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Kneser’s property for a semilinear parabolic partial differential
equation with Dirichlet boundary condition

FAbFRERFHEFL LZ2WEE (Takashi Kaminogo)
Department of Mathematics, Tohoku Gakuin University

1. Introduction. We consider an initial and boundary value problem

%?zAu%»F(t,z,u) for 0<t<T,zeD,ueR
(En) u(0, ) = up(z) for z € D,

u(t,z) =0 for 0<t<T,zedD,
where T > 0 is a given constant, D = (0,1)* C R", F : [0,T] x D x R - R
is continuous and uy € C(D, R) satisfies ug(x) = 0 on 8D. A continuous function

u(t, z) defined on [0, 7] x D will be called a (mild) solution of (E,,) when u is expressed
by

u(t,;2) = [ G(t,z,9)ww)dy+ [ ds [ G(t—s5,2,)F(s,5,u(s,1)) dy

where G is the fundamental solution of Ou/0t = Au with u = 0 on 0D.

We shall discuss the Kneser’s property for solutions of (E,). In [2] and [3], we
proved that solutions of (E,) have Kneser’s property, where the boundary condition
is replaced with Neumann boundary condition and D is assumed to be a bounded
domain with smooth boundary.

In this article, we always assume the following assumption (A) to the function F'

(A) F(t,z,y) is expressed by
F(t,z,u) = f(t,z,u) + g(t, 2, u),

where f and g are continuous functions on [0,T] x D x R and satisfy
{f(t,z,u)zo for 0<t<T,xz€0D,u€eR,

g(t,x,—u) = —g(t,x,u) for 0<t<T,zeD,ucR.
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Only for simplicity of notations, we shall state our results in the case where n = 1,

and hence, (E,) will be reduced to the problem

ou O%u —

= < =10,1 R

T ax2+F(txu) for 0<t<T,z€D=[0,1],ueR,
(Ex) (0, ) = up(x) for z € D =10,1],

u(t,0) = u(t,1) =0 for 0<t<T,

where ug is a continuous function satisfying uo(0) = uo(1) = 0. The following

example shows that solutions of (E;) are not always unique.

Example. Consider the following problem for ¢t > 0,z € [0,1] and u € R.

ou / —2x +z /—

?3? |+l—i—x
u(0,

u(t,

(E)

x)
0) = u(t, 1) =0.

It is clear that (E) admits the zero solution u(t,z) = 0. Furthermore, it is not

difficult to see that |

2(a? —z)(z?—z—1) * z*-2"+z
48 4 12

u(t,z) =
is also a solution of (E).

Remark. The function F in (E) satisfies assumption (A).

2. Compactness of solutions. It is well known (e.g. [1]) that the fundamental
solution G for du/dt = 8%u/dz? with u(t,0) = u(t, 1) = 0 is expressed by

(2) G(t,z,y) = kf{Etz—y+2k) E(t,z +y+ 2k)},

k=—o00
where E(t, &) = (4nt)"Y/2 exp(—£%/4t) for t > 0,€ € R.
Let X be any metric space. We shall denote by BC(X,R) the Banach space of
all bounded and continuous functions on X with the norm || - || defined by
(3) lvll = sup{jv(z)|;z € X}
for v € BC(X,R). Similarly, for any compact metric space X, we shall denote by



C(X,R) the Banach space of all continuous functions on X with the norm |- || given
by (3).

By assumption (A), the functions f and g admit a continuous and nondecreasing
function ¢ : [0,00) — (0, 00) with the property that

(4) |f @z, u)| < o(ful), g(t,z,u)| < @(lul)

for (t,z,u) € [0,T] x [0,1] x R.

Now we shall define several extensions of the functions ug(z), u(t, z), f(t, z,v) and
g(t, z,u) in the following way. For a function ug € C([0, 1], R) with uo(0) = uo(1) =
0, we can easily construct a continuous extension 4 : R — R of u which satisfies
that 1o(z) is an odd mapping and is 2-periodic. Similarly, for 7 € (0,T] and for a
function v = u(t,z) € C([0,7] x [0, 1], R) satisfying u(¢,0) = u(t,1) = 0 on [0, 7],
let & = 4(t,z) € C([0,7] x R,R) be a continuous extension of v which is an odd
mapping and 2-periodic in z for each ¢t € [0, 7}, while let & = @(t, z) € C([0,7]xR,R)
be a continuous extension of u which is an even mapping and 2-periodic in z for
each t € [0, 7]. Finally, for the functions f and g satisfying (1), let f=ftzue
C([0, T]x Rx R, R) be an extension of f which is an odd mapping and 2-periodic in z
for each (¢, u) € [0, T]x R, while § = g(t,z,u) € C([0,T] xRxR, R) be an extension
of g which is an even mapping and 2-periodic in z for each (¢,u) € [0,T] x R. Here,
notice that §(t,z, ) is an odd mapping in u because of (1).

Lemma 1. For a function ug € C([0, 1], R) with uo(0) = uo(1) = 0, we have
[ 6,5, 9ul)dy = [ Btz - y)io(y) dy.
Proof. It follows from (2) that

/D G(t, z,y)uo(y) dy

k=00

= 2. {/01 E(t,z — +2k)uo(y)dy—/01 E(t,m+y%2k)u0(y)} d

k=

k

§° {/1 2k iE—Z)’l,Lo(Z+2k)dZ+/—1 2k E(t,z — z)uo(—2 —_2k)} dz
:icio

{/1 2k , T — 2)Up(2) dz + /__:k E(t,x — z)ag(z)} dz

Fod

2k

216




= /P'{E(t, T — y)to(y) dy. -

Lemma 2. Suppose that (A) holds and that 7 € (0,7]. Then for a function
u € C([0,7] x [0,1], R) satisfying u(t,0) = u(t,1) = 0 for ¢t € [0, 7], it follows, for
0<s<t<r, that

/DG(t —-s5,z,9)f(s,y,u(s,y)) dy = /RE(t — s,z —y)f(s,y,(s,y)) dy

and
/D G(t — s,x,y)g9(s,y,u(s,y)) dy = /R E(t — s,z —y)3(s,y,u(s,y)) dy.

Proof. It is easy to observe that the following equalities hold for each (s,y) €
[0,7] x R.

f(Sa -Y, a(s’ _y)) = —f(sa Y, ’17,(8, y))7 f(sa y-+ 2’ ’&(S, Y + 2)) = f(s’ Y, ﬁ'(sa y))7
g(37 —-Y, ﬁ(s, _y)) = —f]'(s, Y, ’&(S, y))) g(s’ y+ 21 '&(31 y+ 2)) = g(S, y7’&(s: y))

By using the similar arguments as in the proof of Lemma 1, we can easily prove the

assertion of the lemma. ]

Let h:[0,7] x R x R — R be a continuous function satisfying
(3) h(t, z,u)| < p(lu]) for (t,z,u) €[0,T] xR xR,
where ¢ : [0,00) — (0,00) is a continuous and nondecreasing function introduced
in the above. For this function h, 7 € (0, 7] and for v € BC([|0, 7] x R, R), define a
function H(h,u,7) on [0,7] x R by

. ,
[Hhu, it 2) = [ ds [ Bt~ s,2 = y)h(s,y,u(s,y) dy.

By using similar arguments as in the proof of Lemma 1.5 in [2], we can prove the
following lemma.

Lemma 3. For any 7 € (0,7], v € BC([0,7] x R,R) and for any function h
satisfying (5), we have

|[H (h, u, T)](t, z) — [H (R, u, T)|(¥, 2')|
<BMVEVE —t+ M@t —t) +2V2M/t|z — 2|
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for any 0 <t < t' <1 and z,7' € R, where M = sup{|h(t, z, u(t,z))|;t € [0,7],z €
R} < @([lull) < oo

Theorem 1 (Existence). Suppose that (A) holds. Then for any function g €
C([0, 1], R) with uo(0) = uo(1) = 0, there exists at least one solution u(t, z) of (E;)
on [0, 7] x [0, 1] for some 7 > 0.

Proof. Put ||ug|| = M, and take a number L satisfying L > My. Then we can
choose a number 7 > 0 so that an inequality
Mo +20(L)r < L

holds. We denote by V the set of all functions u € C([0, 7] x [0, 1], R) which satisfy
that ||lul| < L, u(t,0) = u(t,1) = 0 and that u(0,z) = up(z) for z € [0,1]. Then V
is a closed and convex subset of C([0,7] x [0,1],R). For every v € V, we define a
mapping Yv : [0,7] x [0,1] — R by [¥v](0,z) = ue(z) for z € [0,1] and

@il(t,7) = [ Gtz 9)uow)dy+ [ ds [ G(t—s,5,9)F(s,y,0(5,) dy

for 0 <t <7,z €[0,1]. Then ¥v belongs to C([0,7] x [0,1],R) and [¥v](t,0) =
[Pv](¢,1) =0 for ¢ € (0,7]. It folows from Lemmas 1 and 2 that

(6) [u)(t, ) = [ B(t, = = y)io(y) dy
+ /: ds /R E(t —$T— y)f(s7ya®(sa y)) dy

t
+ /0 ds /R E(t — s,z — y)3(s,y,9(s,y)) dy,
thus we have

(Wt )| < Mo+ [ ds [ Bt~ 5,2~ vl dy

t
+ [[ds [ Bt s,z = y)e(lol) dy
because [g E(t,z — y)dy = 1. Therefore, we obtain that ¥(V) C V. It follows
from (6) and Lemma 3 that ¥(V) is relatively compact, and hence, we can find a

fixed point « in V by Shauder’s fixed point theorem. Clearly, u is a solution of (E;),
which completes the proof. O
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Lemma 4. Suppose that (A) holds. Then there exist two numbers 7 > 0 and
M > 0 such that every solution u of (E;) exists and satisfies |u(t,z)] < M on
[0, 7] < [0, 1].

Proof. Put ||ug|| = My. Then any solution u of (E;) satisfies
- t
< — —
ju(t, z) < Mo+2 [ ds [ E(t = s,2 —y)e(luls)l) dy

< My-+2 [ pllu(s)])ds

for ¢ > 0 and z € [0,1] as long as u exists, where ||u(s)|| = sup{|u(s,y)|; ¥ € [0,1]}.
Therefore, it follows that

lu(e)l < Mo +2 [ @(lu(a)])ds

If we put v(t) := ||u(t)|| and w(t) ;== My + 2 J ¢(v(s)) ds for t > 0, then we have
v(t) < w(t) and w'(t) = 2¢(v(t)) < 2¢(w(t)). By the comparison theorem in the
theory of ordinary differential equations, the maximal solution p(t) of p' = 2¢(p)
with p(0) = Mj exists on [0, 7] for some 7 > 0 and an inequality p(7) > p(t) > w(t)
holds on [0, 7]. By putting M = p(7), we have the assertion. o

3. Kneser’s property. For the functions f and g satisfying (1) and for m € N,
we put

fm(t, z,u) = T—S—L R f(t z,v)dv, gm(t,z,u) = %/:ﬁd g(t, z,v) dv.

1

Then fm(t,z,u) = 0 for £ = 0,1, while gn(¢,z, —u) = —gm(t, z,u) by virtue of (1).
It is easy to see that {f.} and {g..} converge, respectively, to f and g uniformly
on every compact set in [0, 7] x [0,1] x R. Clearly, fm and g, are locally Lipschitz

continuous in u. Moreover, by the mean value theorem in integration, we have

nttz < (7 120l < 2 /__ o(jol) do

=@ (lu+0/m|) < p(Jul + 1),

e
m

where @ is a suitable number satisfying —1 < 6 < 1. By replacing ¢(s + 1) by
©(s), we may assume that | f,,(2, z,u)| < ¢(|u|). Similarly, we may also assume that

|gm(t, 2, w)| < @(|ul).
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Theorem 2. Suppose that (A) holds and that ug € C([0,1],R) is an arbitrary
function satisfying ug(0) = up(1) = 0. Then a family

F ={u e C([0,7] x [0,1],R); u is a solution of (E;)}

is compact and connected in C([0, 7] x [0, 1], R) when 7 > 0 is sufficiently small.

Proof. By Lemma 4, there exist 7 > 0 and M > 0 such that every solution u
of (E;) exists and satisfies |u(t,z)| < M on [0,7] x [0,1]. For this 7 > 0, we shall
prove the assertion of the theorem.

It suffices to show that F is connected because the compactness of F is obvious
by Lemma 3. Suppose that F is not connected. Then there exist an open set O and .
two nonempty compact sets F; and F in C([0, 7] x [0, 1], R) such that

FIUF=F, FCO, FnO=0.

Let u; and uz be any elements in F; and F3, respectively. Then, for each m € N,

u; is a solution of

ou O*u )
5 - 922 + Hi(t,z,u), (1=1,2),
where
Hi(t,z,u) = F(t,z,u(t, ) — Fin(t, 2, wi(t, z)) + F(t, z,u)
and

Frn(t,z,u) = fm(t, z,u) + gm(t, z,u).
Let m be fixed. For any 8 € [0, 1], define ®4(t, z,u) by
Op(t,z,u) = (1 — 0)Hy(t, z,u) + 0Hy(t, z, u).
Then ®y(t, z, u) is expressed by
Oy(t, ,u) = Gu(t, z) + fm(t, z, u) + gm(t, z, u),

where

Gm(t,z) = (1 = O){F(t,z,u1(t,z)) — Fin(t,z,u1(t,x))}

+ 0{F(t,z,uz(t, z)) — Fu(t, z,us(t, x))}.

Here, we notice that G,,(t,0) = G (t,1) = 0. Since {Gn(t,z)} converges to 0
uniformly on [0, 7] x [0, 1] as m — oo, we may assume that |Gy (t,z)| < 1form € N




by taking a subsequence if necessary. Therefore, we may also assume that
IGm(t,iL') + fm(t,$,U)| S Q0(|’ll,|)

by replacing 1+ ¢(s) by ¢(s).
For any fixed m € N, a problem

ou 0%

— = <

%52 T ®p(t,z,u) for 0<t<7,2€][0,1],u€ER,
(Eo) (0, z) = up(x) for z € 0,1},

u(t,0) = u(t,1) =0 for 0<t< 7T

has a unique solution wvy(t, z) because ®y(t, r,u) is locally Lipschitz continuous in
u. Evidently, vo = u; and v; = us. Moreover, it is not difficult to verify that a
mapping 6 — vy is continiuos from [0, 1] into C([0, 7] x [0,1],R), and hence, there
exists a 6 € [0, 1] such that vy € 8O. We denote these § and vg by 0, and up,,
respectively. Then wu,, is a solution of (E,, ) and a relation u,, € 0O holds. It
follows from Lemma 3 that {u,} is equicontinuous on [0, 7] x [0, 1], and hence, we
may assume that {u,,} converges uniformly to some v € C([0,7] x [0,1],R) by
taking a subsequence if necessary. Since {®,} converges to f 4 g uniformly on
every compact set in [0,7] x [0,1] X R, u is a solution of (E;), which implies that

u € 00 and u € F. This is a contradiction.
The following corollary is a direct consequence of Theorem 2.

Corollary. Under the same assumptions as in Theorem 2, a set
F = {u(r) € C([0,1],R); u is a solution of (E;)}

is compact and connected in C([0, 1], R) when 7 > 0 is sufficiently small.
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