果を調べてみよう。c=0.5 の場合と c=0.75 の場合を取り上げ

た。それが、表5である。定理2より、理論的には

$$\lim_{d\to 0} E(M - n_d) = 5.34 \quad (c = 0.5)$$

$$\lim_{d\to 0} E(M - n_d) = 3.72 \quad (c = 0.75)$$

で、このことからcの値が大きい方が、漸近的には標本数が少なくてすむ。シュミレーションからも、最初のdでは、c=0.5の方が、良さそうだがその後は、c=0.75の方が良くなっている。ただ最後のdで又c=0.5の方が良くなっているが、これはSEの値から、実験誤差の関係であると思われる。

· · · · · · · · · · · · · · · · · · ·			M(c=0)	.5)	M(c=0.75)		
d	n_d	m	$\frac{E(M-n_d)}{(\mathrm{SE})}$	CP (SE)	$E(N-n_d)$ (SE)	CP (SE)	
.392	25	10	9.14 (.20)	.958 (.003)	9.49 (.18)	.971 (.002)	
.279	50	15	13.32 (.37)	.959 (.003)	10.53 (.29)	.954 (.003)	
.196	100	20	13.13 (.52)	.946 (.003)	9.71 (.34)	.960 (.003)	
.139	200	30	8.73 (.55)	.948 (.003)	8.07 (.81)	.956 (.003)	
.098	400	40	7.67 (.67)	.952 (.003)	7.78 (.54)	.954 (.003)	
	l Time		5.34	1	3.72		

表 5: 修正 3 段階推定法 (信頼度 9 5 %, $\ell = 10$)

4 有界リスク問題

次に問題 (2) を考察しよう。 σ^2 が既知ならば、

$$E_{\theta}(\bar{X}_n - \mu)^2 = \sigma^2/n$$

より、 標本数 n を $n_W = \sigma^2/W$ 以上にとればいいことがわかる。しかし、 σ^2 は未知であるので、スタインの 2 段階推定法を考える。 $m(\geq 4)$ を初期標本数とし、全標本数を

$$N=\max\left\{m,\left[rac{(m-1)S_m^2}{(m-3)W}
ight]+1
ight\}.$$

とする。N>m ならば、更に N-m 個の標本を抽出する。このとき \bar{X}_N は (2) の解となることが次のようにして示される (Rao, 1973)。

$$E_{\theta}(\bar{X}_N - \mu)^2 = E_{\theta}\left(\frac{\sigma^2}{N}\right)$$

$$\leq E_{\theta}\left(\frac{(m-3)W\sigma^2}{(m-1)S_m^2}\right)$$

$$= WE_{\theta}\left(\frac{(m-3)\sigma^2}{(m-1)S_m^2}\right)$$

$$= W$$

ここで、 $(m-1)S_m^2/\sigma^2$ が自由度 m-1 のカイ 2 乗分布に従うことを用いた。 次に、標本数の 2 次の漸近有効性について考察しよう。初期標本数 m を、W と無関係に定めたとしよう。そのとき、次の不等式

$$E_{ heta}\left(N-n_{W}
ight)\geqrac{\sigma^{2}}{\left(m-3
ight)W}$$

より、

$$\lim_{W\to 0} E_{\theta}\left(N-n_W\right) = \infty$$

となり、 2 次の漸近有効性が成立しない。このことから、初期標本数mは、Wに依存して

$$m \to \infty$$
 as $W \to 0$

となるように定める必要がある。 しかし、次の定理が示すように、スタインの2段階推定法は、2次の漸近有効とはならない。

定理 $\bf 3$ 初期標本mをどのように決めても、次の条件を満たす θ が存在する。

$$\lim_{W\to 0} E_{\theta} \left(N - n_W \right) = \infty$$

証明 最初に、 $mW \rightarrow 0$ as $W \rightarrow 0$ の場合を考える。このとき、

$$E_{\theta}(N - n_W) \geq E_{\theta}\left(\frac{(m-3)W}{(m-1)S_m^2}\right)$$

= $\frac{2\sigma^2}{W(m-3)}$

より、

$$\lim_{W\to 0} E_{\theta}\left(N-n_W\right) = \infty$$

となり、全ての θ に対して、2次の漸近有効とはならない。

次に、 $mW \to a (>0)$ as $W \to 0$ の場合を考える。このとき、 $\sigma^2 < a/2$ となる θ に対して、

$$P_{\theta}(N=m) = P_{\theta}\left(\frac{(m-1)S_m^2}{(m-3)W} < m\right)$$
$$= P_{\theta}\left(S_m^2 < \frac{m-3}{m-1}mW\right)$$

より、

$$\lim_{W\to 0} P_{\theta}(N=m) = 1$$

が成立し、このことと

$$\frac{E_{\theta}(N)}{n_d} \geq \frac{mP_{\theta}(N=m)}{n_W}$$
$$= \frac{mW}{\sigma^2}P_{\theta}(N=m)$$

から、

$$\lim_{W\to 0}\frac{E_{\theta}(N)}{n_W}\geq \frac{a}{\sigma^2}>2$$

となり、

$$\lim_{W\to 0} E_{\theta}\left(N-n_W\right) = \infty$$

このことから少なくとも、 $\sigma^2 < a/2$ となる θ に対して、2 次の漸近有効とはならない。

 Holm (1995) は修正 3 段階推定法を信頼区間の構成に用いたが、その方法は、この問題にも用いることができる。 $m(\geq 2)$ を初期標本数とし、第 2 段階までの標本数を

$$M_2 = \max \left\{ m + \ell, \left[rac{cS_m^2}{W}
ight] + 1
ight\}$$

とする。ここで、 ℓ (\geq 4) は整数、c (0< c<1) は実数で、どちらも定数。第2段階で、 M_2-m 個の標本を抽出し、その標本だけから計算される不偏分散を \tilde{S}^2_{ν} ($\nu=M_2-m\geq\ell$) とし、全標本数を

$$M=\max\left\{M_2,\left[rac{(
u-1) ilde{S}_
u^2}{(
u-3)W}
ight]+1
ight\}$$

とする。 $M>M_2$ ならば、更に、 $M-M_2$ 個の標本を抽出する。このとき、 \bar{X}_M は、(2) を満たすことが次のようにして示される。

$$E_{\theta}(\bar{X}_M - \mu)^2 = E_{\theta}\left(\frac{\sigma^2}{M}\right)$$

$$\leq WE_{\theta} \left\{ \frac{(\nu - 3)\sigma^{2}}{(\nu - 1)\tilde{S}_{\nu}^{2}} \right\}$$

$$= WE_{\theta} \left\{ E_{\theta} \left(\frac{(\nu - 3)\sigma^{2}}{(\nu - 1)\tilde{S}_{\nu}^{2}} \middle| S_{m} \right) \right\}$$

$$= W$$

ここで、 S_m を与えたときの $(\nu-1)\tilde{S}_{\nu}^2/\sigma^2$ の条件つき分布が、自由度 $\nu-1$ のカイニ 乗分布であることを用いた。

次の定理が示すように、初期標本数mを適当に選べば、Holmの修正3段階法は、2次の漸近有効になる。

定理 4 初期標本数mを $m = O(W^{-1/r})$ as $W \to 0$ (r > 1) となるように定めると

$$\lim_{W\to 0} E_\theta(M-n_W) = \frac{2}{c} + \frac{1}{2}.$$

証明 N_2 、U を次のように定義する。

$$N_{2} = \left[\frac{(\nu - 1)\tilde{S}_{\nu}^{2}}{(\nu - 3)W} \right] + 1$$

$$U = \frac{(\nu - 1)\tilde{S}_{\nu}^{2}}{(\nu - 3)W} - \left[\frac{(\nu - 1)\tilde{S}_{\nu}^{2}}{(\nu - 3)W} \right]$$

このとき、次のことが示される。

$$E_{\theta}(M) = E_{\theta}(N_2) + o(1)$$

$$= E_{\theta}\left(\frac{(\nu - 1)\tilde{S}_{\nu}^2}{(\nu - 3)W}\right) - E_{\theta}(U) + 1 + o(1)$$

$$= E_{\theta}\left(\frac{(\nu - 1)\sigma^2}{(\nu - 3)W}\right) - E_{\theta}(U) + 1 + o(1), \text{ as } W \to 0$$

このことと $n_W/\nu \to 1/c$ as $W \to 0$ より

$$E_{ heta}\left(rac{(
u-1)\sigma^2}{(
u-3)W}
ight)=n_W+rac{2}{c}+o(1)$$
 as $W o 0$

が得られ、又、Uが(0,1)上の一様分布に収束することが示されるので、

$$E_{\theta}(U) = \frac{1}{2} + o(1)$$
 as $W \to 0$

これらの結果を $E_{\theta}(M)$ の式に代入すると、

$$E_{\theta}(M) = n_W + \frac{2}{c} - \frac{1}{2} + 1 + o(1)$$

= $n_W + \frac{2}{c} + \frac{1}{2} + o(1)$, as $W \to 0$

となり、定理が示される。

5 仮説検定

次に問題 (3) を考察する。 σ^2 が既知ならば、標本数 n を、 $n_d=\rho^2\sigma^2/d^2$ 以上にとり、 $\sqrt{n}(\bar{X}_n-\mu_0)/\sigma>u'$ ならば、 H_o を棄却するという検定法が解となる。ここで、 $\Phi(u')=1-\alpha$ 、 $\Phi(u'')=\beta$ 、 $\rho=u'-u''$ 、 $d=\mu_1-\mu_0$ 。実際、第一種の過誤の確率は

$$P_{\theta_0}\left(\sqrt{n}(\bar{X}_n - \mu_0)/\sigma > u'\right) = 1 - \Phi(u')$$

$$= \alpha$$

ここで、 $heta_0=(\mu_0,\sigma^2)$ 。第二種の過誤の確率は

$$P_{\theta_1}\left(\sqrt{n}(\bar{X}_n - \mu_0)/\sigma < u'\right) = P_{\theta_1}\left(\sqrt{n}(\bar{X}_n - \mu_1)/\sigma < \sqrt{n}(\mu_0 - \mu_1)/\sigma + u'\right)$$

$$\leq P_{\theta_1}\left(\sqrt{n}(\bar{X}_n - \mu_1)/\sigma < u''\right)$$

$$= \Phi(u'')$$

$$= \beta$$

ここで、 $heta_1=(\mu_0,\sigma^2)$ 。しかし、 σ^2 は未知であるので、スタインの 2 段階検定法を考える。 $m(\geq 2)$ を初期標本数とし、全標本数を

$$N = \max \left\{ m, \left[rac{
ho_m^2 S_m^2}{d^2}
ight] + 1
ight\}$$

とする。ここで、 $\rho_m=t'_{m-1}-t''_{m-1},\,t'_{m-1}$ と t''_{m-1} は、それぞれ自由度m-1のt分布の上側 100α %、 $100(1-\beta)$ %点。N>m ならば、更にN-m 個の標本を抽出し、 $\sqrt{N}(\bar{X}_N-\mu_0)/S_m>t'_{m-1}$ ならば、 H_o を棄却する。この検定方法は、問題 (3) の解となることが次のようにして示される (Lehmann, 1986)。 $\sqrt{N}(\bar{X}_N-\mu_0)/S_m$ の分布が $\theta=\theta_0$ のとき、自由度m-1のt分布であることから、第一種の過誤の確率は

$$P_{\theta_0}\left(\sqrt{N}(\bar{X}_N - \mu_0)/S_m > t'_{m-1}\right) = 1 - T_{m-1}(t'_{m-1}) = \alpha$$

ここで、 T_{m-1} は自由度 m-1の t 分布の分布関数を表す。第二種の過誤の確率は

$$P_{\theta_{1}}\left(\sqrt{N}(\bar{X}_{N}-\mu_{0})/S_{m} < t'_{m-1}\right) = P_{\theta_{1}}\left(\sqrt{N}(\bar{X}_{N}-\mu_{1})/S_{m} < \sqrt{N}(\mu_{0}-\mu_{1})/S_{m} + t'_{m-1}\right)$$

$$\leq P_{\theta_{1}}\left(\sqrt{N}(\bar{X}_{N}-\mu_{1})/S_{m} < t''_{m-1}\right)$$

$$= T_{m-1}(t''_{m-1})$$

$$= \beta$$

次に、標本数の2次の漸近有効性について考察しよう。初期標本数mを、dと無関係に定めたとしよう。そのとき、次の不等式

$$E_{\theta}\left(N-n_{d}
ight) \geq rac{\sigma^{2}(
ho_{m}^{2}-
ho^{2})}{d^{2}}$$

$$\lim_{d\to 0} E_{\theta}\left(N-n_d\right) = \infty$$

となり、2次の漸近有効性が成立しない。このことから、初期標本数mは、dに依存して

$$m \to \infty$$
 as $d \to 0$

となるように定める必要がある。しかし、次の定理が示すように、スタインの2段階検定法は、2次の漸近有効とはならない。

定理 5 初期標本 m をどのように決めても、次の条件を満たす θ が存在する。

$$\lim_{d\to 0} E_{\theta}\left(N - n_d\right) = \infty$$

証明 最初に、 $md^2 o 0$ as d o 0 の場合を考える。このとき、t 分布のパーセント点の展開式から

$$\rho_m^2 = \rho^2 + \frac{\rho^2(u'^2 + u'u'' + u''^2 + 1)}{2\nu} + o\left(\frac{1}{\nu}\right) \quad \text{as} \quad \nu \to \infty \quad (\nu = m - 1)$$

が得られ、また

$$E_{\theta}\left(N-n_{d}
ight) \geq rac{(
ho_{m}^{2}-
ho^{2})\sigma^{2}}{d^{2}}$$

$$\lim_{d \to 0} E_{\theta} \left(N - n_d \right) = \infty$$

となり、全ての θ に対して、2次の漸近有効とはならない。

次に、 $md^2 \to a(>0)$ as $d \to 0$ の場合を考える。このとき、 $\sigma^2 < a/(2\rho^2)$ となる θ に対して、

$$egin{array}{lll} P_{ heta}(N=m) &=& P_{ heta}\left(rac{
ho_m^2S_m^2}{d^2} < m
ight) \ &=& P_{ heta}\left(S_m^2 < md^2/
ho_m^2
ight) \end{array}$$

より

$$\lim_{d\to 0} P_{\theta}(N=m) = 1$$

となる。従って、

$$egin{array}{ll} rac{E_{ heta}(N)}{n_d} & \geq & rac{mP_{ heta}(N=m)}{n_d} \ & = & rac{md^2}{
ho^2\sigma^2}P_{ heta}(N=m) \end{array}$$

より、

$$\lim_{d\to 0} \frac{E_{\theta}(N)}{n_d} \ge \frac{a}{\rho^2 \sigma^2} > 2$$

となり、

$$\lim_{d\to 0} E_{\theta} \left(N - n_d \right) = \infty$$

このことから少なくとも、 $\sigma^2 < a/(2\rho^2)$ となる θ に対して、 2 次の漸近有効とはならない。

Holm~(1995) の修正 3 段階抽出法を適用する。 $m(\geq 2)$ を初期標本数とし、第 2 段階までの標本数を

 $M_2 = \max\left\{m+\ell, \left[rac{c
ho^2S_m^2}{d^2}
ight] + 1
ight\}$

とする。ここで、 ℓ (\geq 2) は整数、c (0< c< 1) は実数で、ともに定数。第 2 段階で、 M_2-m 個の標本を抽出し、その標本だけから計算される不偏分散を $\tilde{S}^2_{\nu}(\nu=M_2-m\geq\ell)$ とし、全標本数を

 $M = \max \left\{ M_2, \left[rac{
ho_
u^{\prime 2} ilde{S}_
u^2}{d^2}
ight] + 1
ight\}$

とする。ただし、 $\rho_{\nu}'=t_{\nu-1}'-t_{\nu-1}''$ 。 $M>M_2$ ならば、更に、 $M-M_2$ 個の標本を抽出し、 $\sqrt{M}(\bar{X}_M-\mu_0)/\tilde{S}_{\nu}>t_{\nu-1}'$ ならば、 H_o を棄却する。この検定方法は、問題 (3) の解となることが次のようにして示される。先ず、第一種の過誤の確率は、

$$P_{\theta_0} \left(\sqrt{M} (\bar{X}_M - \mu_0) / \tilde{S}_{\nu} > t'_{\nu-1} \right) = E_{\theta_0} \left\{ P_{\theta_0} \left(\sqrt{M} (\bar{X}_M - \mu_0) / \tilde{S}_{\nu} > t'_{\nu-1} \middle| S_m \right) \right\}$$

$$= E_{\theta_0} \left\{ 1 - T_{\nu-1} (t'_{\nu-1}) \right\}$$

$$= \alpha$$

ここで、 S_m を与えたときの $\sqrt{M}(\bar{X}_M-\mu_0)/\tilde{S}_
u$ の条件つき分布が、自由度 $\nu-1$ の t 分布であることを用いた。第二種の過誤の確率は

$$P_{\theta_{1}}\left(\sqrt{M}(\bar{X}_{M}-\mu_{0})/\tilde{S}_{\nu} < t'_{\nu-1}\right)$$

$$= P_{\theta_{1}}\left(\sqrt{M}(\bar{X}_{M}-\mu_{1})/\tilde{S}_{\nu} < \sqrt{M}(\mu_{0}-\mu_{1})/\tilde{S}_{\nu} + t'_{\nu-1}\right)$$

$$\leq P_{\theta_{1}}\left(\sqrt{M}(\bar{X}_{M}-\mu_{1})/\tilde{S}_{\nu} < t''_{\nu-1}\right)$$

$$= E_{\theta_{1}}\left\{P_{\theta_{1}}\left(\sqrt{M}(\bar{X}_{M}-\mu_{1})/\tilde{S}_{\nu} < t''_{\nu-1}\middle|S_{m}\right)\right\}$$

$$= E_{\theta_{1}}\left\{T_{\nu-1}(t''_{\nu-1})\right\}$$

$$= \beta$$

次の定理が示すように、初期標本数mを適当に選べば、Holmの修正3段階検定法は、2次の漸近有効になる。

定理 6 初期標本数 m を、 $m=O(d^{-2/r})$ as $d\to 0$ (r>1) となるように定めると

$$\lim_{d o 0} E_{ heta}(ilde{M}-n_d) = rac{u'^2+u'u''+u''^2+1}{2c} + rac{1}{2}.$$

証明 N_2 、Uを次のように定義する。

$$\begin{split} N_2 &= \left[\frac{\rho_{\nu}^2 \tilde{S}_{\nu}^2}{d^2}\right] + 1 \\ U &= \left[\frac{\rho_{\nu}^2 \tilde{S}_{\nu}^2}{d^2} - \left[\frac{\rho_{\nu}^2 \tilde{S}_{\nu}^2}{d^2}\right]\right] \end{split}$$

このとき、次のことが示される。

$$E_{\theta}(M) = E_{\theta}(N_2) + o(1)$$

$$= E_{\theta}\left(\frac{\rho_{\nu}^2 \tilde{S}_{\nu}^2}{d^2}\right) - E_{\theta}(U) + 1 + o(1)$$

$$= E_{\theta}\left(\frac{\rho_{\nu}^2 \sigma^2}{d^2}\right) - E_{\theta}(U) + 1 + o(1), \text{ as } d \to 0$$

t分布のパーセント点の展開式と、 $n_d/
u
ightarrow 1/c$ as d
ightarrow 0 より

$$E_{\theta}\left(\frac{t_{\nu-1}^2\sigma^2}{d^2}\right) = n_d + \frac{u'^2 + u'u'' + u''^2 + 1}{2c} + o(1)$$
 as $d \to 0$

が得られ、又、Uが(0,1)上の一様分布に収束することが示されるので、

$$E_{ heta}(U) = rac{1}{2} + o(1)$$
 as $d o 0$

これらの結果を $E_{\theta}(M)$ の式に代入すると、

$$E_{ heta}(M) = n_d + rac{u'^2 + u'u'' + u''^2 + 1}{2c} - rac{1}{2} + 1 + o(1)$$

$$= n_d + rac{u'^2 + u'u'' + u''^2 + 1}{2c} + rac{1}{2} + o(1), \quad \text{as} \quad d \to 0$$

となり、定理が示される。

参考文献

- Hall, P., 1981. Asymptotic theory of triple sampling for sequential estimation of a mean, *Ann. Statist.*, 9, 1229-1238.
- Holm, S., 1995. Confidence sets of fixed size with predetermined confidence level, Comm. Statist. Theory Methods, 24, 1521-1536.
- Lehmann, E.L., 1986. Testing Statistical Hypotheses, 2nd ed., Wiley, New York.
- Rao, C.R., 1973. Linear Statistical Inference and Its Applications, 2nd ed., Wiley, New York.
- Stein, C., 1945. A two sample test for a linear hypothesis whose power is independent of the variance, *Ann. Math. Statist.*, 16, 243-258.
- Takada, Y., 1998. The nonexistence of procedures with bounded performance characteristic in certain parametric inference problems, Ann. Inst. Statist. Math., 50, 325-335.