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On classes of operators generalizing class A
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Abstract

Recently, we introduced class A defined by an operator inequality, and also the
definition of class A is similar to that of paranormality defined by a norm inequality.
As generalizations of class A and paranormality, Fujii-Nakamoto introduced class
F(p,r,q) and (p,r, q)-paranormality respectively. These classes are related to p-
hyponormality and log-hyponormality.

In this report, we shall remove the assumption of invertibility from some results
on invertible class F(p,r,q) operators, and also we shall show that the families of
class F(p, r, %’%) and (p,r, %)-paranormality are proper on p. Moreover, we shall
obtain the relations between Furuta-type inequalities as a generalization of the key
theorem in the proofs of our main results.

1 Introduction

In this paper, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T' > 0) if (T'z,z) > 0 for all
z € H, and also an operator T is said to be strictly positive (denoted by T' > 0) if T is
positive and invertible.

As extensions of hyponormal operators, i.e., T*T > TT*, it is well known that
p-hyponormal operators for p > 0 are defined by (T*T)* > (TT*)? and invertible log-
hyponormal operators are defined by log 7*T" > log T'T* for an invertible operator 7', and
also an operator T is said to be p-quasihyponormal for p > 0 if T*{(T*T)? — (TT*)*}T >
0. We remark that we treat only invertible log-hyponormal operators in this paper (see
also [26]). It is easily obtained that every p-hyponormal operator is g-hyponormal for



p > g > 0 by Léwner-Heinz theorem “A > B > 0 ensures A* > B* for any a € [0,1],”
and every invertible p-hyponormal operator for p > 0 is log-hyponormal since logt is an
operator monotone function. We remark that log-hyponormality is sometimes regarded

as 0-hyponormality since —X};'—I — logX as p —» 40 for X > 0. An operator T is

paranormal if ||T2a:“ > HT$|]2 for every unit vector z € H. Ando [2] showed that every.
p-hyponormal operator for p > 0 and (invertible) log-hyponormal operator is paranormal.

Recently, in [15], we introduced class A defined by |T?| > |T'|? where |T| = (T*T)3,
and we showed that every invertible log-hyponormal operator belongs to class A and
every class A operator is paranormal. We remark that class A is defined by an operator
inequality and paranormality is defined by a norm inequality, and their definitions appear
to be similar forms. And also Fujii-Jung-S.H.Lee-M.Y .Lee-Nakamoto [9] introduced class
A(p,r) and Yamazaki-Yanagida (28] introduced absolute-(p, r)- paranormality as follows:
An operator T belongs to class A(p, ) for p > 0 and r > 0 if (|T*|"|T|*®|T*|" )or > |T*|2’
and also an operator T is absolute-(p, r)-paranormal if |||T[P|T*|"z||" > |||T*|"= Hp " for
every unit vector z € H. We remark that class A(1,1) equals class A and also absolute-
(1, 1)-paranormality equals paranormality. These classes are generalizations of class A(k)
and absolute-k-paranormality introduced as two families of classes based on class A and
paranormality in [15], and also absolute-(p, r)-paranormality is a generalization of p-
paranormality in [7]. We should remark that the families of class A(p,r) determined by
operator inequalities and absolute-(p, r)-paranormality determined by norm inequalities
constitute two increasing lines on p > 0 and r > 0 whose origin is (invertible) log-
hyponormality.

Moreover, as a continuation of the discussion in [9], Fujii-Nakamoto [10] introduced
the following classes of operators.

Definition ([10]). For eachp > 0,7 >0 and ¢ >0,
(i) An operator T belongs to class F(p,r,q) if
*[r PN * 2ptr)
(T TP ") > 1T (1.1)
(i) An operator T is (p,r,q)-paranormal if

etr

]|]T|PU|T|'"a:||q > [||T)

z| (1.2)

for every unit vector ¢ € H, where T = U|T| is the polar decomposition of T. In
particular, if r > 0 and g > 1, then (1.2) is equivalent to

TPIT 2|7 > [||T*]5 | (1.3)

for every unit vector z € H ([18]).
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We remark that class F(p, r, 227) equals class A(p, r) and also (p, r, 2£*)-paranormality
equals absolute-(p, 7)-paranormality. In [18], we obtained the parallel result to that of
class A(p,r) and absolute-(p, r)-paranormality that invertible class F(p,r, ¢) and (p,, q)-
paranormality constitute two increasing lines on p > é > 0 and r > rp > 0 whose origin
is d-quasihyponormality. And also we showed the result on powers of invertible class
F(p, r, q) operators. Thus many reseachers have been discussed parallel families of classes
of operators which are generalizations of class A and paranormality.

In this report, we shall remove the assumption of invertibility from some results on
invertible class F(p,r,q) operators in [18], and also we shall show that the families of
class F(p, r, %) and (p,, glj}:—)-pa.ranormality are proper on p. Moreover, we shall obtain
the relations between Furuta-type inequalities as a generalization of the result shown in

[19] which is the key theorem in the proofs of our main results.

2 Preliminaries

Fujii-Nakamoto [10] observed that class F(p, r, q) derives from the following Theorem
2.A shown in [11] and (p, r, ¢)-paranormality corresponds to class F(p,r, q).

We remark that alternative proofs of Theorem 2.A were given in [5] and [21] and also
an elementary one page proof in [12]. Tanahashi [23] showed that the domain drawn for
p,q and r in the Figure 1 is the best possible one for Theorem 2.A.

Theorem 2.A (Furuta inequality [11}).
If A> B >0, then for each T > 0,
(i)  (B3A®PB%)7 > (BiBPBY):

and

(i)  (ASAPAR): > (A3BPA%)e

(01 _T)

FIGURE 1

hold forp >0 and ¢ > 1 with (L +r)g>p+r.

Fujii-Nakamoto [10] and the author [18] obtained the results on inclusion relations
among the families of class F(p,r,q) and (p,r, ¢)-paranormality.

Theorem 2.B ([10]).

(i) For a fized k > 0, T is k-hyponormal if and only if T belongs to class F(2kp, 2kr, q)
forallp> 0,7 >0 and ¢ > 1 with (1+ 2r)g > 2(p+ ), i.e., T belongs to class
F(p,r,q) forallp>0,7r>0and ¢>1 with (k+r)g>p+r.



(ii) If T belongs to class F(pg,To,q) for po > 0, ro > 0 and go > 1, then T belongs to
class F(po,70,q) for any ¢ = qo.

(iii) If T 4s (po, 70, o)-paranormal for po > 0, ro > 0 and qo > 0, then T is (po, 7o, q)-
paranormal for any q.> qo.

(iv) If T belongs to class F(p,r,q) forp > 0, 7 > 0 and ¢ > 1, then T is (p,7,q)-
paranormal.

Theorem 2.C ([18]).
(i) For eachp >0 andr >0,

(i-1) T is p-quasihyponormal if and only if T belongs to class F(p,r,1) if and only
if T is (p,r,1)-paranormal.
(i-2) T is p-quasihyponormal if and only if T is (p,0, 1)-paranormal.

(ii) Let T be a class F(pg,ro, %ﬁ) operator for pg > 0, 7o > 0 and § > —ry.

(ii-1) If T is invertible and 0 < 6 < po, then T belongs to class F(p,r, %1’—:) for any
p=>po and T 2> 1.

(ii-2) If —r9 < 6 < po, then T belongs to class F(po,, %.%) for any r > 7.

(i) Let T be a (po,To, %:;’)—paranormal operator for pg > 0, 1o > 0 and § > —ry.

(iii-1) If0 < & < po, then T is (p,r, 5= )-paranormal for any p > po and v > .

(iii-2) If —ro < & < po, then T is (po, 7, 5" )-paranormal for any r > ro.

(iii-3) If 0 < 4, then T is (p, 1o, gi:g)-pamnormal for any p > po.

We remark that only (ii-1) of Theorem 2.C requres invertibility of T', and also we
obtained in [19] that every class A(po, o) operator for pg > 0 and rp > 0 belongs to class
A(p,r) for any p > po and r > 1o (without assumption of invertibility).

Figure 2 on the following page represents the inclusion relations among the families

of class F(p,r, q) and (p, r, ¢)-paranormality.

On the other hand, we obtained the results on powers of p-hyponormal, class A(p,r)
and invertible class F(p, r, q) operators.
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Theorem 2.D.

(i) Let T be a p-hyponormal operator for 0 < p < 1. Then T™ is E-hyponormal for all
positive integer n ([1]).

(ii) Let T be a class A(p,r) operator for0 <p <1 and 0 <r < 1. Then T™ belongs to
class A(E, L) for all positive integer n ([19]).

n'n

(iii) Let T be an invertible class F(p,r,q) operator for0 <p<1,0<r<1landg>1
with rq < p+r. Then T™ belongs to class F(E, L, q) for all positive integer n ([18]).

We remark that (iii) interpolates (i) and (ii) if 7" is invertible in Theorem 2.D. In fact,
(iii) yields (i) by putting ¢ =1 and r = 0, and also (iii) yields (i) by putting ¢ = 2.

Moreover we have another result on powers of class A operators by combining [29,
Theorem 1] and [19, Theorem 3].

Theorem 2.1. IfT is a class A operator, then
TP <7 < <7 and TP 2|77 2 21T

hold for all positive integer n.

We remark that (ii) of Theorem 2.D and Theorem 2.1 in case of invertible operators
were shown in [27] and [17], respectively.



3 Main results

In this section, we shall show the results which remove the assumption of invertibility
from (ii-1) of Theorem 2.C and (iii) of Theorem 2.D.

Theorem 3.1. Let T be a class F(po, o, %‘%’09) operator for pg > 0,19 >0 and 0 <6 <

po. Then T belongs to class F(p,r, ‘;Li:) for any p > py and r > 7.

Theorem 3.2. Let T be a class F(p,r,q) operator for0 <p<1,0<r <1 andq> 1
with rq < p+ 7. Then T™ belongs to class F(2,L,q) for all positive integer n.

We need the following two results in order to prove Theorem 3.1.

Theorem 3.A ({19, Theorem 1]). Let A and B be positive operators. Then for each
p>0andr >0,

(i) If (BEAPBE)#% > B, then AP > (A3 BT A%)#+.

(i) If A? > (A5 BTA%)7 and N(A) C N(B), then (B5APB%)w+ > BT,

Theorem 3.B ([29]). If A® > (A% Bﬂ°A32Q)°oa+30 holds for positive operators A and
B and fized ag > 0 and By > 0, then

A® > (AT BPAR)wa
holds for any a > ayp. -Moreover, for each fized v > — [y,
gans(c) = (BF A2B %)=
is an increasing function for o > max{ay,d}. Hence (B%QA”B%Q)%%% > B% A= B%

holds for any a; and az such that oy > a1 > ay.

Proof of Theorem 3.1. In case ro = 0, it is already shown in (i) of Theorem 2.B since
class F(po,0,8) for 0 < § < po equals 6-hyponormality. So we may assume 7o > 0.
Suppose that T belongs to class F(py, g, %‘%‘1) for pg > 0, g > 0 and 0 <4 < py, i.e.,

S+
(IT*IrolTl2Po|Ttlro)m—++,% > IT*!2(6+7-0)_ (31>
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Applying Lowner-Heinz theorem to (3.1), we have
(T[T T )7 2 |72,

and also we have ,
IT|0 > (|T|Po| T2 |TPo) 075 (32)

by (i) of Theorem 3.A. By applying Theorem 3.B to (3.2), we obtain that
347
9ras(p) = (IT*["°|T?|T"|0) 7o
is an increasing function for p > max{po, 6} = po.

Therefore we have

(T[T *|T*|°) 750 = gro,s(p)

> Gro,6(P0) by (3.3)
541,
= (1T [T [T [")%s
> |T*(26+ro) by (3.1)
for any p > po, i.e., T belongs to class F(p, 7o, H—:—") for any p > po. Hence T belongs to
class F(p,r, 8L) for any p > po and r > 7o by (ii-2) of Theorem 2.C. )

To prove Theorem 3.2, we prepare the following result which is a slight modification
of [29, Lemma 5].

Lemma 3.3. Let A, B and C be posztwe opemtors p>0,0<r<1 and q> 1 wzth
rg <p+r<(1+r)g If(Bz A”Bz)q > B*" and B > C, then (CZApcz)q >

Proof. The hypothesis B > C ensures B" > C” for r € (0,1] by Lowner-Heinz theorem.
By Douglas’ theorem [4], there exists an operator X such that

BiX = X*Bi =C? (3.4)
and || X|| < 1. Then we have

(C5APCH)d = (X*B5APBEX)s

r

>X *(BEA”BE)QX by Hansen’s inequality [16]

ptr

>X'B v X by the hypothesis

pEr_, v

=CiB« "C3 by (3.4) since 22X —r € [0,1]

> cH & by Loéwner-Heinz theorem.



Hence the proof is complete. ] m|

Proof of Theorem 3.2. Let T be a class F(p,,q) operator for 0 < p<1,0<7r <1 and
q>1withrg <p+r,ie,

* |7 N *M
(7" TP [7)e 2 |77 (1.1)

Class F(p,r,q) operator T for 0 <p <1,0 <7 <1 and g > 1 with r¢ < p + r belongs
to class F(1,1,2), i.e., class A by (ii) of Theorem 2.B and Theorem 3.1, and also

% > |T]? (3.5)

and ,

T2 > [T |» (3.6)
hold for all positive integer n by Theorem 2.1. By applying Lemma 3.3 to (1.1) and
(3.6), we have
- r. 1 = 2 p+r
(7" Mo 2 [TV (3.7)
for 0 <p<1,0<r<1andq>1withrqg <p+rsince p+r < (1 + r)q always holds.
Hence we obtain

= |T |

(7™ || T % |T™"|7)% > (|T™|%|T|*|T""|%)7 by (3.5) and Loéwner-Heinz theorem
> |7 s (R by (3.7)

for all positive integer n, that is, 7™ belongs to class F(2, L, ) for all positive integer n.
O

4 Properness of class F(p,r,§) and
p+r

(p, 7, 5r)-paranormality

In this section, we shall show the results on inclusion relation among the families of
p-quasihyponormality, class F(p, 7, ¢) and (p, r, ¢)-paranormality.

Theorem 4.1. For each py > 0, there ezists a py-quasthyponormal operator T such that

T is not (p,, % -paranormal for any p > 0, r > 0 and é > —r such that § < p < po.

Theorem 4.2. For each py > 0, 19 > 0 and —rg < § < po,

(i) There exists a po-quasihyponormal operator T such that T is not p-quasihyponormal
for any p > 0 such that 0 < p < py.
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(ii) There ezists a class F(pg, o, BE2) operator T' such that T' does not belong to class

d+ro
F(p,, f;f) for any p >0 and v > 0 such that —r < 6 < p < po.
(iii) There exists a (po, o, B2 )-paranormal operator T' such that T is not (p,r, 5)-

paranormal for any p > 0 and r > 0 such that —r <6 < p < po.

In Theorem 4.2, (i) has been obtained in [24], and also (ii) and (iii) asserts that
the families of class F(p, , %{—:) and (p,r, %)—paranormality are proper on p. Moreover
we remark that these properness on p has no connection with 7, and also we have the

following corollary by putting r = rp in Theorem 4.2.

Corollary 4.3. For each py > 0, 19 > 0 and —19 < d < py,

(i) There egists a class F(po, 7o, 5 +r 2ed10) operator T such that T' does not belong to class
F(p,ro, &5 5o Bx10) for any p > 0 such that 6 < p < po-

(i) There exzists a (po, 7o, B +r o0 _naranormal operator T such that T' is not (p, o, %:—g)-
paranormal for any p > 0 such that 6 < p < pg.

Here we shall show two propositions as a preparation of the proof of Theorem 4.1.
We remark that these propositions are similar arguments to [2], [15], [20] and so on.
Firstly we shall give a characterization of (p, r, ¢)-paranormal operators.

Proposition 4.4. For eachp> 0, r > 0 and —r < § < p, an operator T is (p,, §i7)-

paranormal if and only if

(6 + )T TP |T*|" — (p+ )N T2+ + (p— )N >0 for all X > 0.

Proof. Suppose that T is (p, T, S 2+7)_paranormal for p > 0, 7 > 0 and —r <4 < p, i.e,

||$T|”|T*|’:c|1ii: > |||T*|°*x|| for every unit vector z € H. (1.3)
(1.3) holds iff

TP 2|7 ||2|| 7 > |IT* 2] forallz € H

iff
(!T*IrlﬂzplT*lr-’f,iE)f’*i:(Tl,x)% > (|IT*|*®*"z,z) forallz € H. (4.1)
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By arithmetic-geometric mean inequality,

([T* "\ T2 |T 2, 2) 55 (, o) 5

1\ o b
= {(X) (|T*|rlT12p|T*Ir$,m)} . {)\5+T<m,x)}l’+r (4.2)
o+r 1 p—4&
< T\ 2P| T o+r
_p+r)\p—6(|TH P 2,2) + 2 A (@0 2)

for all z € H and all A > 0, so (4.1) ensures the following (4.3) by (4.2).

6+r 1
p+r A e

(|T*lT{T[2P‘T*|r$, .’L‘) + p;axs-}-'r(z,x) > (lT*l2(6+r)$, x)
ptr (4.3)

forallz € Hand all A > 0.

* (T 2p|*ir %
Conversely, (4.1) follows from (4.3) by putting A = {(IT | ITEL f; z,2) }_p . (In case
(IT*"|T|?|T* |, ) = 0, let A — +0.) Hence (4.3) holds if and only if
(6 + D)|T*I"|T1*|T*" — (p+ )N~ T* P 4 (p— §)AP*" >0 for all A >0,
so that the proof is complete. m]

Secondly we shall give the following Proposition 4.5. But we omit to describe these
calculation because it is obtained by easy calculation.

(¢}
Proposition 4.5. Let K = @ H,, where H,=2 H. For given positive operators A, B

on H, define the operator Ty g on K as follows:

Tap= B3 @ ) (4.4)
Az

where D shows the place of the (0,0) matriz element.
(i) For each p > 0, Ta g is p-quasihyponormal if and only if

BiAPB3 > BPtl.
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(i) For eachp >0, r >0 and § > —r, T4 p belongs to class F(p,, ’gi:) if and only if

(BEAPBE s+ > B+,

(i) For eachp> 0,7 >0 and —r <§ <p, Ty p is (p, T, %’% -paranormal if and only if

(64+7)BEAPB: — (p+ )N OB L (p—HNTTT>0  for all A > 0.

Proof of Theorem 4.1. Let

. (10
A =UAU* and B—(O 0)

1 (1 1 2 )% 0 “.9)
— e Po P0
where U = ﬁ (1 __1) and A= ( 0 6_2> ’

and also let K = @2 __ H, where H,~ R2. For positive matrices A, B on R? given in
(4.5), define the operator T4 g on K as (4.4) in Proposition 4.5. By (i) of Proposition
4.5, Ty p is p-quasihyponormal for p > 0 if and only if

£
BiAPB? — BPHl = (%{(2 - 6_”")’(’;’ +e 7} -1 g) >0

if and only if
£(p) = 12— )% + e} 120

On the other hand, let X,()) as

X,(\) = (6 +7r)B3APBE — (p+ r)AP OB 4 (p— NI

_ [3E+{E@-em)m e = ()R £ (- 0
0 (p— oIt )’

By (iii) of Proposition 4.5, Ta g is (p, T, ’al_t—:)—paxanormal forp>0,r>0and -r<d<p

if and only if X,(A) > 0 for all A > 0 if and only if
g0(A) = %(5+r){(2——e"’°)5% +e P}~ (p+r)XN 4+ (p—38)AT" >0 for all A >0 (4.6)

since (p — 6)AP*" > 0 for all A > 0. Since gh(A) = (p+r)(p — HAP1 (=1 4+ M*7), we
get that

min g,() = g5(1) = %(5 +r){(2—e™)% + e ?}— (8 +1) = (6 +1)f(p),



so that (4.6) holds if and only if f(p) >0

f(p) is a convex function for p > 0 since
1 1
f(p) = 5[(2 - e_pO)i%{log(2 — e P)p0 }2 +4e7%] > 0 forall p > 0,

and also f(p) = 0 if p = 0,po. So we have f(po) = 0 but f(p) < 0 for 0 < p < po.
Therefore g,(1) < 0, that is X,(1) 2 0 for any p > 0, 7 > 0 and § > —r such that
6 <p<po.

Hence T4 p is po-quasihyponormal but non-(p, r, 5 +r) -paranormal for any p > 0,7 >.0
and § > —r such that 6 < p < po, so the proof is complete. O

Proof of Theorem 4.2. Let pg > 0, 1o > 0 and —rg < d < py.

Proof of (i). By (i-1) of Theorem 2.C, T is p-quasihyponormal if and only if T' is (p, r, 1)-
paranormal for some p > 0 and r > 0. Therefore there exists a py-quasihyponormal
operator T such that T is not p-quasihyponormal for any 0 < p < py by putting é = p
in Theorem 4.1.

Proof of (ii). By (i-1) of Theorem 2.C and (ii) of Theorem 2.B, every po-quasihyponormal
operator belongs to class F(po, 7o, 2£2). And also, by (iv) of Theorem 2.B, T does not

d+ro
belong to class F(p,, He:) if T' is not (p, 7, 55 ) paranormal for each p > 0, » > 0 and

—r < 6 < p. Therefore there exists a class F(pg, o, %) operator T such that T does
not belong to class F(p, r, 12) for any p > 0 and r > 0 such that —r < § < p < py by
Theorem 4.1.

T G4r

Proof of (iii). By (i-1) of Theorem 2.C and (iii) of Theorem 2.B, every pe-quasihyponormal

operator is (pg, T, %) -paranormal. Therefore there exists a (po, 7o, %) -paranormal
operator T such that T is not (p, 7, 5 _H,) -paranormal for any p > 0 and r > 0 such that

—r < 6 < p < pp by Theorem 4.1. O

Remark 1. In [15], we introduced two families of classes of operators based on class
A and paranormality as follows: An operator T belongs to class A(k) for £k > 0 if
(T*|T|%*T) B > |T|2 and also an operator T is absolute-k-paranormal for £ > 0 if
[IT*Tz|| > ||Tz||""" for every unit vector z € H. In [7], Fujii—Izumino—Nakamoto
introduced p-paranormality for p > 0 defined by |||T|PU|TPz|| > || IT|Pz||” for every unit
vector z € H, where T' = U|T| is the polar decomposition of T'. It was pointed out in
[27] that class A(k) equals class A(k,1), and also it was shown in [28] that absolute-k-
paranormality equals absolute-(k, 1)-paranormality and p-paranormality equals absolute-
(p, p)-paranormality. We ramark that p-paranormality corresponds to class A(p,p). We
shall also get the results on inclusion relation among the families of these classes.
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Corollary 4.6.

(i) For each ko > 0, there exists a class A(ko) operator T such that T does not belong
to class A(k) for any 0 < k < ky.

(i1) For each ko > 0, there exists an absolute-ko-paranormal operator T' such that T is
not absolute-k-paranormal for any 0 < k < kq.

(iii) For each po > 0, there ezists a class A(po,po) operator T such that T is not class
A(p,p) for any 0 < p < po.

(iv) For each py > 0, there exists a po-paranormal operator T' such that T is not p-
paranormal for any 0 < p < py.

Proof of Corollary 4.6.

Proofs of (i) and (ii). By putting po = ko, 7o =1, § = 0 and p = k in Corollary 4.3, we
have (i) and (ii) since class A(k) equals class F(k, 1, k+ 1) and absolute-k-paranormality
equals (k, 1,k + 1)-paranormality.

Proofs of (iii) and (iv). By putting py = 9, § = 0 and p = r in (ii) and (iii) of Theorem
4.2, we have (iii) and (iv) since class A(p,p) equals class F(p,p,2) and p-paranormality
equals (p, p, 2)-paranormality. o]

Remark 2. For each p > 0, we can obtain an example of non-class A(p,p) and p-
paranormal operators by using essentially the same example as [15, (2) of Example 8] as
follows: Let p > 0 and

2 0 » 3 —2%
A—-(O 2\/53-) and B—(_2 3) .

0.17472... -3.1798...
-3.1798... 11.770... )

Eigenvalues of (B5A?B%)} — BP are 12.585. .. and —0.64001 .., so that (B5A4?B%)3 #
BP. So T p is a non-class A(p,p) operator by (ii) of Proposition 4.5.
On the other hand, for A > 0, define X () as follows:

404 — 26\ + A2 —576 + 24A
—576 + 24X 844 — 261+ A%/’

Then
(Bt APB%): — BP = (

X(\) = BEAPBE —2)BP + X’I = (
Put p(\) = tr X()) and g()\) = det X()), where tr X denotes the trace of a matrix X
and det X denotes the determinant of & matrix X. Then

p(A) = 2X% — 52X + 1248
=2(A—13)2+910>0



g(\) = (404 — 26X + \2)(844 — 26X + \2) — (=576 + 24))?
= A% — 52)3 + 134822 — 4800\ + 9200.

By calculation,

7(\) = 4X® — 156)% + 26961 — 4800
= 4(X — 2)(X* — 371 + 600)

~so-af(r-F) L.

So ¢'(\) = 0 iff A = 2, that is, g(A) > ¢(2) = 4592 > 0 for all A > 0. Hence X(X) > 0
for all A > 0 since tr X(A\) = p(A) > 0 and det X(A\) = ¢(A) > 0 for all A > 0. Therefore
Ta g is a p-paranormal operator since T4 p is p-paranormal if and only if

pB5 APB% — 2pyPBP +pu®I >0 forall u> 0

if and only if
B5APB% —2ABP + X2T >0 forall A > 0.

by (iii) of Proposition 4.5.

5 Relations between Furuta-type inequalities

In this section, we shall show a generalization of Theorem 3.A which plays an impor-
tant role in the proofs of the results in Section 3. Here we recall Theorem 3.A.

Theorem 3.A ([19, Theorem 1)). Let A and B be positive operators. Then for each
p>0andr >0,

(i) If (BEAPB:)5+ > B", then AP > (A5 BrA%)7.
(i) If AP > (A% BT A%)#% and N(A) C N(B), then (B5A?B3)7+ > B.

For positive invertible operators A and B, it was shown in [13] that
(B5APBE)7+ > B™ «= AP > (AEBTA%)7 (5.1)

for fixed positive numbers p > 0 and 7 > 0, and Theorem 3.A is a general result for a
relation between two inequalities in (5.1). We remark that it was shown in [6] and [13]

44



45

(see also [3][8][25]) as an application of Theorem F that for positive invertible operators
A and B,
log A > log B <= (B3 APB3)# > B" for allp >0 andr >0,

5.2
< AP > (A%B"A%)F-% forallp>0andr > 0. (5:2)

As an extension of (5.2) and an immediate corollary of results on operator-valued
functions in [6] and [13], we have that for positive invertible operators A and B,
log A > log B <= (BgApBg)ﬁ'; > BiA'B? forallp>~v >0 andr >0,

(5.3)
> ASBSA% > (ASBTAB)FE forallp> 0 andr > 6> 0.

We remark that inequalities of type of (5.3) were initiated in [21].
Here we shall show a generalization of Theorem 3.A on inequalities in (5.3).

Theorem 5.1. Let A and B be positive operators. Then the following assertions hold,
where S° means the projection onto N(S)! for a positive operator S:

(i) For eachT>6 >0 andp > 0,
(i-1) (BSAPB3)5H > B ensures ASBSA% > (A3 BrAR)»r,
(i-2) A3BSA% > (ABBrA%)» and N(AB%) = N(B) ensure

r—§

(BEAPB%)r+ > BT°,

(ii) For eachp>~y>0andr >0,
AP > (ABBT A% is equivalent to (BgApBg)g% > B3 A'Bs3.

We remark that two inequalities in (i) and (ii) of Theorem 5.1 are mutually equivalent
in case A and B are both invertible [22].

We use the following lemma in order to give a proof of Theorem 5.1. Throughout
this section, P4 denotes the projection onto a closed subspace M, and also S® = Pys)s
for a positive operator S.

Lemma 5.2. Let A and B be positive operators. Then the following assertions hold:
. . 1 —14% 4 —14 __
(1) el_]_.’I-I'_lOAZ(A‘*-EI) Az —e]:})IEO(A_*—eI) A—PN(A).L.

(i) thOA%B%{(B%AB% ) + eI} 1B A% = (AT BAT)"™ for a € (0,1].
e—
Particularly, in case a =1,

. 1.1 1 1 - 1.1
lim APB}(BSABS +el) ' BIAS =P gy 0
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For positive invertible operators A and B, equivalence between two inequalities in (i)
or (ii) of Theorem 5.1 can be easily proved by applying the following Lemma 5.A.

Lemma 5.A ([14]). Let A be a positive invertible operator and B be an invertible

operator. Then
(BAB*)* = BAz(A? B*BAz)*1A: B*

holds for any real number A.

We remark that for non-invertible operators A and B, Lemma 5.A is valid in case A > 1
but cannot be applied in case A € [0,1). For positive invertible operators A and B,
Lemma 5.A can be rewritten as

A?Bi(B1AB3)™®B3A% = (A1 BA?)!™®
for any real number @, so that we can regard (ii) of Lemma 5.2 as a non-invertible version
of Lemma 5.A for o € (0,1].
Proof of Lemma 5.2. (i) is well known and a proof was given in [19], for example.
Proof of (ii). Let A3B3 = U|A%B%[ be the polar decomposition. For a € (0, 1], we have
11:20,4%3%{(3%,43%)“ +el} 'BiA?
e~
= u%mA%Bé '-2| A% B%|*(|A2 B |** + I)"1| A2 B2|*| A3 B3 |\
e
1,11 q 1ol g :
:U|A2Bzf1 PN(lA%B§|)i|A2B2|1 U by (1)
= U|AZ BE 209U = | B1AT|20%) = (42 BA%)!7e,

We remark that in case o = 1 particularly,

LSl 077# . *x * * * _ _ 1 10
U|A2B2|°U _UPN(M’}’B%IHU =UUUU* =U0U —PN(B%A%H = (A2BAz2)".
Hence the proof is complete. a

Proof of Theorem 5.1. \
Proof of (i). Let r > & > 0 since the case r = ¢ is obvious. If (B APB%)5+ > B9,
then
ASBEB (B + 1) BT B3 A% > ASBF{(BIAPBS)F + eI} B3 A}
for € > 0, so that

s+p

ASBOA% = ABB3 Py 5, B: AR > (AR BT AR)w
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by tending ¢ — +0 and Lemma 5.2, hence we obtain (i-1). On the other hand; if
P Byo
ARB°A3 > (A3BrA%)s | then

r—0

BiAS{(ABBTA%)5 1 eI} ASBE > B BYAS(ASBPAS +c1) 1 AEBIRT

for € > 0, so that

r—§8

(BzAPBz)p+r > BT P B by tending € — +0 and (ii) of Lemma 5.2

AEB:)L
= B3 Pyp. B by N(AB?%) = N(B)
— Br~5,

hence we obtain (i-2).
Proof of (ii). Let p > v > 0 since the case p = vy is obvious. If A?™7 > (A‘;B’”A‘;)ﬁ},
then

BEAR{(ASBTAR)5 + eI} 1 ARBE > BEATA™T (47 +el) T APT A BS
for € > 0, so that
(BSAPB%)%+ > B3 A3 Py 4. A B% = Bi A'B#
by tendmg € — +0 and Lemma 5.2, hence we obtain (ﬁ) On the other hand, if
(B3 APBz)v+r > B3AYB3, then
A AIBE(BSAYBS +eI)'B3 A3 AT > ASB3{(BiAPBS)FF + eI} 1B A
for € > 0, so that

AP 7>A P A (A2BTA )p+r

N(BIA%)L
by tending € — 40 and (ii) of Lemma 5.2, hence we obtain (<). O
Theorem 3.A can be obtained as a corollary of Theorem 5.1 as follows.

Alternative proof of Theorem 8.A. Put § = 0in (i-1) of Theorem 5.1, then (B2 AP B3 )+ >
BT ensures
AP > AR Py g AR > (ABBTAR),

hence we obtain (i). On the other hand, put v = 0 in (ii) of Theorem 5.1, then AP >
(A5 BrA%)5+ ensures

(BEAPB%)# > B% Py 4. B% > B3Py B% = B"

since N(A) C N(B) is equivalent to Py(4). > Pp(p)L, hence we obtain (ii). O
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