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Abstract

We consider adifference equation for chemotherapeutic cancer treatment in-
cluding both the tumor size of cancer and the accumulated drug level.

At first we investigate acondition such that the model will be able to have a
stable solution. Next under this condition, we will have general analytic solutions
using methods of complex analysis. Then under the condition, we can get an
analytic stable solution for each patient.

We hope this theory would be useful in cancer treatment.
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1Introduction
Chemotherapy has been important in the treatment of cancer diseases especially in
cases where surgery proves ineffective. A. Novak and G. Feichtinger [1] investigated a
differential equation for chemotherapeutic cancer treatment including both the tumor
size of cancer and the accumulated drug level. But indeed we can get the data of the
treatment at only discrete times. So it is very important to investigate the model for
difference equation.

When we analyze adifference model with acomputer, then we need values of all
the parameters. So the results of it have not generality. Then we want to have analytic
solutions which have generality for the parameters. Analytic solutions of difference
equations have been investigated in $[3]-[8]$ . But if the model is not stable, then the
results is far from real phenomenon. At first, we consider the quasi stable conditions
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Under the conditions we have an analytic solution of the difference model with theories
of complex analysis. Finally we can have general analytic solutions of the model using
afunctional equation in [3].

From their differential equation in [1], we obtain the following difference model which
including both the tumor size $x$ of cancer and the accumulated drug level $y$ :

$\{$

$\triangle x(t)=x(t+1)-x(t)=G(x(t))-h(x(t))f(y(t))$ ,
$\triangle y(t)=y(t+1)-y(t)=\psi(a)-\delta y(t)$ ,

(1.1)

$\{$

$G(x)=gx \log\frac{\theta}{x}$ ( $\theta$ : fixed interval of treatment, $g$ : constant),
$h(x)=x^{\beta}$ ( $h$ : concave, $\beta$ : constant, $0<\beta<1$ ),
$f(y)=\overline{c}+\overline{y}b\mathrm{g}$ ( $b$ , $c$ : constant),
$\psi(a)=a$ ( $a$ : parameter),
$\delta$ : natural cleaning rate, $(0<\delta<1)$ .

Then we consider the following difference equation.

$\{$

$x(t+1)=x(t)+gx(t) \log\frac{\theta}{x(t)}-x(t)^{\beta_{\frac{y(t)}{c+y(t)}}}$

$y(t+1)=y(t)+a-\delta y(t)$
(1.2)

If the radius of tumor is smaller than 10 cm, some hospital uses the chemothera-
peutic cancer treatment with alittle drug to stop its growth, even though it would be
impossible to put off all of them. This treatment gives little influence to body by drug.
Hence in this paper we want to have asolution $x(t)arrow\gamma>0$ , $y(t)arrow\zeta(small)$ .

If we suppose the existence of afixed point $(x, y)=(\gamma, \zeta)$ , $\gamma>0$ , $\zeta>0$ , then this
model has astable solution and we have

$\{$

$g \gamma\log\frac{\theta}{\gamma}=\gamma^{\beta}\frac{a}{c\delta+a}$

$\mathit{6}(:$ $=a$
(1.3)

Put $h(\gamma)=\gamma e^{\frac{1}{g}\gamma^{\beta-1}\frac{a}{\mathrm{c}\delta+a}}$ , then we have $\mathrm{h}(\mathrm{j})\uparrow+\infty$ , $(\gammaarrow+0, \gammaarrow+\infty)$ , and have a
minimum value of $h(\gamma)$ such that

$h(( \frac{g(c\delta+a)}{a(1-\beta)})^{\frac{1}{\beta-1}})$ . (1.4)

So that if we take 0bigger than (1.4), then there is asolution $\gamma_{0}$ of $h(\gamma)=\theta$ , i.e., this
pair $(\gamma, \theta)$ is satisfies the first equation of (1.3). For convenience’ sake, we put $\gamma_{0}=\gamma$

and $u(t)=x(t)-\gamma$ , $v(t)=y(t)$ $-(;$ , then we have from (1.2)

$\{$

$u(t+1)=u(t)+g(u(t)+ \gamma)\log\frac{\theta}{u(t)+\gamma}-(u(t)+\gamma)^{\beta}\frac{v(t)+\zeta}{c+v(t)+\zeta}$

$v(t+1)=(1-\delta)v(t)$
(1.5)

53



2 Conditions of the Difference Model for the exis-
tence of asymptotically stable solutions

Here we consider analytic solutions $u(t)$ of (1.5).
Prom the first equation of (1.5) we have

$u(t+2)=u(t+1)+g(u(t+1)+ \gamma)\log\frac{\theta}{u(t+1)+\gamma}-(u(t+1)+\gamma)^{\beta}\frac{v(t+1)+\zeta}{c+v(t+1)+\zeta}$,

and using second equation of (1.5) we have

$1- \frac{c}{c+(1-\delta)v(t)+\zeta}$

$=(u(t+1)+ \gamma)^{-\beta}\{-u(t+2)+u(t+1)+g(u(t+1)+\gamma)\log\frac{\theta}{u(t+1)+\gamma}\}$.

From this equation and the first equation of (1.5), we have

$v(t)=-(c+ \zeta)+\frac{c}{1+(u(t)+\gamma)^{-\beta}U}$

$= \frac{1}{1-\delta}\{-(c-\zeta)+\frac{c}{1+(u(t+1)+\gamma)^{-\beta}U_{1}}\}$

$=\Phi(u(t))$ , (2.1)

where $U=u(t+1)-u(t)-g(u(t)+ \gamma)\log\frac{\theta}{u(t)+\gamma}$ , $U_{1}=u(t+2)-u(t+1)-g(u(t+$

$1)+ \gamma)\log\frac{\theta}{u(t+1)+\gamma}$ . Hence we obtain the following second order difference equation for
only $u(t)$

$u(t+2)=u(t+1)+g(u(t+1)+ \gamma)\log\frac{\theta}{u(t+1)+\gamma}$

$+ \frac{c\{(u(t)+\gamma)^{\beta}+U\}(u(t+1)+\gamma)^{\beta}}{\delta(c+\zeta)\{(u(t)+\gamma)^{\beta}+U\}+c(1-\delta)(u(t)+\gamma)^{\beta}}-(u(t+1)+\gamma)^{\beta}$.

(2.2)

Then we will investigate analytic solutions $u(t)$ of (2.2) such that $u(t)arrow 0$ .
From (2.2), we obtain the characteristic equation
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$D( \lambda)=\lambda^{2}-\{1-g+\gamma^{2(\beta-1)}(\gamma^{1-\beta}(\frac{a}{c\delta+a}-\beta(1-\delta))\frac{\beta^{2}c\delta}{c\delta+a})\}$ A

$+(1- \delta)\{1-g+\frac{a\gamma^{\beta-1}}{c\delta+a}(1-\beta)\}=0$ . (2.3)

Let $\lambda_{1}$ , $\lambda_{2}$ be roots of the characteristic equation, then $\lambda_{1}+\lambda_{2}=d_{1}$ , $\lambda_{1}\cdot\lambda_{2}=d_{2}$ , where

$d_{1}=1-g+ \gamma^{2(\beta-1)}(\gamma^{1-\beta}(\frac{a}{c\delta+a}-\beta(1-\delta))\frac{\beta^{2}c\delta}{c\delta+a})$ ,

$d_{2}=(1- \delta)\{1-g+\frac{a\gamma^{\beta-1}}{c\delta+a}(1-\beta)\}$ .

If $0<d_{1}<2$ , $d_{2}>0$ , and $d_{1}^{2}-4d_{2}\geqq 0$ , we can have acharacteristic value Asuch
that $0<\lambda<1$ . Then we will prove the existence of astable solution of (2.2).

For example, put $a=0.04$ , $\beta=0.4$ , $\delta=0.9$ , $c=700,0=1$ , $\gamma=0.4$ , $=1$ , then we
have $\lambda_{1}+\lambda_{2}=0.01663442$ , $\lambda_{1}\lambda_{2}=0.0000066$ . So we can have $0< \min$ ( $\lambda_{1}$ , A2) $<1$ .

In this paper, we assume that $0<d_{1}<2$ , $d_{2}>0$ , and $d_{1}^{2}-4d_{2}\geqq 0$ .
Put aformal solution to (2.2) $u(t)= \sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}$ , then we have

$\{$

$.\alpha_{1}\cdot D(\lambda)=0$

$\alpha_{k}\cdot D(\lambda^{k})=C_{k}(\alpha_{1}, \cdots, \alpha_{k-1})$ $(k \geqq 2)$
’

where $C_{k}(\alpha_{1}, \cdots, \alpha_{k-1})$ are written by $\alpha_{1}$ , $\cdots$ , $\alpha_{k-1}$ . Since $D(\lambda)=0$ and $D(\lambda^{k})\neq$

$0(k\geqq 2)$ , we have $\alpha_{1}$ is arbitrary and $\alpha_{k}$ are determined by $\alpha_{1}$ , $\cdots$ , $\alpha_{k-1}$ . Here we
suppose that $\alpha_{1}\neq 0$ .

Then we can determine aformal solution

$u(t)= \sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}$. (2.4)

3Existence of an analytic stable solution
Time $t$ is of course areal variable. But in this section we consider $t$ to be acomplex
variable, and we will prove existence of an analytic stable solution of (2.2) with theories
of complex analysis. But here we will omit the details. The proof will be appear in
another journal [7]
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Put $u(t)=s$ , $u(t+1)=w$ , $u(t+2)=z$ , and

$H(s, w, z)=-z+w+g(w+ \gamma)\log\frac{\theta}{w+\gamma}-(w+\gamma)^{\beta}$

$+ \frac{c\{(s+\gamma)^{\gamma}+w-s-g(s+\gamma)1\mathrm{o}\mathrm{g}\frac{\theta}{s+\gamma}\}(w+\gamma)^{\beta}}{\delta(c+\zeta)\{(s+\gamma)^{\gamma}+w-s-g(s+\gamma)1\mathrm{o}\mathrm{g}\frac{\theta}{s+\gamma}\}+c(1-\delta)(s+\gamma)^{\beta}}$ .

(3.1)

Then the equation of (2.2) can be written such as

$H(u(t), u(t+1)$ , $u(t+2))=0$ . (3.2)

Then $H(s, w, z)$ is holomorphic in aneighborhood of (0,0,0) and we have $H(0,0,0)=0$
easily. Furthermore we have

$\frac{\partial H}{\partial s}(0,0,0)=-\lambda_{1}\cdot\lambda_{2}<0$ .

Hence using the theorem on implicit function for the equation $H(s, w, z)=0$ , we have
aholomorphic function $\phi$ such that

$s=\phi(w, z)$ for $|w|$ , $|z|\leqq\rho$ (3.3)

for some $\rho>0$ .
Our aim is to show the existence of $u(t)$ such that $u(t)=\phi(u(t+1), u(t+2))$ .

Formal solution is given by (2.4). It suffices to prove the convergence of the (2.4).
Let $N$ be apositive integer. Put the partial sum of (2.4) as $P_{N}(t)= \sum_{n=1}^{N}\alpha_{n}\lambda^{nt}$ .

If the stable solution $u(t)$ of (2.2) would exist, then writing $p(t)=u(t)-P_{N}(t)$ and we
would obtain from $u(t)=\phi(u(t+1), u(t+2))$ . Conversely if $p(t)$ would exist, then we
have aexact solution $u(t)$ of (2.2) by $u(t)=p(t)+P_{N}(t)$ .

Put

$S(\eta)=\{t\in \mathbb{C} : |\lambda^{t}|\leqq\eta\}$

$J(A, \eta)=$ {$p:p(t)$ is holomorphic and $|p(t)|\leqq A|\lambda^{t}|^{N+1}$ for $t\in S(\eta)$ }.

Take $A>0$ and $0<\eta<1$ , which will be determined later. For $p(t)\in J(A, \eta)$ , put

$T[p](t)=g_{3}(t,p(t+1),p(t+2))$ , (3.4)

where $g_{3}(t,p(t+1),p(t+2))=\phi(p(t+1)+P_{N}(t+1),p(t+2)+P_{N}(t+2))-P_{N}(t)$ .
We can show that constant $A$ and $\rho$ may be chosen such that $T$ has afixed point
$p(t)=p_{N}(t)\in J(A, \eta)$ by Schauder’s fixed point theorem in [2]
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Furthermore we can prove the uniqueness of the fixed point, and that the solution
$u(t)=p_{N}(t)+P_{N}(t)$ is independent of $N$ . But here we omit the details.

Thus we have proved that asolution $u(t)$ is defined and holormorphic in $S(\eta)$ for a
$\eta>0$ , which has the expansion $u(t)= \sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}$ .

By the way, we can not assure following condition

$\frac{\partial H}{\partial s}(s, w, z)\neq 0$ , for all $w$ , $z$ .

So that the solution $u(t)$ can be continued analytically by making use of the relation

$u(t-2)=\phi(u(t-1), u(t))$ ,

keeping out of branch points, up to $\mathbb{R}[t]\geqq 0$ . The solution obtained may be multivalued.

4Analytic General Solutions
Analytic general solutions of some difference equations have been investigated in $[5]-[6]$ .
In this section, we will have general analytic solution of (1.5).

Let $u(\tau)$ be the solution of (2.2) in above argument. And suppose $\chi(t)$ be asolution
of (2.2) such that $\chi(t+n)arrow 0$ as $narrow+\infty$ uniformly on any compact set. We put

$u(t)= \sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}=U(\lambda^{t})$ , $\alpha_{1}\neq 0$ ,

then $U$ is aopen map, and $\chi$ is also aopen map. Since $U(0)=\chi(0)=0$ , for any $\eta_{1}>0$

there is asome constant $\eta_{2}>0$ such that

$U(|\tau|<\eta_{1})\supset\{|\chi|<\eta_{2}\}$ .

So that there is alarge $R$ such that, if $|t’+n|>R$ then $|\chi(t’+n)|<\eta_{2}$ . Hence there
is a $\tau=\lambda^{\sigma}$ such that

$\chi(t’+n)=U(\tau)=U(\lambda^{\sigma})$ .

Since $\alpha_{1}\neq 0$ , using the theorem on implicit function we have a $U^{-1}$ such that
$\lambda^{\sigma}=U^{-1}(\chi(t’+n))$ . Put $t=t’+n$, then $\lambda^{\sigma}=U^{-1}(\chi(t))$ , and we writ $\mathrm{e}$

$\sigma=l(t)=\log_{\lambda}U^{-1}(\chi(t))$ .

57



When there is asolution $\chi(t)$ of (2.2) and we write $s(t+1)=F(s(t), w(t))$ , $w(t+1)=$
$G(s(t), w(t))$ , according to [3], we can prove existence of $\Psi$ such that

$\Psi(F(\chi, \Psi(\chi)))=G(\chi, \Psi(\chi))$ .

Then we obtain the following first order difference equation from (2.2)

$\chi(t+1)=\Psi(\chi(t))$ . (4.1)

So that we have $\chi(t+1)=\Psi(\chi(t))=\Psi(U(\lambda^{\sigma}))=\Psi(u(\sigma))=u(\sigma+1)$ , and $\sigma+1=$

$l(t+1)$ , $l(t)+1=l(t+1)$ .
Hence we obtain

$l(t)=t+\pi(t)$ ( $\pi$ : arbitrarily period one). (4.2)

Then $\sigma=t+\pi(t)$ , and $\chi(t)=U(\lambda^{\sigma})=\sum_{n=1}^{\infty}\alpha_{n}(\lambda^{\sigma})^{n}=\sum_{n=1}^{\infty}\alpha_{n}(\lambda^{t+\pi(t)})^{n}=$

$\sum_{n=1}^{\infty}\alpha_{n}(\lambda^{\pi(t)}\cdot\lambda^{t})^{n}$ . Now we put $\lambda^{\pi(t)}$ into $\pi(t)$ , then $\chi(t)$ can be written as

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(\frac{1\mathrm{o}\mathrm{g}\pi(t)}{1\mathrm{o}\mathrm{g}\lambda}+t)}$ (4.3)

Thus we have the following theorem

Theorem. Suppose that $u(\tau)$ be the solution of (2.2) obtained in Section 3. Suppose
$\chi(t)$ be an analytic solution of (2.2) such that $\chi(t+n)arrow 0$ as $narrow+\infty$ , uniformly on
any compact set. Then there is a periodic entire function $\pi(t)$ , $(\pi(t+1)=\pi(t))$ , such
that

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(\frac{1\mathrm{o}\mathrm{g}\pi(t)}{1\mathrm{o}\mathrm{g}\lambda}+t)}$ ,

where $\pi(t)i\dot{s}$ an arbitrarily periodic function whose period is one.
Conversely if toe put

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(\frac{1\mathrm{o}\mathrm{g}\pi(t)}{1\mathrm{o}\mathrm{g}\lambda}+t)}$ ,

where $\pi$ is a periodic function whose period is one, then $\chi(t)$ is a solution of (2.2).

Now we have ageneral solution of (2.1) such that

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(^{10_{\mathrm{l}\lambda}}}\mathrm{r}_{\mathrm{o}\mathrm{g}}^{\pi}\Delta^{t}I_{+t)}$ ,
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where $\pi$ is an arbitrarily periodic function whose period is one. And we have general
solution $v(t)=\Phi(\chi(t))$ of (1.5) by (2.1). Thus we can obtain stable analytic general
solutions $(x(t), y(t))$ of (1.2) by

$x(t)=\chi(t)+\gamma$ , $y(t)= \Phi(\chi(t))+\frac{a}{\delta}$ .
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