Kneser's property for a semilinear parabolic partial differential equation with Dirichlet boundary condition

東北学院大学教養学部 上之郷高志(Takashi Kaminogo) Department of Mathematics, Tohoku Gakuin University

1. Introduction. We consider an initial and boundary value problem

(E_n)
$$\begin{cases} \frac{\partial u}{\partial t} = \triangle u + F(t, x, u) & \text{for } 0 < t \le T, x \in D, u \in \mathbf{R} \\ u(0, x) = u_0(x) & \text{for } x \in \overline{D}, \\ u(t, x) = 0 & \text{for } 0 < t \le T, x \in \partial D, \end{cases}$$

where T > 0 is a given constant, $D = (0,1)^n \subset \mathbf{R}^n$, $F : [0,T] \times \overline{D} \times \mathbf{R} \to \mathbf{R}$ is continuous and $u_0 \in C(\overline{D},\mathbf{R})$ satisfies $u_0(x) = 0$ on ∂D . A continuous function u(t,x) defined on $[0,\tau] \times \overline{D}$ will be called a *(mild)* solution of (\mathbf{E}_n) when u is expressed by

$$u(t,x) = \int_D G(t,x,y) u_0(y) \, dy + \int_0^t ds \int_D G(t-s,x,y) F(s,y,u(s,y)) \, dy,$$

where G is the fundamental solution of $\partial u/\partial t = \Delta u$ with u = 0 on ∂D .

We shall discuss the Kneser's property for solutions of (E_n) . In [2] and [3], we proved that solutions of (E_n) have Kneser's property, where the boundary condition is replaced with Neumann boundary condition and D is assumed to be a bounded domain with smooth boundary.

In this article, we always assume the following assumption (A) to the function F.

(A) F(t, x, y) is expressed by

$$F(t, x, u) = f(t, x, u) + g(t, x, u),$$

where f and g are continuous functions on $[0,T] \times \overline{D} \times \mathbf{R}$ and satisfy

(1)
$$\begin{cases} f(t, x, u) = 0 & \text{for } 0 \le t \le T, x \in \partial D, u \in \mathbf{R}, \\ g(t, x, -u) = -g(t, x, u) & \text{for } 0 \le t \le T, x \in \overline{D}, u \in \mathbf{R}. \end{cases}$$

Only for simplicity of notations, we shall state our results in the case where n = 1, and hence, (E_n) will be reduced to the problem

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + F(t,x,u) & \text{for } 0 < t \leq T, \ x \in \overline{D} = [0,1], u \in \mathbf{R}, \\ \\ \displaystyle u(0,x) = u_0(x) & \text{for } x \in \overline{D} = [0,1], \\ \\ \displaystyle u(t,0) = u(t,1) = 0 & \text{for } 0 < t \leq T, \end{array} \right.$$

where u_0 is a continuous function satisfying $u_0(0) = u_0(1) = 0$. The following example shows that solutions of (E_1) are not always unique.

Example. Consider the following problem for $t > 0, x \in [0, 1]$ and $u \in \mathbf{R}$.

(E)
$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \sqrt{\frac{x^4 - 2x^3 + x}{12}} \sqrt{|u|} + \frac{12u}{1 + x - x^2}, \\ u(0, x) = 0, \\ u(t, 0) = u(t, 1) = 0. \end{cases}$$

It is clear that (E) admits the zero solution $u(t,x) \equiv 0$. Furthermore, it is not difficult to see that

$$u(t,x) = \frac{t^2(x^2 - x)(x^2 - x - 1)}{48} = \frac{t^2}{4} \cdot \frac{x^4 - 2x^3 + x}{12}$$

is also a solution of (E).

Remark. The function F in (E) satisfies assumption (A).

2. Compactness of solutions. It is well known (e.g. [1]) that the fundamental solution G for $\partial u/\partial t = \partial^2 u/\partial x^2$ with u(t,0) = u(t,1) = 0 is expressed by

(2)
$$G(t,x,y) = \sum_{k=-\infty}^{k=\infty} \{ E(t,x-y+2k) - E(t,x+y+2k) \},$$

where $E(t,\xi) = (4\pi t)^{-1/2} \exp(-\xi^2/4t)$ for $t > 0, \xi \in \mathbf{R}$.

Let X be any metric space. We shall denote by $BC(X, \mathbf{R})$ the Banach space of all bounded and continuous functions on X with the norm $\|\cdot\|$ defined by

(3)
$$||v|| = \sup\{|v(x)|; x \in X\}$$

for $v \in BC(X, \mathbf{R})$. Similarly, for any compact metric space X, we shall denote by

 $C(X, \mathbf{R})$ the Banach space of all continuous functions on X with the norm $\|\cdot\|$ given by (3).

By assumption (A), the functions f and g admit a continuous and nondecreasing function $\varphi:[0,\infty)\to(0,\infty)$ with the property that

$$|f(t,x,u)| \le \varphi(|u|), \quad |g(t,x,u)| \le \varphi(|u|)$$

for $(t, x, u) \in [0, T] \times [0, 1] \times \mathbf{R}$.

Now we shall define several extensions of the functions $u_0(x)$, u(t,x), f(t,x,u) and g(t,x,u) in the following way. For a function $u_0 \in C([0,1], \mathbf{R})$ with $u_0(0) = u_0(1) = 0$, we can easily construct a continuous extension $\hat{u}_0 : \mathbf{R} \to \mathbf{R}$ of u which satisfies that $\hat{u}_0(x)$ is an odd mapping and is 2-periodic. Similarly, for $\tau \in (0,T]$ and for a function $u = u(t,x) \in C([0,\tau] \times [0,1], \mathbf{R})$ satisfying u(t,0) = u(t,1) = 0 on $[0,\tau]$, let $\hat{u} = \hat{u}(t,x) \in C([0,\tau] \times \mathbf{R}, \mathbf{R})$ be a continuous extension of u which is an odd mapping and 2-periodic in x for each $t \in [0,\tau]$, while let $\tilde{u} = \tilde{u}(t,x) \in C([0,\tau] \times \mathbf{R}, \mathbf{R})$ be a continuous extension of u which is an even mapping and 2-periodic in u for each $u \in [0,\tau]$. Finally, for the functions u and u satisfying u satisfy

Lemma 1. For a function $u_0 \in C([0,1], \mathbf{R})$ with $u_0(0) = u_0(1) = 0$, we have $\int_{\mathbf{R}} G(t, x, y) u_0(y) \, dy = \int_{\mathbf{R}} E(t, x - y) \hat{u}_0(y) \, dy.$

Proof. It follows from (2) that

$$\begin{split} &\int_{D} G(t,x,y)u_{0}(y) \, dy \\ &= \sum_{k=-\infty}^{k=\infty} \left\{ \int_{0}^{1} E(t,x-y+2k)u_{0}(y) \, dy - \int_{0}^{1} E(t,x+y+2k)u_{0}(y) \right\} \, dy \\ &= \sum_{k=-\infty}^{k=\infty} \left\{ \int_{-2k}^{1-2k} E(t,x-z)u_{0}(z+2k) \, dz + \int_{-2k}^{-1-2k} E(t,x-z)u_{0}(-z-2k) \right\} \, dz \\ &= \sum_{k=-\infty}^{k=\infty} \left\{ \int_{-2k}^{1-2k} E(t,x-z)\hat{u}_{0}(z) \, dz + \int_{-1-2k}^{-2k} E(t,x-z)\hat{u}_{0}(z) \right\} \, dz \end{split}$$

$$= \int_{\mathbf{R}} E(t, x - y) \hat{u}_0(y) \, dy.$$

Lemma 2. Suppose that (A) holds and that $\tau \in (0,T]$. Then for a function $u \in C([0,\tau] \times [0,1], \mathbf{R})$ satisfying u(t,0) = u(t,1) = 0 for $t \in [0,\tau]$, it follows, for $0 \le s \le t \le \tau$, that

$$\int_{\mathcal{D}} G(t-s,x,y) f(s,y,u(s,y)) \, dy = \int_{\mathbf{R}} E(t-s,x-y) \hat{f}(s,y,\tilde{u}(s,y)) \, dy$$

and

$$\int_D G(t-s,x,y)g(s,y,u(s,y))\,dy = \int_{\mathbf{R}} E(t-s,x-y) ilde{g}(s,y,\hat{u}(s,y))\,dy.$$

Proof. It is easy to observe that the following equalities hold for each $(s, y) \in [0, \tau] \times \mathbb{R}$.

$$\hat{f}(s,-y, ilde{u}(s,-y)) = -\hat{f}(s,y, ilde{u}(s,y)), \quad \hat{f}(s,y+2, ilde{u}(s,y+2)) = \hat{f}(s,y, ilde{u}(s,y)), \ ilde{g}(s,-y,\hat{u}(s,-y)) = - ilde{g}(s,y,\hat{u}(s,y)), \quad ilde{g}(s,y+2,\hat{u}(s,y+2)) = ilde{g}(s,y,\hat{u}(s,y)).$$

By using the similar arguments as in the proof of Lemma 1, we can easily prove the assertion of the lemma. \Box

Let $h:[0,T]\times \mathbf{R}\times \mathbf{R}\to \mathbf{R}$ be a continuous function satisfying

(5)
$$|h(t, x, u)| \le \varphi(|u|)$$
 for $(t, x, u) \in [0, T] \times \mathbf{R} \times \mathbf{R}$,

where $\varphi:[0,\infty)\to(0,\infty)$ is a continuous and nondecreasing function introduced in the above. For this function $h, \tau \in (0,T]$ and for $u \in BC([0,\tau] \times \mathbf{R}, \mathbf{R})$, define a function $H(h,u,\tau)$ on $[0,\tau] \times \mathbf{R}$ by

$$[H(h,u, au)](t,x)=\int_0^t ds\int_{\mathbf{R}} E(t-s,x-y)h(s,y,u(s,y))\,dy.$$

By using similar arguments as in the proof of Lemma 1.5 in [2], we can prove the following lemma.

Lemma 3. For any $\tau \in (0,T]$, $u \in BC([0,\tau] \times \mathbf{R}, \mathbf{R})$ and for any function h satisfying (5), we have

$$|[H(h, u, \tau)](t, x) - [H(h, u, \tau)](t', x')|$$

$$\leq 8M\sqrt{t}\sqrt{t' - t} + M(t' - t) + 2\sqrt{2}M\sqrt{t}|x - x'|$$

for any $0 \le t < t' \le \tau$ and $x, x' \in \mathbf{R}$, where $M = \sup\{|h(t, x, u(t, x))|; t \in [0, \tau], x \in \mathbf{R}\} \le \varphi(\|u\|) < \infty$.

Theorem 1 (Existence). Suppose that (A) holds. Then for any function $u_0 \in C([0,1], \mathbf{R})$ with $u_0(0) = u_0(1) = 0$, there exists at least one solution u(t,x) of (E_1) on $[0,\tau] \times [0,1]$ for some $\tau > 0$.

Proof. Put $||u_0|| = M_0$ and take a number L satisfying $L > M_0$. Then we can choose a number $\tau > 0$ so that an inequality

$$M_0 + 2\varphi(L)\tau \le L$$

holds. We denote by V the set of all functions $u \in C([0,\tau] \times [0,1], \mathbf{R})$ which satisfy that $||u|| \leq L$, u(t,0) = u(t,1) = 0 and that $u(0,x) = u_0(x)$ for $x \in [0,1]$. Then V is a closed and convex subset of $C([0,\tau] \times [0,1], \mathbf{R})$. For every $v \in V$, we define a mapping $\Psi v : [0,\tau] \times [0,1] \to \mathbf{R}$ by $[\Psi v](0,x) = u_0(x)$ for $x \in [0,1]$ and

$$[\Psi v](t,x)=\int_D G(t,x,y)u_0(y)\,dy+\int_0^t ds\int_D G(t-s,x,y)F(s,y,v(s,y))\,dy$$

for $0 < t \le \tau$, $x \in [0,1]$. Then Ψv belongs to $C([0,\tau] \times [0,1], \mathbf{R})$ and $[\Psi v](t,0) = [\Psi v](t,1) = 0$ for $t \in (0,\tau]$. It follows from Lemmas 1 and 2 that

(6)
$$[\Psi v](t,x) = \int_{\mathbf{R}} E(t,x-y)\hat{u}_0(y) \, dy$$

$$+ \int_0^t ds \int_{\mathbf{R}} E(t-s,x-y)\hat{f}(s,y,\tilde{v}(s,y)) \, dy$$

$$+ \int_0^t ds \int_{\mathbf{R}} E(t-s,x-y)\tilde{g}(s,y,\hat{v}(s,y)) \, dy,$$

thus we have

$$|[\Psi v](t,x)| \le M_0 + \int_0^t ds \int_{\mathbf{R}} E(t-s,x-y)\varphi(\|\tilde{v}\|) dy$$
$$+ \int_0^t ds \int_{\mathbf{R}} E(t-s,x-y)\varphi(\|\hat{v}\|) dy$$
$$\le M_0 + 2\varphi(L)\tau \le L$$

because $\int_{\mathbf{R}} E(t, x - y) dy = 1$. Therefore, we obtain that $\Psi(V) \subset V$. It follows from (6) and Lemma 3 that $\Psi(V)$ is relatively compact, and hence, we can find a fixed point u in V by Shauder's fixed point theorem. Clearly, u is a solution of (E_1) , which completes the proof.

Lemma 4. Suppose that (A) holds. Then there exist two numbers $\tau > 0$ and M > 0 such that every solution u of (E_1) exists and satisfies $|u(t, x)| \leq M$ on $[0, \tau] \times [0, 1]$.

Proof. Put $||u_0|| = M_0$. Then any solution u of (E_1) satisfies

$$|u(t,x)| \le M_0 + 2 \int_0^t ds \int_{\mathbf{R}} E(t-s, x-y) \varphi(\|u(s)\|) dy$$

 $\le M_0 + 2 \int_0^t \varphi(\|u(s)\|) ds$

for t > 0 and $x \in [0, 1]$ as long as u exists, where $||u(s)|| = \sup\{|u(s, y)|; y \in [0, 1]\}$. Therefore, it follows that

$$||u(t)|| \le M_0 + 2 \int_0^t \varphi(||u(s)||) ds.$$

If we put v(t) := ||u(t)|| and $w(t) := M_0 + 2 \int_0^t \varphi(v(s)) ds$ for t > 0, then we have $v(t) \le w(t)$ and $w'(t) = 2\varphi(v(t)) \le 2\varphi(w(t))$. By the comparison theorem in the theory of ordinary differential equations, the maximal solution p(t) of $p' = 2\varphi(p)$ with $p(0) = M_0$ exists on $[0, \tau]$ for some $\tau > 0$ and an inequality $p(\tau) \ge p(t) \ge w(t)$ holds on $[0, \tau]$. By putting $M = p(\tau)$, we have the assertion.

3. Kneser's property. For the functions f and g satisfying (1) and for $m \in \mathbb{N}$, we put

$$f_m(t,x,u) = \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} f(t,x,v) \, dv, \quad g_m(t,x,u) = \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} g(t,x,v) \, dv.$$

Then $f_m(t, x, u) = 0$ for x = 0, 1, while $g_m(t, x, -u) = -g_m(t, x, u)$ by virtue of (1). It is easy to see that $\{f_m\}$ and $\{g_m\}$ converge, respectively, to f and g uniformly on every compact set in $[0, T] \times [0, 1] \times \mathbf{R}$. Clearly, f_m and g_m are locally Lipschitz continuous in u. Moreover, by the mean value theorem in integration, we have

$$|f_{m}(t,x,u)| \leq \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} |f(t,x,v)| dv \leq \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} \varphi(|v|) dv$$
$$= \varphi(|u+\theta/m|) \leq \varphi(|u|+1),$$

where θ is a suitable number satisfying $-1 < \theta < 1$. By replacing $\varphi(s+1)$ by $\varphi(s)$, we may assume that $|f_m(t,x,u)| \leq \varphi(|u|)$. Similarly, we may also assume that $|g_m(t,x,u)| \leq \varphi(|u|)$.

Theorem 2. Suppose that (A) holds and that $u_0 \in C([0,1], \mathbf{R})$ is an arbitrary function satisfying $u_0(0) = u_0(1) = 0$. Then a family

$$\mathcal{F} = \{ u \in C([0, \tau] \times [0, 1], \mathbf{R}); u \text{ is a solution of } (\mathbf{E}_1) \}$$

is compact and connected in $C([0,\tau]\times[0,1],\mathbf{R})$ when $\tau>0$ is sufficiently small.

Proof. By Lemma 4, there exist $\tau > 0$ and M > 0 such that every solution u of (E_1) exists and satisfies $|u(t,x)| \leq M$ on $[0,\tau] \times [0,1]$. For this $\tau > 0$, we shall prove the assertion of the theorem.

It suffices to show that \mathcal{F} is connected because the compactness of \mathcal{F} is obvious by Lemma 3. Suppose that \mathcal{F} is not connected. Then there exist an open set \mathcal{O} and two nonempty compact sets \mathcal{F}_1 and \mathcal{F}_2 in $C([0,\tau]\times[0,1],\mathbf{R})$ such that

$$\mathcal{F}_1 \cup \mathcal{F}_2 = \mathcal{F}, \quad \mathcal{F}_1 \subset \mathcal{O}, \quad \mathcal{F}_2 \cap \overline{\mathcal{O}} = \emptyset.$$

Let u_1 and u_2 be any elements in \mathcal{F}_1 and \mathcal{F}_2 , respectively. Then, for each $m \in \mathbb{N}$, u_i is a solution of

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + H_i(t, x, u), \quad (i = 1, 2),$$

where

$$H_i(t, x, u) = F(t, x, u_i(t, x)) - F_m(t, x, u_i(t, x)) + F_m(t, x, u)$$

and

$$F_{m}(t,x,u) = f_{m}(t,x,u) + g_{m}(t,x,u).$$

Let m be fixed. For any $\theta \in [0,1]$, define $\Phi_{\theta}(t,x,u)$ by

$$\Phi_{\theta}(t,x,u) = (1-\theta)H_1(t,x,u) + \theta H_2(t,x,u).$$

Then $\Phi_{\theta}(t, x, u)$ is expressed by

$$\Phi_{\theta}(t,x,u) = G_m(t,x) + f_m(t,x,u) + g_m(t,x,u),$$

where

$$G_m(t,x) = (1-\theta)\{F(t,x,u_1(t,x)) - F_m(t,x,u_1(t,x))\}$$
$$+ \theta\{F(t,x,u_2(t,x)) - F_m(t,x,u_2(t,x))\}.$$

Here, we notice that $G_m(t,0) = G_m(t,1) = 0$. Since $\{G_m(t,x)\}$ converges to 0 uniformly on $[0,\tau] \times [0,1]$ as $m \to \infty$, we may assume that $|G_m(t,x)| \le 1$ for $m \in \mathbb{N}$

by taking a subsequence if necessary. Therefore, we may also assume that

$$|G_m(t,x) + f_m(t,x,u)| \le \varphi(|u|)$$

by replacing $1 + \varphi(s)$ by $\varphi(s)$.

For any fixed $m \in \mathbb{N}$, a problem

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \Phi_{\theta}(t,x,u) & \text{for } 0 < t \leq \tau, \ x \in [0,1], u \in \mathbf{R}, \\ \\ \displaystyle u(0,x) = u_0(x) & \text{for } x \in [0,1], \\ \\ \displaystyle u(t,0) = u(t,1) = 0 & \text{for } 0 < t \leq \tau \end{array} \right.$$

has a unique solution $v_{\theta}(t, x)$ because $\Phi_{\theta}(t, x, u)$ is locally Lipschitz continuous in u. Evidently, $v_0 = u_1$ and $v_1 = u_2$. Moreover, it is not difficult to verify that a mapping $\theta \mapsto v_{\theta}$ is continuous from [0, 1] into $C([0, \tau] \times [0, 1], \mathbf{R})$, and hence, there exists a $\theta \in [0, 1]$ such that $v_{\theta} \in \partial \mathcal{O}$. We denote these θ and v_{θ} by θ_m and u_m , respectively. Then u_m is a solution of (E_{θ_m}) and a relation $u_m \in \partial \mathcal{O}$ holds. It follows from Lemma 3 that $\{u_m\}$ is equicontinuous on $[0, \tau] \times [0, 1]$, and hence, we may assume that $\{u_m\}$ converges uniformly to some $u \in C([0, \tau] \times [0, 1], \mathbf{R})$ by taking a subsequence if necessary. Since $\{\Phi_{\theta_m}\}$ converges to f + g uniformly on every compact set in $[0, \tau] \times [0, 1] \times \mathbf{R}$, u is a solution of (E_1) , which implies that $u \in \partial \mathcal{O}$ and $u \in \mathcal{F}$. This is a contradiction.

The following corollary is a direct consequence of Theorem 2.

Corollary. Under the same assumptions as in Theorem 2, a set

$$\mathbf{F} = \{u(\tau) \in C([0,1], \mathbf{R}); u \text{ is a solution of } (\mathbf{E}_1)\}$$

is compact and connected in $C([0,1], \mathbf{R})$ when $\tau > 0$ is sufficiently small.

REFERENCES

- [1] 伊藤清三, 偏微分方程式 培風館 1966.
- [2] Kaminogo, T and Kikuchi, N., Kneser's property and mapping degree to multivalued Poincaré map described by a semilinear parabolic partial differential equation, *Nonlinear World* 4, 381–390 (1997).
- [3] 上之郷高志, 菊池紀夫, 半線形放物型偏微分方程式における Kneser の定理と解写像の写像度. 京都大学数理解析研究所講究録 1995 年 2 月, 900, 119-129.