obooooooOoooO 13100 20030 105-124

105

On Centralizers of Parabolic Subgroups in Coxeter Groups
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Graduate School of Mathematical Sciences,
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Abstract

We describe the structure of the centralizer of an arbitrary parabolic sub-

group in any finitely generated Coxeter group.

1 Introduction

Let (W, S) be a Coxeter system such that S is a finite set. A parabolic subgroup
W; of W is the subgroup generated by a subset I of S. In this paper, we determine the
structure of the centralizer Cy (Wr) of Wy in W for arbitrary finite S and I. In particular,
we do not assume that W is finite.

The structure of Cy (W) has been known in certain cases, such as I = S (in this case,
Cw (W) is the center of W) and #1I = 1 (this case is examined by Brink [1]). However,
no corresponding general result for an arbitrary I has been known. -Our result generalizes
these results to the general case.

W has a well known faithful reflection representation in a real vector space with a
symmetric bilinear form (which may not be positive definite in general), and the notion of
root system in this vector space (see Section 2.1). Using this terminology, we decompose
Cw(Wy) (in Section 3) as Wy x (Wi x Gj), where Wi is the parabolic subgroup
generated by the elements of I which are isolated in the Coxeter graph of I, Wi is
the subgroup of W generated by reflections fixing all simple roots in Wj, and G; is a
certain subgroup defined in that section. We have Wy ~ (Z/2Z)*
by Deodhar [4] or by Dyer [5], Wi is a Coxeter group, whose Coxeter generators and

Iiso

, and by a result

Coxeter relations can be determined if the root system of W is well understood. Our
main objective in this paper is to determine the structure of Gj.

To describe Gy, we define a groupoid (see Section 2.2 for the notion of groupoids) H
on the set S N = #I, where S™ = {z = (z,,2s,...2n) € SV | z; # z; for all i # j},
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such that its vertex group H, , is a normal subgroup of G; whenever [ = {z1,22,..., 25},
and introduce a graph G, which we call the transition diagram, based on information on
the subsets of S of finite type. Note that W, Wi, G; are denoted by W[z,]iso, Wi,
G, respectively in the text, by taking such z € S™"). Then we present H as a quotient
groupoid of the fundamental groupoid of G (which is a free groupoid), and give a method
to specify the generators of the kernel of the quotient map in terms of the directed paths
of G. As a consequence, a presentation of H, ; is also obtained. (These are done in Section
4.) Moreover, in Section 5, coset representatives of G, ,/H, . and their products in Gra
are described using the graph G. | |

Section 6 deals with certain examples; we compute Cy (W;) for an affine Coxeter group
according to the result of previous sections. Further, in that section, we also consider the
case of maximal parabolic subgroups; that is, I is a maximal proper subset of S.

Finally, note that all the proofs of the results are omitted in this paper, by reason of
space. The detailed proofs will be given in [8].

2 Background material

2.1 Coxeter groups

In this paper, the basic notations and well-known facts about Coxeter groups are based
on Humphreys [7]. Here we do not yet assume that S is a finite set.

A pair (W, S) is called a Cogeter system (or simply, W is called a Cozeter group) if W
is a group presented as

W=(S|s*=1forall s€S,(ss)™ =1 for some s # sy, -

where m; s denotes the (possibly infinite) order of ss’ in W. (In this paper (W, S) always
denotes a Coxeter system.) Then the structure of W is described also by its Cozeter graph
I'; this is a simple, undirected graph on S which has an edge between s and s’ labeled
ms s if and only if ms,s:> 3. Note that labels m, o are usually omitted if m, o = 3.

(W, S) has a well-known geometric representation (over R) as follows. Let V be a real
vector space with basis II = {a,}scs having a symmetric bilinear form ( , ) determined
by (s, ay) = —cos(m/m,y), where m/oo is interpreted as 0. Then W acts on V by
s-v=v—2(v,a,) a; for all s € S, and this action is faithful and preserves the bilinear
form. The orbit & = W - 1I is called the root system of (W,S), and its elements are
called roots of (W, S). Obviously, each element of II is a root; this is called a simple root.

Further, a root v is called positive, negative, denoted by v > 0, v < 0, if v is a linear
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combination of simple roots with all coefficients nonnegative, nonpositive respectively.
For U C @, let U, U~ denote the set of all positive, negative roots of ¥ respectively.
Then it is well known (see [7]) that = = —®*, & = &+ LI &~ (disjoint union).

Let v = w - o, be a root with s € S, w € W. Then the reflection s, = wsw™! about v
is determined independently on the choice of w, s, and acts on V by s, -v =v—2(v,7) 7.

For w € W, the length ¢(w) of w is the minimal number k such that w = s382--- sk
for some s; € S. Then it is also well known that ¢(w) = #®;, where ®F denotes the set
of all positive roots v € ® such that w-vy < 0.

For I C S, let W; = (I) denote the parabolic subgroup of W generated by I and let
II; = {as}sel,. V; = spangll; and ®; = W, - II;. Then (W;,I) is also a Coxeter system
with geometric representation V7, root system ®; and simple roots II;. Let I't denote the
Coxeter graph of (Wy, I). We often say that I is connected instead of that Iy is connected.
For example, (W, S) is called irreducible if S is connected.

For I C S, we say that I is of finite type if Wy is a finite group. Then W, has the
(unique) element wo(I) with maximal length, called the longest element of W7, if and only

if I is of finite type. Furthér, the following theorem holds:
Theorem 2.1 (see [9]). If I C S is of finite type, then wo([) - II; = —TIl. O

Note that wg(I) is involutive. Owing to Theorem 2.1, we define a permutation oy on I by
wo(I) - as = —ag,(s) for each s € I. Then o,(s) = wo(I)swo(I) and so oy is an involutive
autbmorphism of I';. Figure 1 shows the table of all finite irreducible Coxeter systems
(see, for example, [7] for the classification of finite irreducible Coxeter systems) and the

action of o for each Coxeter system.

2.2 Groupoids

In this paper, the basic notations and well-known facts about groupoids are based on
Higgins [6] or Brown [2].

A family X = {X;;}ijev(x) of sets X; ; is called a graph on vertex set V(X). We write
z € X when z € X;; for some ¢, j. Now a groupoid, certain generalization of a group, G
is a graph (in the above sense) satisfying the following axioms: ‘
(G1) For z € G;; and y € G;, the composition (or multiplication) zy € G is defined.
(G2) (zy)z = z(yz) holds for all z € G, y € Gjx, z € Gy,
(G3) For i € V(G), there exists a unit 1; € G;; such that 1,z = z for all z € G,
j € V(G) and y1; =y for all y € Gy, k € V(G).

(G4) For = € G;j, there exists an inverse 27! € G;; of z such that zz~! = 1, and
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Figure 1: Finite irreducible Coxeter systems

Each s; is the numbering on S, and 3; = o5(s;).
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! is unique for each z, similarly to the case

The unit is unique for each i € V(G) and z~
of groups. Note that each G;;, i € V(G) is a group, called a verter group of G. On
the other hand, for a generalization of semigroups, any graph satisfying all axioms above
except (G4) is called a category. (In the context of the usual category theory, a ‘category’
defined above is indeed a small category, with objects V(G) and morphisms G; ;. Further,

a groupoid is now a small category such that all morphisms are invertible.)

Example 2.2. Now we define the fundamental groupoid P = P(G) of any undirected
graph G, which is one of the important examples of groupoids.

Let P;; = P;;(G) be the set of all directed paths of G from a vertex i to j. Then
the family {P;;}:jev(g), denoted by P = P(G), forms a category with concatenation as
composition, where the units are trivial paths (paths of length 0) at each vertex.

For each e € E (G) with certain direction, let-e~! denote the same edge but has the op-
posite direction. Further, for any path p = ejey - -€, € P;;, define p™! = e;1---e;'e;" €

P;i. Now let ~ denote the equivalence relation on P; ; generated by the relation

-1
€1 €k—_1€k€p €ky1° " "€n ™~ €1 €k—1€k+1 """ En,

the homotopy equivalence of paths. Then the multiplication of P induces a partial multi-
plication [p] [g] of homotopy classes, such that [p][g] is defined if and only if pq is defined.
Let P;; = P;;(G) denote the set of homotopy classes of all p € P;;. Then the family
P = {P.;}ijev(c) forms a groupoid with above multiplication, as required. O

A subgroupoid H of a groupoid G is defined similarly to the groups, with the additional
condition V(H) C V(G). H is called fullif H; ; = G, ; for all 4, j € V(H), and called wide
if V(H) = V(G). (Similar notions are also defined for categories and graphs.) Further,
H is called normal if H is wide and gzg™' € H;; for all z € H;;, g € Gj:.

Example 2.3. For a groupoid G with wide subgroupoid H, let ~y be the equivalence
relation on V(G) such that ¢ ~g j if and only if H;; # 0. Then any full subgroupoid of
G on an equivalence class with respect to ~¢ is called a connected component of G, and

G is called connected if G consists of only one connected component. O

Let G be a groupoid. Then the intersection (], H of subgroupoids Hj of G is defined
naturally, with V(, H,) = (), V(H,), and forms a subgroupoid of G. Note that it
becomes normal in G whenever all H, are. Further, for a subgraph X of G, the (normal)
subgroupoid of G generated by X is the intersection of all (normal) subgroupoids of G
containing X, or equivalently the smallest (normal) subgroupoid of G containing X.
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Let X, X’ be graphs. A graph homomorphism f : X — X' sends each i € V(X)
to f(i) € V(X’) and each z € X;; to f(z) € X}(j)‘f(j). A graph anti-homomorphism
is defined similarly but f(z) € X}, ;. instead of X%, .. Let f: G — G’ be a
graph homomorphism between groupoids. Then f is called a groupoid homomorphism if
flry) = f(x)f(y) for z,y € G whenever zy is defined and f(1;) = 1y for i € V(G),
and groupoid anti-homomorphisms are also defined similarly. Then every property about
homomorphisms appearing in this subsection can be translated into the case of anti-
homomorphisms. Note that f(z~!) = f(z)~! holds for any groupoid homomorphism
f:G — G’ and z € G. Further, an isomorphism of two groupoids is defined similarly to
the case of groups. Note that any groupoid isomorphism f : G — G’ induces isomorphisms
of vertex groups G;; — Glf(i),f(i)- » |

The image of a groupoid homomorphism f : G — G’ is the subgraph f(G) of G’ on
f(V(G)) consisting of all f(z), z € G. Note that f(G) is not a subgroupoid of G’ in
general, but this becomes a subgroupoid whenever f is injective on V(G). On the other
hand, the kernel of f is the wide subgraph ker f of G consisting of all x € G such that
f(z) is a unit of G’, and then ker f always forms a normal subgroupoid of G.

For a groupoid G and its normal subgroupoid N, the quotient groupoid G/N is defined
as follows. Let V(G/N) be the set of all equivalence classes [¢] on V(G) with respect to
~n. For z,y € G, let =5 be an equivalence relation on G such that £ =5 y if and only
if z = gyh for some g,h € N. Let [z] denote the equivalence class of z € G with respect
to =n. Now define

(G/N)[‘.i],lj] = {[SL‘] I T e Gir,j/ for some ¢’ € [Z] ,jl (S []]}

and G/N = {(G/N)g 1 Hiz- Then the multiplication of G/N is induced naturally and
G/N forms a groupoid in fact.

Now an analogy of “The First Isomorphism Theorem” is given as follows:

Theorem 2.4 (see [2] or [6]). If a groupoid homomorphism f : G — G’ is injective on
V(G), then the induced map f : G/ ker f — f(G) is an isomorphism. 0

Let G be a groupoid with subgraph X. We say that G is free on X if any graph homo-
morphism f : X — G’ to a groupoid G’ extends uniquely to a groupoid homomorphism
jT: G — G'. Note that the free groupoid on X is unique (up to isomorphism) if it exists.

Conversely, the existence is deduced from the following fact:

Theorem 2.5 (see [6]). Let G be an undirected graph. Fiz an orientation for G, so G is
considered as a subgraph of its fundamental groupoid P. Then P is free on G. 0
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3 Decomposition of centralizers

From now on, we assume that S is a finite set. In this section, we state that the
centralizer Cw (W) of W; admits a decomposition W0 X (W1 x G,,) as described in
Introduction, and define a normal subgroup H,, of G, .

We start with some notations. For a nonnegative integer N, let
SW) = {z = (21,...,2n) € SN | z; # z; for all 5 # j}

and let [z] = {z1,...,zn} for z € SW™). Further, for I C S, let I'*® be the set of all
isolated points of I'y and let I, = {y € ® | (y,a;) =0 for all s € I}.

Definition 3.1. For z,y € S™, let

Coy={weW|wyw ! =2z;forall<i< N}
={weW|w-q = %oy, forall1 <i< N},

Cry= {we Cry|w-ay, =ay forally; € [¥]*},

Cg’y=-{w€Cx,y|w-ayi=azi for all 1 <7< N} : O

Note that C;, C C; , C Cy, by this definition. Further, the following lemma also follows

from this definition:
Lemma 3.2. C = {Ciy}ay, C' ={C, }oy, C" = {Cs, }zy are groupoids on S™M.

Since the centralizer of each Wi occurs as C,; by taking z € S#!) such that [z] = I,

we examine C, , hereafter. Now we have the decomposition of C;, as follows:

z,x’

Theorem 3.3. Let z € S™N). Then C,, = Wigiso X Cp gy Wiggiso = (Z/QZ)#[w]is"' O

Secondly, we give a certain decomposition of C,, .. Let W7, z € S®™) be the subgroup

of W generated by all reflections s, such that v € [:z]I, and let
Goy={we Cyy | 25 N[yl =0}

for z,y € S™. Then it can be shown that G,, = {w € C,, | w- [y]] = [z]]}, and so
G = {Gy}s,y forms a wide subgroupoid of C’. In particular, G, is a subgroup of C; .
On the other hand, for the subgroup W, the following lemma holds:

Lemma 3.4. For z € S™, W} is a normal subgroup of C,, ., and the set [z], is W;-

invariant. ‘ O
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Deodhar [4] and Dyer [5] proved independently that every reflection subgroup (that
is. a subgroup generated by reflections) forms a Coxeter system with certain generating
set. Now each W is a reflection subgroup, so W also forms a Coxeter group.

Further, they also gave a characterization of the generating set. Now we determine
the generating set S, of W2 by using Deodhar’s characterization; let II, be the set of all
v E [T]I such that v cannot be written as a nonnegative R-linear combination of other
elements of [z]], and let Sy = {s4 |7 € ﬁz} Then we have the following by [4] since [z];

is Wl-invariant (cf. Lemma 3.4):

Theorem 3.5. (WL, S,) is a Cozeter system, and its length function ¢ satisfies t(w) =
#(®F N [x],) for allw € W}. 0

We note that Dyer’s characterization gives the same generating set with the set obtained
by Deodhar’s.

Now the decomposition of C, , is given as follows:

Theorem 3.6. C,, = W} x G;; for all z € SW™). 0O

Here we consider the structure of (W, S,) and the action of G,z on W} more. Firstly,
the following theorem is a special case of Theorem 4.4 of [5]:

Theorem 3.7. Let 71,72 € 1, 71 # 7Y2- Then either (y1,7v2) = — cos(nw/m) for some
meZ,m22or(y,7) < —1. 0

Then the structure of (W7, S;) can be determined whenever II, is well understood, by

using the following fact:

Proposition 3.8. Let v, € ﬁx, Y1 # Y2- Then s, sy, has finite order m if and only if
(71,72) = — cos(m/m). O

Secondly, we examine the action of G, , on W;. Let I" denote the Coxeter grabh of
(Wi, §z) Note that for arbitrary Coxeter system (W, S) (temporarily we do not assume
that S is a finite set) with Coxeter graph I', each 0 € Autl” induces an automorphism
fo : W — W, and the map Autl’ — AutW, o — f, is a group homomorphism. Now the

following theorem follows from Deodhar’s characterization of S,:

Theorem 3.9. There exists a unique group homomorphism G, , — Autl’ , W gy such
that wuw™"' = f,_(u) for allu € Wt. ' 0
Corollary 3.10. C, , = W} x G, whenever Autl’ = 1. 0

At last of this section, we define H = GNC”, so H is a wide subgroupoid of G. Then
it follows from the definition that each H, ; is a normal subgroup of G, .. The structures

of G, and H, , are discussed in the following sections.
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4 Transition diagram and the groupoid H

Before we consider the structure of G, ., we examine the groupoid H in this section.

To do this, we define a graph (which we call the transition diagram) G = G™)(W, S) of
(W, S) for each nonnegative integer N; it is an undirected graph on S (N) which have close
relation with the action of the longest elements of finite parabolic subgroups. Then we con-
struct below a certain anti-homomorphism F from the fundamental groupoid P =7P(G)
of G to H which is surjective. This implies that H is anti-isomorphic to the quotient
groupoid P/ ker F. Finally, we give a certain generating set of ker F' (as a normal sub-
groupoid) and a method for obtaining a presentation of H ..

Now we start to define G. For I C S and s € S, let I.; denote the vertex set of
connected component of I'1y(s) containing s, so I.sClU{s}. Forze S (M) we write Tos
as a shorthand for [z]_,. Further, recall (cf. Section 2.1) that we call I C S of finite type
if W, is a finite group. |

Definition 4.1. Let £ € S&), s € S. Then we say that s reacts on z if s & [z] and T, is
of finite type. In this case, the product ¢(z, s) of this reaction is defined to be the unique

element of S®) such that

o(z,8) = OansOrnsnfe) (31) I 2i € T
Zi otherwise

and the residue of this reaction is ¥(z, s) = 0.,(s) (see Section 2.1 for the definition of

o). Moreover, we say that this reaction is dynamic if p(z,s) # . 0

The definition of G is as follows:

Definition 4.2. Let z,y € S™) and s,s’ € S. Then G is defined to be a graph on the
vertex set S™V) such that, it has an undirected edge {(z,s), (y,s’)} between z and y if
and only if s reacts dynamically on z and its product, residue are y,s’ respectively. 0

In addition, when we draw the picture of G, this edge {(z, s), (y, s')} is represented, for
example, as an edge with labels s close to the vertex z and s’ close to y; moreover, for
the case s = &', the repeated s’s may be replaced by a single s.

Though the definition of edges of G in Definition 4.2 seems to be asymmetric about

(z,s) and (y, §'), G is well-defined, thanks to the following proposition:

Proposition 4.3. If s reacts on z, then ¥(z, s) also reacts on ¢(z,s), and the product,
residue of the latter reaction are z,s respectively. In particular, the latter reaction is

dynamic if and only if the former is dynamic. O
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This proposition is deduced from the following characterization of reactions:

Lemma 4.4. Let v,y € SW) and s € S. Then s reacts on x and the product is y if and
only if the following two conditions hold:

(i) [y] € [z] U {s},

(ii) there exists some w € Wiusy N Cy ., w # 1.

Further, w = w; whenever these conditions hold, where w3 = wo(zs)wo(zTs ~ {s}). O

Moreover, this lemma implies also the following proposition:

Proposition 4.5. If s reacts on x, then wg((;j)) = (w)™L. 0
Example 4.6. Let (W, S) be a finite Coxeter system of type Bs with numbering on S
in Figure 1, and let N = 3, z = (51, 53,54) € S®™). Then we show that the connected

component G, of G containing z is

S3 S S S92 S
y3 21. 51.12 3yl

where =’ = (s1, 54, 53), ¥ = (84, 51, 52) and y’ = (s4, S92, 51).

Firstly, s5 reacts on z and ¢(x,s5) = ', ¥(z,s5) = ss5. In fact, Ts, = {53,54,55},
Toss N {85} = {s3,84} are of type B3, A, respectively. Then we have ¢(r,s5) = 2,
¥(x, s5) = S5 since the action of the longest element turns the Coxeter graph for the case
of type A,, while it fixes the Coxeter graph for B, (cf. Figure 1).

Further, s, also reacts dynamically on z,z’ and ¢(z, s5) = y, ¥(z, s5) = s3, o(z', s9) =
y' and ¥(z', s) = s3 by similar argument. Finally, it can be checked that ss reacts not
dynamically on y,%y’. Hence the connected component becomes as above. 0

For each edge {(z,s),(y,s’)} of G, let e5 denote this edge with direction from z to
v (note that y and s’ are uniquely determined by z and s whenever the edge exists, so

this notation is unambiguous), and let (e$)~! denote the same edge but has the opposite

direction (namely, from y to z). Then (e$)~! = ezgzzg, and every directed path p of G is
written as the form p = el ex? - -ei‘é, with ¢(z;, 8;) = z;41 forall 1 < i < £— 1. We write

Pt =(e5)7! - (e2)'(ei) " for such p. Asin Section 2.2, let P = P(G), Pry = Pay(G)

T T2
denote thlé set of all directed paths of G, all directed paths of G from = to y respectively,
and let [p] denote the homotopy class of p € P. Note that [p~1] = [p]™" for any p € P.
Now we define an anti-homomorphism F : P — H as follows. F is defined to be the
identity map on S™)| and to satisfy F'(e2) = w2 for each directed edge of G (here we write
F(e}) as a shorthand for F([e])). Then we have F((e2)~') = F(e$)~! by Proposition

4.5. Since P is a free groupoid on G (cf. Theorem 2.5), this F' extends uniquely to an



anti-homomorphism F : P — H (so F(es! -- -ey) = wyt - - -w;3l), provided the following

proposition holds:

Proposition 4.7. If s reacts dynamically on z, then w] € H (3 )z O

For each p € P, we also write F'(p) as a shorthand for F([p]).
The key to the proof of Proposition 4.7 is the following lemma:

Lemma 4.8. Suppose that s reacts on x. Then @, N[z], = 0 if and only if this reaction
is dynamic. ' O

1
o(x,8),x

of ws, while @j,; N[z], = 0 by this lemma. Hence w? € Hy(zs)2, S0 Proposition 4.7 holds.

Then for each z, s such that s reacts dynamically on z, we have w$ € by definition
Now we state a theorem which implies that F is surjective, by using the following

notations and terminology:

Definition 4.9. For p = ¢3! ---e;» € P, define

{p) =n, |p| = Zf(wi’;L L(p) = &(F(p)) = £(wg;, - - - wg}).

Further, we say that p is nondegenerate if L(p) = |p| and degenerate if L(p) < |p| (note
that L(p) < |p| for all p € P). , O

The theorem is as follows:

Theorem 4.10. For each w € H, ., there exists a nondegenerate path p € Pry such that
F(p) = w. In particular, F is surjective. Moreover, if s € S and w - a, <0, then we can

choose such p having € as the first edge. O

To prove this theorem, we use the following lemma:

Lemma 4.11. Let w € H,,, s € S and suppose w - a; < 0. Then s reacts dynamically
on z and £(w) = L(w(w;) ") + £(w3). O

Then Theorem 4.10 follows from this' lemma, by induction on £(w).

Thus we conclude the construction of the surjective anti-homomorphism F. Now let
F, be the restriction of F to the connected component P(G,) of P containing z € SWV).
Then F; is also a surjective anti-homomorphism from P(G,) to the connected component
H, of H containing z. Since F is injective on the vertex set of P, F., F, induce an anti-

isomorphism P/ ker F — H, P(G,)/ ker F, — H, respectively, as we remarked before.

115
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Finally, we give a generating set of ker F; as a normal subgroupoid, and a presentation
of H, .. For each J C S, let géJ’ denote the “restriction” of G, to J; that is, the subgraph
of G, consisting of all vertices y of G, such that [y] C J, and all edges {(z, s), (y, s')} of G,
such that [z],[y] C J and s,s" € J. Now define C, to be the set of all simple closed paths
of G\ where J runs over all subset of S such that #J = N + 2 and J is of finite type

(actually, for each simple closed path ¢ = e3! ---e3¢ of such G\, only one of its cyclic

. . Si— . . . . .
permutations eg - --e3esl -+ -ez,_1, 1 < 4 < ¢, or their inverses must be contained in C,

and the others may be excluded). Then the following theorem holds, but the proof of this

is too long and intricate to write, or even to sketch, in this paper:

Theorem 4.12. ker F; is generated by all [c], ¢ € C; as a normal subgroupoid. O

Further, we consider the presentation of H, ,. Let £, denote the set of all directed
edges of G,. Then every path of G, can be regarded as an element of the free group with

basis £,. Now the following theorem is a special case of Theorem 5.17 of [3]:

Theorem 4.13. Let T be a mazimal tree in G,. Then the vertez group (P/ker F), . is
isomorphic to the group presented by (€, | C, U{ee ! |e€ E,}U{e| e T}). 0O

Moreover, the corresponding anti-isomorphism sends each é; €&, to F(p‘p(y,s))“lw;F(py),
where p, denotes the unique reduced path in T' from z to 2.

5 Representatives of G, ,/H,, and their product

In this section, we examine the quotient group G,./H,,. We show below that
G.x/H; is a finite elementary abelian 2-group (Corollary 5.5), and that we can choose
its coset representatives in the form wo(I)F(p), where I C [z] is of finite type and p is a
path of G, (Theorem 5.7). Moreover, the multiplication in G, is described only by the
structure of G, (Corollary 5.11); for this description, certain automorphisms on G, are
defined and used.

We start with some notations. For z € S®), define

CO(z) = {AC{1,2,...,N} | za is a connected component of z},
COZL.(z) = {A € CO(x) | z4 is of finite type, #A4 > 1}

where 4 = {z; | ¢ € A}. Note that the power set P(CO(z)) of CO(z) forms a finite
elementary abelian 2-group with symmetric difference as multiplication denoted by -

Example 5.1. Let (W, S) be a Coxeter system with Coxeter graph below and let z =
(7,1,3,6,4) € S®. Then we have CO(z) = {{1,4},{2},{3,5}}, COZ,.(z) = {{3,5}}.O0
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O—O—F—0O0—0O0—""C—"C0C—7"70
12 3 4 5

The following basic lemma is used many times:

Lemma 5.2. Let 7,y € S™), w € Gy,

(i) CO(z) = CO(y) and COZL(x) = COZL(v).

(ii) Fori,j € A€ CO(z), w- oy, = —ag, if and only if w- oy, = —ay;.

(iii) Ifi € A € CO(z) ~ COZL (x), then w- oy, = 0, a

For z,y € S?™ and A C COZ. (v), define
Gy, ={we Goy|w- 0y, = —0y, if and only if s € UA}
Then Lemma 5.2 yields the following decomposition of G ,:
Lemma 5.3. Goy = || scco31 () Gay for all z,y € S™. o O
Further, the following lemma is deduced immediately from the definition:

Lemma 5.4. Let z,y,z € S™, A, A’ C COZL (z) and suppose Gy # 0, Gy, # 0 (so
all COZL (z), COZL (y), COZL (2) coincide by Lemma 5.2 (i)). Then

Gy, G, CGYY (G )T =Gy G2, =Hzy. 0

x,z Y,z

For z € SW), define E, = {A C COZ. () | G4, # 0}. Then the preceding lemmas
imply the structure of G,/ H, . as follows:

Corollary 5.5. Let z € SW). Then E, is a subgroup of P(COZL (z)) and isomorphic
to Gyof/Hz g, s0 it is also a finite elementary abelian 2-group. Further, this isomorphism
sends each coset wH, . to the unique A, C COZL (z) satisfying w € Gv. O

Now we give certain coset répresentatives of Gyr/H;, Forz € SWM and 4 C
COZ. (z), define

oo

wo(A; ) = H wo(T4) = wo(Ty.4)
AcA

(note that all wo(x,) in the above product commute). Further, let y € SN, y € G;.
Then we have Gy, # 0 since G, is corinected and F(P,,) C Gy, and so A C COZ (y)
by Lemma 5.2 (i). Now define y4 € S by

oyaly:) ifi€ Aforsome A€ A

Yi otherwise.

(y)i = wo(A; ¥)yiwo(A; y) = {

Then we have the following lemma:
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Lemma 5.6. Let € SN A c COZl (z). Then wo(A;z) € G;‘A,a:' Hence G, =
wo(A; 2)Hypa , and so E, = {AC COZL(z) | Hypa, # 0}. 0

The coset representatives of G, ./H,, are given as follows (recall that the map F is

surjective):

Theorem 5.7. Gy, = | | 4cp, Wo(A;2)F(pa)Hz e, where pa is an arbitrarily chosen ele-
ment of P, .4 for each A € E;. 0

Since H, , is generated by certain elements F'(p), p € P, (cf. Section 4), this theorem
implies that G, . is generated by such F(p) and these coset representatives. In the rest
of this section, we describe the multiplication of these generators of G; ., using certain
automorphisms on G, defined in Theorem 5.10 below.

We use the following two lemmas:

Lemma 5.8. Let z € S™), A, A4 C COZL (z) (so COZL(z#) = COZL (z) by Lemmas
5.2 (i) and 5.6). Then

wo(A; T)wo(A';7) = wo(A - A'; z), wo(A'; 24) = wo(A'; ), (x4 = foA'. a

Lemma 5.9. Let z € S™, y,2 € G,, A C COZ.(z) and s € S. Then s reacts
dynamically ony and ¢(y, s) = z if and only if s reacts dynamically on y* and p(y*4, s) =
zA. Moreover, if above conditions hold, then v(y,s) and ¥(yA, s) coincide, and Wia =

wo(A; 2)wywo(A; y). O
The automorphisms on G, are given as follows:

Theorem 5.10. For each A € E;, define pa: Gy — G, by

pa(W) = v* (y € V(Gr)), pale)) = €5 (€5 € E(Gy)).

(i) pa is an involutive graph automorphism on G,.

(i1) papar = pa.a holds for all A, A’ € E,.

(iii) If pa also denotes the extension of pa to P(G;) (the directed paths of G.), then it is
an involutive automorphism and satisfies pa(p™') = pa(p) ™, papa = paa and

F(pa(p)) = wolA; 2) F(p)wo(A; )
for allp € P(Gy)y,.. 0O

Now the multiplication (in G,.) of the representatives of G, ./H, . and the action of

these to the generators F'(p) of H, , are described as follows, by using the automorphisms
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Corollary 5.11. (i) Let A€ E;, pa € Pppa and q € Pry. Then
wo(A; ) F(pa) F(q) (wo(A; 1) F(pa)) ™ = Floa((pa)~'apa))-
(ii) Let A, A € E;, pa € Pppa and pa € P, za- Then
wo(A; 2) F(pa)wo(A'; 2) F(par) = wo(A - A 2) F(parpar (Pa))- O
Note that to obtain p4(p) for each A € E, and p = €} ---ef € P(G:), we need not
compute (z;)? for any i > 2; indeed, we have only to compute (z;)#, and then start at
(x1)* and trace each (unique) directed edge labeled s; step by step.

6 Examples

Example 6.1. (W, S) is of type E; and = = (1,2,4,5,8) € S™ (N = 5), as in Figure 2
(in this section we write ¢ as a shorthand for s;). Then we compute the centralizer C; ,

of Wi 2458)

Figure 2: Coxeter graph of type E;

1. Figure 2 implies [z]** = {1,2, 8}, so by Theorem 3.3,

Oz,:c = W{1,2,8} X C:Ic,x = (Z/2Z)3 X C;,l‘

2. We determine the structure of the Coxeter system (W, :S';) Let
0 = a1 + ag + 203 + 204 + 2a5 + 206 + 207+ \/Eag,

which is called the null root of (W, S). So (4,a;) = 0 for all 1 < ¢ < 8. Now & is the

(disjoint) union of following two sets
' ={ndty|neZ,ve P g}

7
<I>"={n\/§5i(z:\/§ai+ag)lnEZ,2<k<8}.
imk



Moreover, &’ = W - ; for each 1 <7 < 7 and ®” = W - ag. To show these, we have only
to check that every element of @', ®” is indeed a root of (W, S) (this can be proved by the
induction on |n|), both @', ®” are W-invariant (this follows from that W - ®%_ s C ¥
and W - (ZL,C V2a; +ag) C @ forall 2 < k < 8), and Mg sy C ¥, ag € ®” (these are
trivial).

By the above result, we have [z], = (/2643 ne Z} and so , = {5, 5'}, where
B =+2ar+as, B/ =25 — B. Further, since {3, 3') = —1, Proposition 3.8 implies that
sgss has infinite order. Hence (W, S,) is of type A, (the infinite dihedral group), and
by Theorem 3.6, we have C, , = W x G, ~ A % Gre-

3. The connected component G, of G containing z is as in Figure 3. In this case, let

s 6.3 3 6 4 1=012568
I II 111 v II=(1,2,4,58) =z

3 3 II=(21,5,4,8)
IV =(2,1,6,5,8)
5 3 V=(21,5,6,8)

\Y% VI VIl vir VI=(2,1,4,5,8)
4 6 3 3 6 4 VII = (1,2,5,4,8) = g0
VIII = (1,2,6,5,8)

Figure 3: Connected component of G

e(y, z) denote the unique directed edge of G, from y to 2. Now we determine the structure
of the groupoid H, by using Theorems 4.12 and 4.13. Firstly, we examine the generating
set of ker F,. Since N +2 =7 = #5 — 1, we have only to consider G’ for J = S ~ {s},
s € S. For example, if s = 4, then we obtain G from G. by deleting four vertices II,
II1, VI, VII and six edges e(1, IT), e(11, IIT), e(II1, IV), e(V, VI), e(VI, VII), e(VIL, VIII). By
similar argument, G is nonempty for s = 3,4,6,7, as in Figure 4, while this is empty
for s =1,2,5,8. Now by Theorem 4.12, ker F} is generated (as a normal subgroupoid) by

[c1] and [cg], where

c; = e(I, VIID)e(VIIL IV)e(IV, V)e(V, 1),
co = e(I, IT)e(11, IIT)e(I11, IV)e(IV, VIII)e(VIIL, VII)e(VII, VI)e(VI, V)e(V,I)
(note that in this case, every proper subset of S is of finite type).

Secondly, we give a presentation of H,, by Theorem 4.13. Recall that £, denotes the

set of all directed edges of G,. Now we choose a maximal tree 7" in G, as in Figure 5, then
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gJ(ES\{S}) g§S\{4})
I u II 111 u v I
3
3
V—VI VII——VIII V VIII
4 6 6 4 :
(S~{6}) (S~{7h)
Gz Gz
II§—-—3HI I 4 6113 31116 4IV
3 3
3 3
VI——VII A% VI VIl VIII
3 3 4 6 3 3 6 4

Figure 4: Subgraphs G of Figure 3

we have:
Hyp (& laa=1,60= lLeel=1(e€&)e=1(€eT))

~ (e(L, VIIL), e(IV, V), e(VIIL, VII) | (I, VIIL)e(IV, V) = 1, e(VIIL VII) = 1)
~ (e(IV,V) | ) ~ Z.

3 3

3 3

v VI Vil VIII
4 6 3 3

Figure 5: Maximal tree in Figure 3

The corresponding anti-isomorphism sends e(IV, V) to F(q) € Hy ., where
g = e(I1, IIDe(IIL, IV)e(IV, V)e(V, D)e(I, II) = edefefvever,

so H . is the free group generated by F/(q).

121
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4. We describe the structure of G, as in Section 5. Firstly, it follows from Figure 2
that CO(z) = {{1}, {2}, {3,4},{5}}, COZ;O(CE) = {{3,4}}. Put A, = {{3,4}}, then
gz = (1,2,5,4,8) = VIl and so E, = {0, Ay}. Let py € P, . be the trivial path and let

p.Ao = e(II’ I)e(I, V)e(V,VI) (VI VII) - e”el 6veV1 € PI .’E'AO

Then Theorem 5.7 implies Gy = Hy» UaH, z, where a = wo({4,5})F(p4,). Hence G,
is generated by a and F(q).

As remarked in the last of Section 5, p4,(p4,) is the path which starts at x40 = VII
and traces the directed edges labeled as 6, 3,4, 3 one by one; that is,

PA(Pa,) = e(VIL, VIINe(VIIL IV)e(IV, IT)e(II, I1).
We write p ~p p’ for two paths p,p’ if F(p) = F(p'). Then we have

p.AopAo (p.Ao)
=-¢(IL,T)e(I, V)e(V, VI)e(VI, VII)e(VII, VIII)e(VIII, IV)e(IV, III)e(I11, IT)
~e(I,D)cy te(I, 1) ~fp 1

since F(cz) = 1. So we have a? = F(p4,0.4,(P4,)) = 1 by Corollary 5.11 (ii). Similarly,
we have pa,(g) = e(VIL, VI)e(VI, V)e(V, IV)e(IV, VIII)e(VIIL, VII) and so

Pao((Pao) ™ ap 4o)
= e(I1, I)e (111, IV )e(IV, VIID)e(VIIL VII)
. e(VIL VI)e(VI, V)e(V, IV)e(IV, VIID)e(VIIL, VII)
- e(VIL, VIIN)e(VIIL, IV)e(IV, II)e(I1L, IT) |
~ (e(I1, II)e(1L, IV)e(IV, VIIT)e(VIIL, VII)e(VIL VI)e(VI, V) e(V, IV)e(IV, IT)e(I11, IT)
F (e(II,I)ke(I,V))e(V, IV)e(IV, IIDe(IILIT) (F(cy) = 1)
= q_l_
Hence we have aF(q)a™ = F(pa, (PZ;quo)) = F(g)~! by Corollary 5.11 (i).
By these calculation, {1, a} forms a subgroup of G, , isomorphic to E,, and we have

Gz‘,x = Hy e X E, ~7Z x (Z/ZZ),

where 1 € Z/2Z acts on Z as multiplication by —1. Moreover, put @’ = a and ¥’ = aF(q),
then we have G, , = <a’,b’ | a?=10= 1) ~ A;.
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5. Finally, we describe the action of G, , on W;. By direct computation, we have
@ B=F,Y-8=4
Now recall (Theorem 3.9) that both a’, b act on W} as automorphisms of the Coxeter
graph I' of (W}, S5,); sowe haved' -3/ =8, b/ -8 = 3.
Summarizing, we have C,, ~ (Z/2Z)3 x (:4\/1 x A ), where each of two generators of

the right Z; acts on the left :4: trivially, as the unique involution of r respectively.

~ In this example, G, ; is isomorphic to the semidirect product of H,; by E;, and H;
forms a free group. But these properties may fail in general.
Let (W, S) be as in Figure 6 and let = = (1,2,4,5,7,8). Then it can be proved that

3 4 5
Oo——0

0—0/ | >D 6
1 2\: o o
9 8 7

Figure 6: Coxeter graph of another example

Wieo =1, Wy =1, Gop =22 Hpp =~ (22)".

Thus H, ., is not a free group, and G, is not isomorphic to a semidirect product of H ,
by any group, since G, has no subgroup isomorphic to G, ./ H,, =~ (Z/2Z)>.

Finally, we consider the centralizers of maximal parabolic subgroups (that is, parabolic
subgroups generated by maximal proper subsets of S). Note that for I C S, the centralizer
Cw (Wr) of Wy is the direct product of CWsi (Wins,), where S; runs _ovér all connected
components of S. Thus we assume that S is (finite and) connected.

Let I be a maximal proper subset of S, with connected components I, ..., I;. For
J C S such that J is of finite type and o; = idy, let —1; = we(J). Then it is obvious
that each —1;,, —1s is contained in Cw (W) whenever it exists. Conversely, it can be
deduced, by using the result of this paper, that Cy (W;) is generated by these elements
for almost all (possibly infinite) W and I, except only two cases.

One of the exception is the case W = Dopy1, n>2and I =S~ {sy}, 1<i<n—-1
(we use the numbering on S in Figure 1); in this case, Cw (W) is generated by the
involution wo(S)we(I'), where I’ = {sg;41, S2i+2, - - - » Sont1} is & connected component of
I. The other is the case W = Eg and I = S ~ {s2}; now Cw (W) is generated by the
involution wo(S)we (7).
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