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Abstract In this study we give a new representation of fuzzy numbers with bounded supports and also

we show that a fuzzy number means a bounded continuous curve in the two-dimensional metric space.

QOur aims of this research are to discuss optimization problems with objective functions and constraints

both of which are L+fuzzy functions and to consider oil well equations which are represented by fuzzy

differential equations C'L(t) + DpCL(t) =0, where t is the time, 0 € R, C(t) an L—fuzzy function and

Dy, a constant L—fuzzy number by applying the above criteria of L—optimization problems. Moreover we

get an extension of the maxi-max theorem of optimization problems with an infinite number of constraints

and a objective function which consists of infinite series.
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1 Set of fuzzy numbers

Let I = [0, 1]. We define the following set of fuzzy
numbers, where a fuzzy number z is characterized

by a membership function u, as follows (cf. [2, 3]):

Definition 1 Denote

Fet = {uz : R — I satisfying (i) — (iv) below}.

(i) There exists a unique m € R such that pz(m) =

L

(ii) The support set supp(pz) = cl({{ € R :
u(€) > 0}) is bounded in R,

(iii) Let J ={€ € R:0 < pg(€)}. pe is strictly
quasi-convex on J, i.e., py (A& +(1—-X)&2) >

min(p, (&), p2(&2)] forO < A <1 andé;,é2 €
J such that & # &

(iv) px is upper semi-continuous on R.

In usual case a fuzzy number z satisfies quasi-

convex on R, i.e,

pz (A1 + (1= A)62) 2 minfuz(€1), p=(€2)]

for 0 < A < 1 and &, & € R. Condition (iii) plays
an important role in proving properties of mem-
bership function p, in Theorem 1, where we show
significant properties concerning the end-points of
the o-cut set Lo(pz) = {£ € R: py(€) > a}.

In the similar way as [2, 3] we consider the

following parametric representation of u, € Fg




such that

z1(a) = min Lo (pz), @2(0) = max Lo (p,)

for 0 < & <1 and that

21(0) = min o (supp (it )), 22(0) = max cl(supp(p.))-

In what follows we denote a fuzzy numbers z by
(21, 22), t.e., 2 = (1, %2).

By applying the above extension principle and
the representation of fuzzy numbers we get the
following results.

1) Addition. Let z = (z1,%2), ¥ = (v1,¥2) €
FSE. We get the addition

sup min(uz (&), puy(&2)]
£=£14+E2

= sup{loel:E=4+&,

Nm+y(§) =

= sup ,
gefrar(e)+yi(a),za(a)+ya(a))

which means that z +y = (21 + y1, 22 + y2). Here
2) Subtraction. It follows that

fu'x—y(f) :Sup{a el: £ = 61_62) gl € xa,§2 € ya}

means that ¢ —y = (2 —y2,22 — 11)-

3) Product. It follows that

pzy(§) =sup{la el £ =66, & €24, € Ya}

means that the following relation.

(
(0<21,0< 1)

(0L 2,1 £0<L )

(z1y1, T2y2)
(2291, 2¥2)
(z2y1,z192) (0 < 21,92 < 0)
(Z1y2,T2y2) (21 £0< 2,0 yy)
(min{xoyy, z1y2}, max{z1y1, T2y2})
(21 <0< 22,1 S0< o)

(@291, 7191) (21 S0 < 22,92 < 0)
(192, 2211) (22 £0,0< )

(z1y2.x1y1) (22 <0,y1 S0 < y7)

(xz S 07 Y2 S 0)

(z2y2, z191)

€ € 24,62 € Yo}
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By the above parametric representation of fuzzy
numbers we get the following theorem concerning

properties of end-points.

Theorem 1 Denote x = (z1,z2) € FSt, where

xz1,22 : I — R. Then the following properties
(i)-(iii) hold:
(i) zi € C(I),i = 1,2. Here C(I) is the set of

all the continuous functions on I;

(i) There exists a unique m € R such that z1(1) =
iL’z(l) =
oael;

m and z1(c) < m < zp(e) for

(iii) One of the following statements (a) and (b)
holds,

(a) Functions i,z are non-decreasing, non-
increasing on I, respectively, with (o) <

z2(@) for0< a < 1;

(b) z1(c) = z2(0) =m for 0 < o < 1.

Conversely, under the above conditions (i) -(iii),

if we denote
pe(§) =sup{a € I : z1(a) SE < z2(0)} (11)

then . is the membership function of z, i.e., p, €

st
Fet.

Let a metric between = (z1(*), z2(*)), ¥y = (%1(-), z2("))

be defined as follows.

d(z,y) = sup/[z1(0) - v1()]? + [22(0) — v2(@)?

Then we get following result immediately.

Theorem 2 (Fgt,d) is complete metric space.



2 Set of L—fuzzy numbers

Denote a shape function by L : R — I, where L is
upper semi-continuous and satisfies the following

properties (i) - (iv):

(i) L(0) = nax L&) =1; (i) L(§) is strictly

decreasing in £ > 0;

(iii) L(—€) = L(€) for £ > 0;
L(¢§) >0} =1.

(iv) sup{{ e R :

In what follows we consider a set of L—fuzzy num-
bers Fr = {p € Ft : (a) or (b) hold.} Let m €
R, ¢ > 0. There exist two typical types (a) and
(b) of Fr.

L(Z78) forg<m
(a) £> 0 and p(§) =

L(.5™) for&>m
(b) £=0andpe) =4 » TEET

0 foré#m

In this section we introduce a total order rela-
tion A-fuzzy max order <, over Fr. Here 0 <
A < 1 is given by decision makers. Let x =
(1, 22),¥ = (¥1,y2) € Fr with the center z,(1),
the spread £, = z;(1) — z;(0) > O and center
y1(1), spread £, = y1(1) — ¥1(0) > 0. We define
that z <, y if and only if the following statements
(i)-(iii) ( [1]):

(i) £y — £z] < y1(1) — z1(1) for v1(1) > z1(1);

() Ay — ] < 11(1) — 21(1) < |& — £a] for
y1(1) > z1(1) and £, # £;;

(iii) |y1(1) — z1(1)] < A€y — £;) for £y — £ > 0.

Furukawa [1] gives the following theorem so that

two any L—fuzzy numbers can be compared to

each other.
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Theorem F1 For any z,y € Fy, it follows that
one of the relations © <y vy, andy <X\ 2 hold.
Thus =<\ 45 a total order relation over Fr,.

The following theorem plays an important role
in comparing two L—fuzzy numbers.

Theorem F2 For x = (z1,%2),y = (y1,¥2) €
FL satisfying £, = z1(1) —21(0) > 0, £, =
y1(1) — y1(0) > 0, 4t follows that <) y means
that (i) or (ii) hold.

(i) Mg + z1(1) < My + y1(1) for £y > £5;

(i) My +21(1) < My +y1(1) for £, < £,.

3 Fuzzy optimization problems

Let 0 < XA < 1. In this section we show criteria

concerning the following optimization problem
minimize f(2) subject to z € C3. (P$)

where C{ is a feasible set in F? or F§° and f :
C{ — F. is an objective function. We denote

z € Fg° by

z = (21,29,23, ) where z; € F fori =1,2,---.
In what follows we consider

CS ={2eFP:g;(2) 22 (0,8;)r,5 =1,2,--}.

where g; : C3 — Fr, (0,6;)r € Fr,and §; > 0 are
constants for j = 1,2,---. Let § = (61,02,-+-) €
R, If z* € (¢ satisfies f(z*) = min{f(z) : z €
C{} then 2* is called an optimal solution of (P§).

In order to analyze (Pf ) which is general case,
we may consider an R—valued optimization prob-

lem

minimize f(2) subject to z€ C{NR.  (PY)



Then, letting f§ = min f(2), we get f§ € R
zeCfr‘nR
which gives the optimal value in R as follows.

Corollary 1 Let f* € R. Then there exists no

L—fuzzy number f € FL\R such that f = f*,i.e., f 2

f*and f* 2\ f.

From the above corollary we get the following lemma

immediately.

Lemma 1 Denote f{ = min{f(z) : 2 € C§}, f§ =
min{f(2°) : z € C{} € R,
f$ =min{f(2)°: z€ 4} €R,

3 =min{f(2) : 2 €CJ} € R, wherez° € R, f(2)° €

R are centers of z, f(z), respectively, and ) =
c¢NR.

If there exist ff,i =1,2,3 and f§, then it fol-
lows that f{ € R and that '

ff=f=f<

If6 =0, then f0 = f9 = fJ = fa.

Remark 1 It follows that
Cd={zeR™:gi() <0,j=1,2,---} =CiNR.

When 6; > O for some integer j, there exists an ex-
ample such that f{ = ff = f{ < f?. See Exmaple

1 below.

In case that there exists an optimal solution of

L—fuzzy optimization problems, by the above lemma,

the solution means a real number.

Theorem 3 Denote f* = min{f(z) : z € C§}
and f§ = min{f(z) : z € C¢ NR}. Suppose that
(P?) has at least one optimal solution in C3. Then

there exist f*, f3 in R, which satisfy f* - .
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L—fuzzied numbers
In what follows we introduce an idea of L—fuzzied
numbers generalized by Fg'. Let x € Fr. The
quadratic 2 of an L—fuzzy number z isn’t neces-
sarily L—fuzzy number but fuzzy number in Fe
(see [6]). For z = (z1,22) € Fr and a € I, we

have the following three cases:
o 22 = (2}, 23) if 71 () > 0;

o 22 = (z122, max[z?, z3]) if z3(c) < 0 <

z2(a);
o 22 = (z},2%) if z2(0) < 0.

In this study we consider the left portion of the
membership function g2 is more significant than
the right portion of p;2. Denote an operator ()L
Fgt — Fp such that (z)L = (21(1),22(1)—21(0))
for ¢ = (x1,z2) € Ft. We call that (z)r is an
L—fuzzized number. Here the membership func-
tion of z is p,(€) = L(E%-%%ﬁih foréeR,L:
R — R, is ashape function and £, = max(§, 0) if

¢ € R. For = € Fr, we get the L—fuzzied number

(221 = (z1(1)% 21(1) — 2:(0);(0))),

where i = 1,5 = 2 if 2;(0)22(0) < 0, i =j =1if
z1(0)22(0) > 0 and |z1(0)| < |22(0)], i =j =2 if
21(0)z2(0) > 0 and |z,(0)| > |z2(0)|-

Let a shape function be L(§) = (1 — [§])+-
For an L—fuzzy number © = (£,£)r with |&of <
¢, which has the membership function . (§) =
L(§°—[—-§)+ for £ € R. Then we get the membership

function
) (1—3@3—)+ for£<§g;
Hax2 (£ = _
(1- @T\/_g)+ for £ > £2.

In this case we construct an L—fuzzy numbers

(x?), with the same portion as the left one of



pz2. It follows that (x2) = (€2,€%),. For 2 € F,
and k € R we have (kx), = kz.

In the following example we consider L—fuzzy
optimization problem with a fuzzy objective func-

tion and fuzzy constraints.

Example 1 Letz = (u,v) € F2 and A € I. Fuzzy
functions F, g;,j = 1,2,3, are as follows (P)‘f ):

F(z) = —u-v;

9a(z) = —u=3x(0,61)1;

92(2) = —v=2x(0,02)z;

g3(2) = () + (%)L = (1,03)2.

Here (0,81)1,(0,82)1,(1,683)L are L—fuzzy num-
bers and (v?)r = (u1(1)?, €y2) L, (V2L = (v1(1)2,£43)L

are L—fuzzized numbers.

The minimum of the above problem is attained
at uy(1) = vi(1) = (—4/22%,0),, which means
that min, f(2) = (- —1—'1'5)‘—6—3-,0)1, and u* =v*

(— héﬁﬂl,O)L. When A = 0 and §; = 0,j

1,2,3, then the real type of optimization prob-
lem (P) gives —v2 < f(z) < 0in R and u* =
v*=1/ V2 eR.

This example shows that there exists a unique
optimal solution of L—fuzzy number of fuzzy op-
timization problem (P{) with a fuzzy coefficient,
where (P{) is an optimization problem with R—valued
coefficients if £, = 0 and (P}‘f) is fuzzy type if
£, # 0, where £, is the spread of z € C§. There-
fore the optimal solution to the real type (FP) is
the same as solution to the fuzzy type (P)‘f) con-

cerning A =0 and £, = 0.
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4 QOil well equations with R-
valued functions

In [8] they discuss exponential decay problems,
e.g., machine replacement and oil well extraction,
etc. They analyze optimization problems for each
oil well to determine its optimal replacement sched-
ule. In order to give a mathematical model we

introduce the following notations.

o C(t): the quality remaining in the well at

time ¢
e D > 0: rate of oil extraction
e P : unit profit of oil (sufficiently large)

As the oil reserves get depleted, the rate of ex-
traction eventually decreases to uneconomic lev-
els, making it worthwhile to abandon the well
and drill a new one at a cost f(v). Here v is
capacity of the well, f is continuously differen-
tiable function. Assume that V € R and that
0<v <V, f(0)=0, f(v) >0, |
Then they get the following rate of oil extrac-
tion C' (t) = —DC(t) with C(0) = v. Then C(t) =
ve~Dt,
Moreover they discuss deterministic discounted
models in case of horizon models with a continu-
ous discount rate r > 0. Let 7 = {¢; : 1 = 1,2,--}
be a sequence of drilling times such that 0 < t; <
tiviand V= {v; :4=1,2,---} a sequence of cor-
responding oil well capacity such that < v; < V.

They get a value of the net profit function

J(T,V)

d tipa ‘
Z[[ Prje~ Pt e=r(t=tdgs _ f(y;)]e "4,
i=1 7t



They consider maximizing problems of J(7,V)
and show the following results.

Theorem STU The following statements 1)
and 2) hold:

1) There exist optimal sequences 7* = {t}

t=1,2-}and V* = {¥} :i=1,2,-.}
such that

?«:—E(J(T,V)= J(T*,V*).

2) It follows that t] = 0, ¢3 = ¢}, , —t, v} =

vifori=1,2,.---.

Let T =t3, v = v{. Then

T
J=J(T" V) = / Pre=(D+0igs _ £,y 4 Je=1T,
4]

v [PU=en) s
D+r v i
In [8] they assume that there eixits an optimal so-
lution to the problem of maximizing J. They men-
tion that a sufficiently large value of P will guar-
antee some drilling optimal but that the question
of the existence is beyond the scope of the paper.
In the following section we show the maxi-max
theorem (4] and we show an extnsion. Moreover
we apply the extension theorem to the existence

discussion for optimal solutions of J.

5 Maxi-max theorems

In [4] the author get the following theorem con-
cerning the existence of dynamical programming.

Theorem I[IWAMOTO] Let X be a set and
g: X xR — R such that g(z,-) : R — R is non-
decreasing for each x € X. Denote a set-valued

function by V(') : X — 2R where 2® is the power
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set of R and a gragh by G(Y) = {(z,y) € X xR.:
re X,ye Yz}
If a function h : G(Y) — R satisfy
3 max g(zx, yg}a(ﬁ) hz,y))=c
g9(z, h(z,y)) such that

then there exists max

reX,yely(z)
€= MaAXzeX,ye)(x) 9(z, h(z,y)).
In order to guarantee the existence of optimal
sulitions of the maximizing problems J we discuss

the following extension of the above theorem.

Theorem 4 Let X and Y are sets. Denote g :
X xY — R such that g(z,-) : Y — R satisfies

dg(x, max h(z,y)) and that

yeY(x)
g(z, h(z,y)) < g(x, max_h(zx,y)) for z € X. De-
veY(x)
note a set-valued function by Y(-) : X — 2R,
Here 2R s the power set of R and a gragh by
G)={(z,y) e XxY :z € X,y € Y(z)}. Let
a function h : G(Y) — R satisfy
T, h(zx, =c. T} t

Eﬁ%g(t,ygl%) W(x,y)) = c. Then we ge
) 9(z, h(z,y)) such that
9(z, h(z,v)).

3 max
re€X,ye)(z

C = max
zeX,yeY(z)

Let J(T,V) =g(T,V) =Y MT,V), and
i=1

P(]_ — e—(D+T)(t£+1—ti))Vi
D+r B

Denote X = {7 = (t1,t2.---)}, and ¥ = {V =

T, V) = fws)le .

(v1,v2.---)}. From the above we get
P(1- e*(D'*‘T)(t-'+1—-ti))y:=
D+r
Here V* = {v}},v} = min(V,#) and f' (%) =

P(1—e~ (P+M)(ip1-t0))y
D4r :

Assumption. ¢t] = 0 and 3T > 0 such that
At; <T.
Denote 7* = {t}} such that T =t} , —t} = t3.

_ . —(D+m)T
v} = min(V, ;) and f (;) = ﬂum_r——l 80

£

vy fori>1.

a } T * = - ? —Th
max WT,V*) =] fwi)le

*
vi =9



Then, by the extension of the maxi-max theo-

rem, we have

a(T*, V")

= T,V).
Ter}},ai}EY 9(T,V)

max g(7,max V) =
‘TeXg( "Vey )

6 Fuzzy functions

Consider a function z(t) : R — Fg'. Then z(t)
is said to be a fuzzy function. In [5] we find the

following definition of fuzzy functions.

z(t,)) = {(z1(t,a),z2(t,a))T e R? e I}

= (.'131 (t) ')’ :Uz(t, ))

for t € [t1,t2]. Denote x(t) - (z1(t), z2(t)).

An L-fuzzy function z(t) = (z1(t),z2(t)) ' R —
Fgtis H-differentiable at ¢ in the sense of Hukuhara
if there exists an n € F* such that (i) and (ii) hold
as h — 40,

@) z(t + h) = =(t) + hn + o(h);
z(t — h) + hn + o(h).

Here o(h) = (01(h), 02(h)) € C[0,£] x C[0, €] with

>0, which means that

i (1), 0) _
Mo TR

Then z(t) = (x1(t), z2(t)) is H-differentiable at ¢

(ii) =(t) =

if and only if z; (£, &), z2(t, ) are differentiable in
¢ for each a € I such that n = (52, %82) € F.
In [5] the author discuss the integration of

fuzzy function z(t).

Definition 2 An L-fuzzy function ,
z(t,") = (z1(t,-),22(t, ")) is called integrable over
[t1,t2) if 21(t, @) and z2(t, @) are integrable over

[t1,ts) for a € I. Define

2]
/ (s, )ds
ts

ta

= {(/2 x1(s, 0:)ds,/ ) 29(s,0)ds)T e R? 1 o € I}.
Jt t

1

7 Oil well equations with L-

fuzzy functions

In the same way as analyzing oil well equations
of R—valued functions we consider the following
problem with 0 < A < 1. We consider the rate of
oil extraction D as a constant L—fuzzy number
Dy = (D1,D;) € Fr such that 0 <\ Dr, where
D;(e) is the left end-point of the a—cut set and
D1(e) > 0 for o € I. Then we assume that the oil
quality and unit profit of oil are L-fuzzy function

and L—fuzzy number, respectively.

o Cr(t) = (C1(t), Ca(t)) € Fr : L—fuzzy func-
tion which means the quality remaining in

the well at time ¢

e Pp = (P1,P,;) € Fr : unit profit of oil with
025 P

In this section we consider the following notations.
v € R is a capacity of the well, f(v) is renewal cost
which is continuously differentiable with f(0) =0
and f (v) > 0 and V is the upper bound such that
0<v<V.

Then we get an initial value problem of L—fuzzy
differential equation d—g}(t) + DL CL(t) = 0 with
C(0) = v, where 0 € R. It follows that as long
as C1(t) 2 0

Cy(t) + D1Cy(t) =0
Cy(t) + DaCa(t) =0

with C;(0) = C2(0) = v. Therefore

Ci(t, o) = ve D@t Cy(t,a) = ve~Da(@)t




for t > 0,a € I. We can solve some cases of
the above fuzzy differential equations (see [6]).
Without using the above information about the
L—fuzzy function CL(t) we can find optimal so-
lutions for maximizing problems of values of the
net profit function with L—fuzzy value concerning
T={t;eR:i=12,--}suchthat 0 < ¢; <
tiviand V = {y; € R : ¢ = 1,2,---} such that
0<v <V as follows.

o tig1
J(T.V) = Z[/ Pru;CL(t —t;)e "M g¢
d=1 Y
—fvi)le™.

It can be seen that J(7,V) = (J1,J)2) € Fi,

where
oo tig1
J = Z[ PlViB_Dlte—T(t_ti)dt
i=1 Yt

—f(vi)le ™,

Here J,(7,V, ), J2(T,V, o) are R—valued func-
tions defined on X x Y x I. Denote

X = {T-:(tl)t%"'):tieR’ Osti<ti+1},
Y = {vz(l/1!V2n"'):VieR,OSZ/SV},

Consider the maximizing problem of J(7,V). We

get the following theorem by applying Theorem 3
and STU.

Theorem 5 The following statements 1) and 2)
hold.

1) There exists at least one pair of optimal se-

quences T* = {t} :i=1,2,---} and V* =

{vi:i=1,2, -} such that

T,\l}é%(xxyj(T’ V)=J(T" V) eR.
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2) It follows that t] = 0, t5 = t; | —{,v] =
vieR fori=1,2,---.  LetT =13, v=r7.
Then '

v [P(l —e” Ty fv

J(T"VA):I D+r v

_ e-rT

Here P, D € R are respective centers of L—fuzzy

numbers Pr, Dy,
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