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Asymptotic Properties and Initial Values
of Solutions to Periodic Linear Equations

BRAEFE MAENEZ (Junji Kato)
BXUEEKRF PBREUE (Toshiki Naito)
HIfER ¥R B IE#F (Jong Son Shin)

1 Introduction

Let C™ be a d-dimensional complex Euclidean space and R the real line. Consider
the linear differential equation of the form

La(t) = As(t) + 1(2), (1)

where A is a complex m x m matrix and f : R — C™ a periodic continuous function
with a period 7 > 0 (7-periodic function, simply). Set w = 2= /7.

The purpose of the paper is to give a complete classification of the set of initial
values according to asymptotic behaviors of solutions of Eq.(1).

In Section 2, we shall show that the variation-of-constant formula for Eq.(1) is
reformed into a sum of 7-periodic functions and exponential like functions. Its proof
is based on a new representation of solutions of the difference equation corresponding
to Eq.(1).

In Section 3, as applications of this result, the asymptotic behaviors of all solu-
tions as well as the boundedness of solutions are shown to be completely determined
by the initial values. Refer to [2] for the complete proofs of results obtained in this
paper.

2 Solutions of Equation (1)

Put 0(A) = {A1,--+, e}, the set of spectrum of A, and let n, be the index of
Ar € a(A). Denote by P, : C™ — M, the projection corresponding to the direct sum
decomposition C™ = M; @- - - ® My, where M, := N((A— \.I)™) is the generalized
eigenspace corresponding to A,. The following properties for the projections are well
known :

P.C"=M,, AP,=PA, PP,=0(r#s), PP=P, P+ P+ --+P =1



101

For a given b € C™, we consider the difference equation of the form
Ty = €™z, +b. (2)

The solution z,, of this equation such that zo = w is given by

Tn = Wa(w,b) := €"*w + Sy(e™)b, Sn( Zeﬁ*‘
Since
/4 n.—1 tk
M= QP Q) =) (A= AD",
r=1 k=0
it follows that
n-1 : n-1n,-1 )
PSu(e™b =Y e™Q,(jr)Pb = D > &iFA P, - (3)
§=0 3=0 k=0

where Ay, = 7F(A — A\ I)F/k!.
A function g(z) := (e* — 1)~! and Bernoulii’s number By, are used in the devel-
opment of W, (w, b). Bernoulli’s polynomial Bi(z),k € NU {0}, in the relation

e®t > B tk
: —; k(@)

is given by
k
K\, e (K) K
Bi(o) = 2:; (z‘)B’x ’ (z) ~ilk—q)P
where By, = By(0) (Bernoulli’s numbers, By = 1, B; = —%,Bz = -(15-, -++.) is defined
by

t 2.tk
et -1 ;Bkk'

The following facts are well known, cf. [4].

Lemma 2.1 By(z) and By have the following properties :
1) Bi(z + 1) — Bi(z) = kz*~1 and By = Bx(1) if k > 2.
2) ng+1 =0 ka Z 1.
3) By =310 (%)Bi(or St (¥)Bi =0) if k > 2, and B, = By(1) —
4) By(z) =1 and

k-1
Bi(z) = z* — kL-i-lZ (k -: 1) Bi(z),(k=1,2,--).



For 7\, € 2miZ, we set
a®) = g® (7)), (k=0,1,---,n, — 1),

where ¢*) stands for the k-th derivative of g. Put

ny—1
Yo(w,b) =Pw+ > aPA,Pb if e #1, (4)
k=0

and
ny—1

Z,(w,b) = Ai,Pw+ Y BeAp,Pb if €™ =1. (5)
k=0
First, we develop the components P,W,(w,b) of the solution Wy(w,b) of the
difference equation (2) in the manner that we can see the dependence on n explicitly.
The following result is a new representation of solutions of the difference equation
corresponding to Eq.(1), which plays an essential role in this paper. Its proof is
omitted.

Theorem 1 Let Y,(w,b), Z,(w,b) be defined as in (4),(5), respectively.
1) If A\, € iwZ, then B

ny—1

PWa(w,b) = €™ ) niA; Y (w,b) - Yo(w,b) + Prw (6)
§=0
= ""4Y,(w,b) — Y (w,b) + P,w, n>0. (7)
9) If )\, € WwZ, then
n,—1
1
PWo(w,b) = T o Ay 2, (w,0) + Prw, n 20, (8)
=0

Next, we transfer Theorem 1 to the solution of Eq.(1). If z(t) is a solution of
Eq.(1), then P.z(t) € M, for t € R and satisfies the following equation :

Lu(t) = Ay(t) + P (1),

In general, if an M, valued function y(t) satisfies this equation, we say that y(t)
is a solution of Eq.(1) in M,. The following theorem gives a characterization of
solutions of Eq.(1). Set

bf—_—/ e £ (s5)ds.
0
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Theorem 2 Let z(t) be a solution of Eq.(1) such that z(0) = w.
1) If \r & WZ,
P,z(t) = Y, (w,bs) + ur(t,w,by), .

where
t
up(t,w,bf) = (=Y, (w, by) + Pw) + / et=AP, f(s)ds
0

is a T-periodic solution of Eq.(1) in M,.
2) If A\, € WZ,

At el il

G+ 1)

e

P.x(t) = (A= AV Z.(w,bf) + ve(t,w, by),

=0
wh87 €
ny—1 ;
eArt t1,+1.

i+ 1)!
T & (i+1)!

v (t,w,bs) = e Pow — (A= \I)'Z.(w,by)

¢
+ / et P, f(s)ds
o .

is a T-periodic function, which is not necessarily a solution of Eq.(1) in M,.

(10)

(11)

(12)

Proof Let n be a nonnegative integer. Since W,(w,bs) = z(n7), we have that,

for any t € R,

t .
P.z(t) = et "DAPW, (w, bs) + / et=94P, f(s)ds.

nr

Since f(s) is T-periodic, the integral in the right hand side becomes

t t—nTt :
/ e(t‘s)AP,f(s)ds - / e(t—n'rv—s)APTf(s)d.'S.
n 0

T

Suppose that A\, € iwZ. Since, by Theorem 1,

et APWa(w,bs) = "4 Y, (w,bf) — Yy (w, by) + Prw)
= &Y, (w,bs) + A (=Y, (w, by) + Prw),

it follows that
Pz(t) = €4Y,(w,by)+ un,(t,w,by), .

where

t—nr
(£, W, by) = DAY, (w, by) + Pow) + / et=nT=0AD, £(5)dr.
0

(13)
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Since un,(t,w,b;) = Pz(t) — €'Y, (w,bf), un := un,(t,w,bs) is independent of
n=0,1,2,.--; that is, g = u; = us = ---. Furthermore, it is easy to see that
Un(t — 7) = uUn41(t). Since upyy = uyp, it follows that u,(t — 7) = un(t) ; un(t) is
-periodic. Thus u(t) is 7-periodic, and Pz (t) = e'4Y,(w, bf) + uo, (¢, w, by). Since
'Y, (w, by) is a solution of the homogeneous equation, uo,(t, w,bs) is a 7-periodic
solution of Eq.(1). Therefore we obtain Formula (9) by taking u, = ug,.

Suppose that ), € iwZ. Using Theorem 1, we have

et-"A(PW, ('w bs) — Pw)
A ”T) A-anp S L pn j
= e Z AL A )Jz:]+1n (A =AY Z,(w, by)

eSS o 4 1z by
= T - ,-I Z,- 'w,b )
& o R+ !
et T (t — n7)k(nT)i*? ,
- T z;kz k(5 + 1)! (4= A1)’ Z;(w,by)
1= +j=1
et el Lt (t — n7)k(nr)i-k+ '
= Z > HG—k +)1) (A= MI)Z,(w,by)
i=0 k=0

At eZlitl o vk i+1—k ‘ _
e Z( nr)*(n7) (A= A1) Z,(w,by)

2o 24 FlG+ 1 - h)!

eMrt n-—1 (t _ m.)i+1

i+ 1)!
T & (i+1)!

et ne—1 i+l

= Tz(z+1)'(A A1) Z,p (w, by)

ehrt —1 (t - nr)“’l .
- ; Gt (A= M\I) Z,(w,bf).

(A= M\I)Z,(w,b))

Therefore, we have

eirt Tl £+l

Fra(?) < (i +1)!

(A= M\ID)'Z, (w, bs) + vny(t,w, by),

where

et nr—1 (t _ n.r)i+1
(i +1)!

Unge(t,w,b;) = e APy — (A= XI)'Z,(w,by)

1=0

t—nr
+ ‘/0 et=nT=9AP 7(s)dr.
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As in the case of u,,, we see that v,, are independent of n = 0,1,2,---, and
T-periodic. Hence

At Mr—1 fitl

vor(t, w, bs) = Pa(t) — eT 3 riA- AT) Z,(w, by)
=0

is a T-periodic function. Therefore, we obtain Formula (11) by taking v, = vo,. O
If R\, # 0, the representation (9) of P,z(t) in Theorem 2 is given as follows.

Proposition 2.2 (1) If R\, > 0, then
Y (w,b) = Pow + f e~*AP, f(s)ds, (14)
0
and the representation (9) of P,z(t) becomes

Poa(t) = e*AY,(w, by) — / " et=9AP, f(s)ds. (15)
t

() If R\, <O, then

Yo (w,b5) = Pow — / ’ e *AP.f(s)ds, (16)

—00

and the representation (9) of P,z(t) becomes

t
Poa(t) = e, (w, by) + /

—00

et=*4P f(s)ds. (17

3 Behavior of solutions

First, we can describe the asymptotic behavior of the solution by an indez of growth
order (my, my, - - -, my) for the initial value w defined as follows. If A\, & iwZ, m, =0
in the case that Y;(w,bs) = 0 ; otherwise, m, is a positive integer such that

(A= AD)™ 7Y (w, by) # 0, (A= AD)™ Y, (w,bg) = 0.

If \r € WwZ, m, = 0 in the case that Z,(w,bs) = 0 ; otherwise, m, is a positive
integer such that

(A= XD)™ 1 Z,(w,by) #0, (A—AT)™ Z,(w,bs) = 0.

The following result can be easily proved by using Theorem 2 and Proposition
2.2. Set R+ = [0,00)

105



Theorem 3 Let P.z(t) be the projection of a solution z(t) with z(0) = w to M,.
1) The case where A, & iwZ.
(1) Let R\, > 0. If m, = 0, Pz(t) is 7-periodic ; if m, > 1, Px(t) is
unbounded on R, such that

[e9) my,—1
Pat)=— [ e 94P.f(s)ds + e ——— (A — A I)™ 'Y, (w, by)
¢ (mr 1)
+o(e™t™ 1) (¢ — 00). (18)

(2) Let R\, < 0. If m, = 0, P.x(t) is T-periodic ; if my > 1, P,x(t) is
asymptotically T-periodic such that ,

t tm,-—l
Prx(t) = / e(t—s)APrf(s)dS + et/\rm(A - /\rI)mr—ly;'(w; bf)

+o(et™ 1) (t — o0). (19)
(3) Let R\, = 0. If m, =0, P.z(t) is T-periodic ; if m, = 1, Pz(t) is quasi
periodic ; if m, > 2, P,z(t) is unbounded on [0,00) as well as on (—o0,0] such that

my—1
(m, — 1)!

2) The case where A, € iwZ.
(1) If m, =0, P.x(t) is T-periodic.
(2) If m, > 1, P,z(t) is unbounded on [0,00) as well as on (—o0,0] such that
Poa(t) = e LA = A D)™12,(w, b,) + o([t™) ([t] = 00).

m,!T

Poa(t) = e (A= X\ D)™ Y (w, bg) + o({t™ ) ([t] = c0).

Next, using Theorem 3, we can describe the necessary and sufficient conditions
for the solution of Eq.(1) to be bounded on R, or 7-periodic.

Proposition 3.1 The solution z(t) of Eq.(1) with z(0) = w is bounded on R, if
and only if w € C™ satisfies the following conditions : for every A, € o(A),

1) if RA, >0, then m, =0, i.e. Yr(w,bf) =0;

2) if R\, =0, A\ € iwZ, then m, =1, i.e. Ay,Y;(w,b5) =0 ; and

3) if A\ € WWZ, then m, =0, i.e. Z(w,bs) =0.

Corollary 3.2 Assume that there is an M > 0 such that ||e'4|| < M for all t > 0.

All solutions of Eq.(1) are bounded on R, if and only if P.by = 0 for all r such that
Ar € tWZ.

Corollary 3.3 The solution z(t) of Eq.(1)with £(0) = 0 or by is bounded on R, if
and only if by € C™ satisfies the following conditions : for every A, € a(A),

1) if R\, > 0, then Pby =0 ;

2) if R\, =0, A\, € WwZ, then P.by € N(A— \.I) ; and

3) if A\r € iwZ, then P.by = 0.
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The condition for 7-periodic solutions becomes as follows.

Proposition 3.4 The following statements are equivalent :
1) The solution z(t) of Eq.(1) with z(0) = w is T-periodic.
2) For everyr =1,2,---,¢, m, =0, that is,
(1) if Ar € WZ, then Y. (w,bs) =0 ; and
(2) if A\ € iWZ, then Z,(w,bs) = 0.
3)

(I — e™)w = by. (20)

Finally, we derive necessary and sufficient conditions for f such that Eq.(1) has
bounded solutions on R,.

Theorem 4 The following statements are equivalent :
1)Eq.(1) has a solution which is bounded on R.
2)P.bs € (A — A\ I)M, for every r such that A\, € iWZ.
3) by € R(A — A1) for every r such that A, € iwZ.
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