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1 Introduction

This report is based on the following preprint:

e Masatoshi Ito, Takeaki Yamazaki and Masahiro Yanagida, On the polar decompo-
sition of the Aluthge transformation and related results, to appear in J. Operator
Theory.

e Masatoshi Ito, Takeaki Yamazaki and Masahiro Yanagida, On the polar decompo-
sition of the product of two operators and its applications, to appear in Integral
Equations Operator Theory.

In what follows, an operator means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T > 0) if (T'z,z) > 0 for all
z€H.

It is well known that every operator T can be decomposed into T' = U|T| with a
partial isometry U, where |T'| = (T*T) 3. U is determined uniquely by the kernel condition
N(U) = N(T), then this decomposition is called the polar decomposition. On the polar
decomposition of the product of two operators, Furuta [4] showed a result in case they
are doubly commutative. But it has not been obtained in the general case.



Let T = U|T| be the polar decomposition. Then
T = |\TpU|T|

is called the Aluthge transformation of T' [1], which is very useful for the study of non-
normal operators. The polar decomposition of the Aluthge transformation was discussed
in [1], but the complete solution of this problem has not been obtained.

Throughout this report, T}, denotes the n-th iterated Aluthge transformation of T [8],
that is, o

T,=(Ton) and To=T.

One of the authors showed some properties of the n-th Aluthge transformation which are
parallel to those of powers of operators in [11], [12] and [13].

An operator T is said to be binormal if

[ITl’ 'T*” =0,

where [A, B] = AB — BA for operators A and B, and T is said to be centered if the
following sequence

oo T3(T3)*, TX(T?)*, TT*, T*T, (T)*T?, (T%)*T%, . ..

is commutative. Binormal and centered operators were defined by Campbell [2] and
Morrel-Muhly [9], respectively. Binormal operators are called weakly centered in [10].
Relations among these classes and that of quasinormal operators (<= T*TT = TT*T)
are easily obtained as follows:

quasinormal G centered G binormal.
0
1

0
0 . . A0 .
In fact, T = 10 is centered and not quasinormal, and T = I 0 is
10 ‘ A0

binormal and not centered, where A = (1) (1) . We remark that every weighted shift is

centered, and every binormal and paranormal (<= ||T2z|| > ||T'z||? for every unit vector
z) operator is hyponormal (<= T*T > TT*) [3].

In this report, firstly, we shall show results on the polar decomposition of the product
and the Aluthge transformation of operators. Secondly, as applications of these results,
we shall show several properties and characterizations of binormal and centered operators
from the viewpoint of the polar decomposition and the Aluthge transformation.
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2 The polar decomposition of the product and the

Aluthge transformation of operators

The following result shows the polar decomposition of the product of two operators.

Theorem 2.1. Let T = U|T|, S = V|S| and
IT|1S*| = W ||T||S|| (2.1)

be the polar decompositions. Then TS = UWV|TS]| is also the polar decomposition.

Theorem 2.1 is a generalization of the following result since U (resp. V') and S (resp.
T) are doubly commutative and W = U*UVV* in case T and S are doubly commutative.

Theorem 2.A ([4]). Let T = U|T| and S = V|S| be the polar decompositions. If T and
S are doubly commutative (i.e., [T,S] = [T,S*] =0), then

TS =UVI|TS|
is the polar decomposition.

Theorem 2.1 also implies the following result on the polar decomposition of the Aluthge
transformation.

Theorem 2.2. Let T = U|T| and
IT|3|T*|2 = W||T|}|T 3]

be the polar decompositions. Then T = WU |’f‘| is also the polar decomposition.

Proof of Theorem 2.1.
(i) Firstly, we shall show that TS = UWV|TS| holds. We remark that (V|S|A|S|V*)* =
V(|S|A|S|)*V* holds for any positive operator A > 0 and positive number a > 0.

TS = U|T||S*|V
=UW||T||S*|V by (2.1)
= UW(|S"|ITP*|S*)}V
= UWV(|S|V*|T|>V|S|):V*V
= UWV(S*T*TS)?
= UWYVITS)|.



(i) Secondly, we shall show that N(T'S) = N(UWV).
N(TS) = N(|T||S*|V) = N(WV)
holds since N(|T||S*|) = N(W), and
N(WV) C NUWV)

= N(|T|WV)  since N(U) = N{|T))

C N(|S*||TIWV)

= N(W*WV)  since N(|S*||T|) = N(W*)

=N(WYV),
so that N(WV) = N(UWV) holds. Hence we have N(T'S) = N(WV) = N(UWV).
(iii) Lastly, we shall prove that UWV is a partial isometry. By (ii), we obtain that

NUWV)* = N(TS)* = N(|TS|)* = R(TS)).

For any z € R(|TS|), there exists y € H such that z = |T'S|y, so that we have

NWUWVz| = |[UWVI|TS|y|
=|ITSyl| by (i)
= |||TSlyl|
= ||z||.

Hence we obtain |[UWVz| = ||z| for all z € R(|TS]) = N(UWV)+, that is, UWV is a
partial isometry. O

Proof of Theorem 2.2. We have only to replace T and S with |T|2 = U*U|T|? and U|T|?
respectively in Theorem 2.1 since U*UW = W. O

Next, we shall notice the form T'S = UV|T'S| in Theorem 2.A, and obtain an equivalent
condition to that TS = UV |T'S| becomes the polar decomposition, which is an extension
of Theorem 2.A.

Theorem 2.3. Let T = U|T| and S = V|S| be the polar decompositions. Then |T||S*| =
|S*||T| if and only if
TS = UV|TS|

ts the polar decomposition.

We can regard Theorem 2.3 as a bridge between the polar decomposition of the product
and a kind of commutativity between two operators. We remark that in case 7' and S are
partial isometries, Theorem 2.3 was already pointed out in [7, Lemma 2].

In order to give a proof of Theorem 2.3, we use the following lemmas.
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Lemma 2.B ([6]). If T? =T and ||T|| < 1, then T 1is a projection.

Lemma 2.4. Let A and B be positive operators. Then the following assertions are equiv-
alent:

(i) AB = BA.

(if) AB = Py(a).Pn(p)L|AB| is the polar decomposition, where Py denotes the projec-
tion onto a closed subspace M.

Proof. Since A = Py(4)+A and B = Py(p)+ B are the polar decompositions, (i) = (ii) is
obvious by Theorem 2.A.
We shall prove (ii) = (i). By (ii), Pv(a)L Pn(s)+ is a partial isometry. Then we have

Py(ay: Pygyr = Prn(ayr Prayr (Pn(ay: Pr(s)L )" Pn(ay+ Prs)y+
= PN(A)-LPN(B)-LPN(B)J-PN(A)-LPN(A)-‘-PN(B)-L
= (Py(ayL Pniays)?.

Since ||Pyay: Pyng)+]l < 1 holds, we obtain that Py 4).Pn(p)+ is the projection onto
N(Pyay: Py(gyL)* = N(AB)* by Lemma 2.B. Hence we have

AB = PN(A)-LPN(B)LlABl = IABI 2 0,
i.e., AB = BA. O

Proof of Theorem 2.8. First, we shall prove “only if” part. By the condition |T||S*| =
1S*||T,
Tlis*| = Uovve|iTiis|

is the polar decomposition by Lemma 2.4. Hence we obtain that

TS = UU*UVV*V|TS| = UV|TS|

is the polar decomposition by Theorem 2.1.
Next, we shall prove “if” part. Let |T||S*| = W||T||S*|| be the polar decomposition.
Then by Theorem 2.1,
TS =UWV|TS]|

is also the polar decomposition. Hence we have UV = UWYV by the uniqueness of
the polar decomposition. Since N(W) = N(|T||S*|) 2 N(|S*]) = N(VV*) and H =
N({VV*)® N(VV*)* hold, we have

wWVvv*=W.



On the other hand, since N(W*) = N(|S*||T'|) 2 N(|T|) = N({U*U) and H = N({U*U) ®
N(U*U)?* hold, we have W*U*U = W*, that is,

Uutow =w.

Hence by UWV =UV,
W =U'UWVV*=U'UVV",

and we obtain the following polar decomposition
IT||S*| = U"UVV*||T||S*||.

Therefore |T'||S*| = |S*||T| by Lemma 2.4. O

3 Properties and characterizations of binormal and

centered operators

3.1 Binormal operators

We shall show a characterization of binormal operators via the polar decomposition
and the Aluthge transformation.

Theorem 3.1. Let T = U|T| be the polar decomposition. Then the following assertions
are equivalent:

(i) T is binormal.
(i) T = U|T| is the polar decomposition.
(iii) T?% = U?|T?| is the polar decomposition.

In particular, if T is a partial isometry, then T is binormal if and only if T or T? is a
partial isometry.

We remark that U = |U|3U|U|2 = U*UU for a partial isometry U, and (i) = (ii)
has been already pointed out by Furuta [5].

Proof. (i) <> (ii). Since |T|3 = U*U|T|? and U|T| = U|T|z are the polar decomposi-
tions, we obtain that
T = |T|7 - U|T|? = U*UU|T| = O|T|

is the polar decomposition if and only if

(T3, 17*13] = (|T)3, (U T3] = 0
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by Theorem 2.3.
(i) <= (iii). Since T = U|T is the polar decomposition, we obtain that

T?=T-T =U*T?
is the polar decomposition if and only if
(T, [T*]] =0
by Theorem 2.3. O

Campbell [3] gave an example of a binormal operator T such that T? is not binormal,
and Furuta [5] showed an equivalent condition to that T2 is binormal when T is binormal.

Theorem 3.A ([5]). Let T = U|T| be the polar decomposition of a binormal operator T'.
Then T? is binormal if and only if the following properties hold:

i) [(u2yur,u*U?)] =o. (ii) [U2(U*)*, U*|T||T*|U] = 0.
(iii) (U2 V2 UIT||T*|U*] =0. (iv) [U*|TIIT*|U,U|T||T*|U*] = 0.

On the other hand, most results on the Aluthge transformation T show that it has
better properties than T, see [1] for example. But there exists a binormal operator T

0 0 5

such that T is not binormal, for example T = % 3@ 0 |. Here we shall show an
¥3 -1 g
2 2

equivalent condition to that T is binormal for a binormal operator 7.

Theorem 3.2. Let T = U|T| be the polar decomposition of a binormal operator T. Then
the following assertions are equivalent:

(i) T is binormal.

(i) [U*TI(U%)", T} =0.

In order to give a proof of Theorem 3.2, we shall prepare the following lemma which
is a modification of [4, Theorem 2].

Lemma 3.B. Let A,B > 0 and [A,B] =0. Then
[Prnayt, Pypyt] = [Prn(ayr, B] = [A, Py(g):] = 0.
Proof of Theorem 8.2. T is binormal if and only if

[U|T|U*, |T]] = 0. (3.1)



Then we obtain
[U|T|U*, U*|T|(U?)*] =0

since
UiT|(UH* - U|IT\U* =U - U|T|U* - |T| - U*
=U-|T|-UT|U*-U* by (3.1)
= U|T|U* - U|T|(U?%)*.

Therefore we have
[T[217*? = |T|:U*|T|U|T|? - |T|2U|T|U*|T)2
= U*-U|T|5U* - |T|- U|T|U* - U¥T|(U?)* - U|T|3U* - U
= U*{|T|- UYT|(U>*}U|T)PU*U by (3.1) and (3.2)
= UY{|T|- U?|IT|(U**}U|T|?

and

([T # T2 = |T|5U|T|U*|T | - |T|5U*|T\U|T)|>
= U*-U|T|3U* - U*|T|(U?)* - U|T|U* - |T| - U|T|3U* - U
= U*{U|T|(U%* - ITJUITPU*U by (3.1) and (3.2)
= U{U*|T|(U*)" - ITI}UITP.

Proof of (ii) = (i). By (3.3) and (3.4), we have (i).
Proof of (i) = (ii). By Lemma 3.B,

(T, |T*] = [U*U, U|IT|U*) = [|IT|,UU*] = [U*U,UU*] = 0.
Since T is binormal, we have

{U*|T|(U%)* - ITI}UIT|* = UU{U?|T|(U?)* - IT}UIT|?

= UU{|T|- U*|T|(U*)*}U|T> by (3.3) and (3.4)

={IT|vU* - U*|T|(U*)"}UITI* by (3.5)
={|T|- U*|T|(U?)"}UIT?,

that is, U2|T|(U?)* - |T| = |T| - U?|T|(U?)* on
RUITE) = N(IT|2U*)* = N(UU*)* = RUU).

In other words,
U T|(U?* - |T|-UU* = |T|- U|T|(U?* - UU*.
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Hence we have
U?|T|(U?) - |T| = U*|T|(U*)* - UU* - T
= U2|T](U2)* -|T}|-UU* by (3.5)
= |T|-U*T|(U%)*-UU* by (3.6)
=|T|- U*|T|(U?)". O

Next we shall show the following result on the binormality of 7.

Theorem 3.3. Let T = U|T| be the polar decomposition. Then for each non-negative
integer n, the following assertions are equivalent:

(i) Ty, is binormal for all k =0,1,2,..., n.

(i) [UHT|(U*)*|T]| =0 for allk=1,2,...,n+1.

We prepare the following lemmas in order to give a proof of Theorem 3.3.

Lemma 3.4. Let T = U|T| be the polar decomposition. For each natural number n, if
[UHIT|(U"*,|T|)=0 foralik=1,2,...,n,
then the following properties hold:
(i) U*|T|*(U*)* = {U*|T|(U*)*}* for any @ > 0 and all k =1,2,...,n+ 1.
(i) [UHT|*(U*)*,|T]] = [U*|T|*(U*)*,U*U] =0 for any a >0 and all k =1,2,...,7.

(iii) UsITIa(Us)tut —_ Ua|T|a(Ua—t)* and (Ut)*U.slTIa(US)* — Ua—tlTla(Us)*
for any o > 0 and all natural numbers s and t such that 1 <t <s<n+1.

(iV) (Us)*lTlaUa(Ut)* — (Us)*’TlaUa-—t and Ut(Us)*lTIaUs — (Us-—t)*lTlaUs
for any a > 0 and all natural numbers s and t such that 1 <t <s < n.

(v) [(UR)*|T*[*U*, |T*(] = [(U*~1)*|T|*U*1, UIT|U"] = 0
foranya>0andallk=1,2,...,n.

(vi) [U*[T[*U*)", UT*(U*)*] =0
for any a > 0 and all natural numbers s and t such that s,t € [1,n + 1].

(vii) Un+1|T‘(Un+1)* — U"+1|T|';'(U”+1)* ) U"IT[%(U")*.

Proof. (i) We have only to prove that [U*|T|(U*)*, |T|] = 0 for all k = 1,2,...,n implies
U T|o(U™+)* = {U™T|(U™)*}® by induction on n. We remark that

[U*IT|(U**, U*U] =0 forallk=1,2,...,n (3.7)



by Lemma 3.B and the assumption. In case n =1,

U2(T|*(U?)* = U(U|T|U*)*U*
= U(U*U)*(U|T|U")*U*
=U(U*U - U|T|U* - U*U)°U* by (3.7)
= (UUUU|T|U*U*UU*)®
= {U*|T|(U?)*}=.

Assume that (i) holds for some natural number n. We shall show that it holds for n + 1.

UmRTIR (U2 = U (UMM T U™H)*} U
=U {U™|T|(U™")*}*U* by the inductive hypothesis
= U(U* )2 {U™T|(U™+)* ) U
= U{U*U - U™H|T|(U™) - U'UY U* by (3.7)
= {UU* VU T (U U UU )
= (U™ T|(U™?))°.

(i) By the assumption, (i) and Lemma 3.B, we have (ii).

(iii) By using (ii) repeatedly, we have

UT(U?) U = U {U*~ T Uty - U*U ) Ut
=U{U*U - U YT|* U )} U by (i)
= U2 {U*2|T|*(U*%)" - U*U} Ut
= U {U'U - U T (U* )"} U by (i)
= U3 {U* 3T (U*-%) - U*U} U

— Ut {Ua—tlTIa(Ua—t)w . U*U}

=U{Uv - U T (U by (i)
— Ut . Us—tlTla(Ua—t)*

= U,

so that U*|T|2(U*)*Ut = U*|T|*(U°~)* and (Ut)*U*|T|2(U*)* = U*—{T|2(U*)".
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(iv) Since T* = U*|T*| is polar decomposition of T*,

(Us+1)* lT* IaUs+1 (Ut)»: — (Us+1)* |T* laUa+1-t

7

and Ut(Ua+1)*IT*|aUs+1 _ (Ua+1—t)*|T*IaUa+1

for any a > 0 and all natural numbers s and ¢ such that 1 < ¢ < s < n by (iii), so that

we have

(Ua)*|T|aUa(Ut)n- — (Ua)*lT|aUa—t and U—t(Us)*|TlaUa — (Us_t)*ITPUs.

(v) Since |T*| = U|T|U*, we easily obtain

(ST |*U*, |IT*|] = [(U* (T U™, UIT|U?)

forany a > 0and all k =1,2,...,n, and also we have
(Uk—l)t|T|aUk—-1 ] UlTlU* — (Uk—i)t'Tla . UkITIU*
— (Uk—l)* {lTIa . Uk'Tl(Uk)*} Ulc-l
= (Uk—l)m {Uk.lTl(Uk)t . ITla} Ukt
= U[T|- U*y|TIPU*
= UITIUt . (Uk—l):ITlaUk—l
foranya>0and all k =1,2,...,n.

(vi) We may assume ¢ < s.

USITIo(U*) - VTI(UY) = DT - [T

by (iii)
by the assumption
by (iii)

by (iii)

=Ut {Ua—tlTla(Us—t)m . ]Tla} (U-t)*
=UH{|T® - U T U U by (i)

— Ut‘Tla . Ua—tlTla(Ua)n:
= UYT|*(U%)" - U*|T|*(U*)*
(vii) By using (ii) and (iii), we have
UrTIU™)" = UM (|0 [TUITI3) O™
= UMU|T AU - |T| - UIT3U*) (U

= U™ UIT|3U* - |T|7 - (U™)*
= U T (U™ - Un TR U)”

by (iii).

by (ii)
by (ii). o



Lemma 3.5. Let T = U|T)| be the polar decomposition and n be a natural number. If
[U*T|(U*)*,|T|] =0 forallk=1,2,...,n,
then the following assertions are equivalent:
@) [ TIU™) 1T = 0.
i) [Ty, 1Tl =o0.
Proof. First, we remark that [U|T|2U*,|T]|] = 0 by (ii) of Lemma 3.4, then we have
(7| = (TFU°ITUIT|%) = U*(UIT|sU* - [T - U|T|3U) U '
=U*-|T|? - U|T|3U* - U = U*|T|2U|T}3. (38)
In case n = 1. Since [U|T|3U*, |T|] =0, we have
UIT|U* = U(TRU*|TIUIT|Z)3U* = (UIT[3U* - |T| - U|T|30*)3
= (IT|% - UIT|U" - |T13)% = |(T)"].
Hence [U|T|U*, |T|] = [|(T)*|, |T|], i.e., T is binormal, so that this case just coincides with
Theorem 3.2.

Next, we shall prove that Lemma 3.5 holds for each natural number n such that n > 2.
Suppose that [U*|T|(U*)*,|T|] =0 for all k = 1,2,...,n. Then we have

U T|(U™)* - T
= {vrri ™ - vy - (o v
by (3.8) and (vii) of Lemma 3.4
= UMT R (U - U T U - (UU)2UMTIRUIT)E
=U*U - UMT|E(U™* - U*U - U YT|2 (U™ Y)* - U*|T|3U|T|2 (3.9)
by (ii) of Lemma 3.4
=Ut- UMTE U™ URTUR) - (T - UIT
= v {UrH T Uy m%} UT|5(U)*U|T|} by (ii) of Lemma 3.4
= Ut {ur Ty T orir oy
and
|T|- U™ Ty
= (vt} {orrp ey - vy
by (3.8) and (vii) of Lemma 3.4
= U*|T|3U - UMT|3(U™)* - U YT|3(U™Y)* - |T)? by (ii) of Lemma 3.4
= U*T|3 - U™ T3 (U™)*U - UM YT|3(U™Y)* - |T)? by (iii) of Lemma 3.4
= v {IT)}- U T O} U T O T

(3.10)
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Proof of (i) == (ii). Since [U™|T|(U™1)*,|T|] = 0, we have [U™|T|(U™)*, |T|] = 0, that
is, (ii) holds for n by (3.9) and (3.10).

Proof of (ii) = (i). Assume [U"|T|(U™)*,|T|] = 0. Then we have
{orm ey - i pur ety
= Uy {U T (T Unr O
=UU* {m% U TR U FURTR U TE by (3.9) and (3.10)
={Ir}t - ov* - o Ty U o) TE by (35)
= {imit - vryrE @y o T
This is equivalent to

Un+1|TI%(Un+1)* . ITI% — |T|% .l lT‘-;-(Urwl)*

on R(UP|T|3(Un-1)*|T|3). Since N(U) = N(|T}|), we obtain

R(UT[3(Un-1)|T|3) = N(|T|3U™|T|3 (U™)*)* = N(U™T]3(U™)")*
= N(|T|*(U")")* = NUU™*)* = N(U™(U™)")* = RO T")).
Therefore we have
UrT)E (U - (T - UNU™) = |T)E - UM TR - MO, (31)
so that

UMYT|R (U - |T|5 = UMY T|5(U™)* - |T|2 - U(U™* by (iv) of Lemma 3.4
© =T UM TR UTT) - UNEU™)Y, by (3.11)
= |T|7 - UMY T|2U* - (U™)* . by (iii) of Lemma 3.4
= |T|# - U T|E (U
that is, (i) holds for n. O

Proof of Theorem 8.8. We shall prove Theorem 3.3 by induction on n. We remark that
if [U¥|T|(U*)*, |T|]=0for all k=1,2,...,n+ 1, then we have

U TU™), T = U™ TI(U™)*, U U] = 0 (3.12)

by (ii) and (vii) of Lemma 3.4.
In case n = 1, we have already shown in Theorem 3.2. Suppose that Theorem 3.3
holds for some natural number 7. (i) holds for n + 1 if and only if

ﬁis binormal for all k =0,1,2,...,n+ 1.



By putting S = T, it is equivalent to
T and 3’: are binormal for all k =0,1,2,...,n. (3.13)
Since § = U*UU|S]| is the polar decomposition by Theorem 3.1, (3.13) is equivalent to

T is binormal and
(U UU*S{(UTUYY, S| = [U*U - UXT|(U*)* - UU, |T]] = 0 (3.14)
foralk=1,2,...,n+1

by the inductive hypothesis. On the other hand, if we assume (i) or (ii), then
[U¥|T|(U*)*, |T|] = 0 for all k = 1,2, ,n+1
by the inductive hypothesis, so that (3.14) is equivalent to
T is binormal and [U*|T|(U*)*,|T|] =0forall k =1,2,...,n+1 (3.15)

by (3.12) and U*U|T| = U*U(|T|3U*|T|U|T|?)% = |T|. Moreover Lemma 3.5 assures that
(3.15) is equivalent to

[U*IT|(U**, |T||=0forall k =1,2,...,n+2,

i.e., (ii) holds for n + 1. Hence the proof is complete. a

3.2 Centered operators

Morrel-Muhly [9] showed the following properties and characterization of centered
operators.

Theorem 3.C ([9]). Let T = U|T| be the polar decomposition of a centered operator T.
Then the following assertions hold:

(i) U™ is a partial isometry for all natural number n.
(ii) Operators {(U™)*|T|\U"},%, commute with one another.

(iii) 7" = U {|T|- U*|T|U - -- (U 1)*|T|U™1} is the polar decomposition for all natural
number n. v - o

Theorem 3.D ([9]). Let T = U|T| be the polar decomposition and U be unitary. Then
T is centered if and only if operators

{U™ T}

n=—0oo

commute with one another.
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We shall show the following characterization of centered operators which is an exten-
sion of (ii) of Theorem 3.C and Theorem 3.D.

Theorem 3.6. Let T = U|T| be the polar decomposition. Then the following assertions

are mutually equivalent;
(i) T is centered.
i) [IT™], |(T™)*|] = 0 for all natural numbers n and m.
(iii) [|T™],|T*|] = 0 for all natural number n.
(iv) Operators {(U™)*|T|U™, UM T|(U™)*,|T|}3%, commute with one another.

(v) [UMTHU™?*,|T]] = 0 for all natural number n.

(vi) T, is binormal for all non-negative integer n.

In order to give a proof of Theorem 3.6, we shall prepare the following lemmas.
Lemma 3.7. Let T be the polar decomposition. For each natural numbers n and m, if
[U*T|(U*,|T|] =0 forallk=0,1,2,...,m+n—2, (3.16)
then the following assertions are equivalent:
@) [wmTiwm)s, | =o.
(ii) [gmn=tT|(Um™nt), |T)) = 0.

Proof. We shall prove Lemma 3.7 by induction on . The case n = 1 is obvious. Assume
that it holds for some natural number n and each natural number m. Then we shall prove
that it holds for n + 1 and each natural number m.

Let m be a natural number and suppose that (3.16) holds for n + 1, i.e.,

[UHT|(U*", |IT]]=0 forallk=0,1,2,...,m+n—1. (3.17)

Then

[wiriu*, |r"] = [UU*, |T"|] = 0. (3.18)
holds by the inductive assumption and Lemma 3.B, so that we have

[T = |T|U*| T *U|T|

=U*.U|T|U* - |T"? - U|T|

=U*-|T*?-U|T|U*-U|T| by (3.18)

= U*T"PU|TP.

(3.19)



Therefore we have
T2 - U™T|(U™)* = UMTPUIT? - U™TIU™)* by (3.19)

= UYT"*U - U™|T|(U™)* - |T)* by (3.17) (3.20)
=U{|T"]* - U™ TI(U™ )} UITP?

and

U™|T|(U™)* - [T = U™T|U™)* - U*T"PUIT® by (3.19)
= U {U™T|(U™)* - |IT"?} UITP (3.21)
by (iii) of Lemma 3.4. |

Proof of (ii) = (i). Assume that (ii) holds for n + 1. Since
[Um D=1 | (UmHetD=1ys (7] = [Um D=1 D41y (7] = 0,
we have [U™|T|(U™t!)*, |T"|] = 0 by the inductive assumption. Hence we obtain
[T+, U™ T|(U™)] =0,
that is, (i) holds for n + 1 by (3.20) and (3.21).
Proof of (i) = (ii). Assume that (i) holds for n + 1. Then we have
U™t T U™t - TR - UITPR = UU* (U™ T|(U™) - [T *} UIT)?
= UU* (|7 - U T (U™) Y U TR
by (3.20) and (3.21)
= |T"? . UU* - U™NT (U™ - U|T)? by (3.18)
= [T"*- U™ T|(Um)” - UIT P,
that is,
Ut TIU™)” - T = (T U T U
holds on R(U[TJ?) = N(|T]2U*)* = N(UU*)* = R(UU*). Then we have
vt omtyt i vut = T - Uttt T (0™ - U, (3.22)
so that we obtain
UMD\ TR = U T U (T
= U™tT|(U™YY* . |1 - UU* by (3.18)
= |7 - U™t T| (U™ - oUt by (3.22)
= [T - U™ T|(U™)
Hence we have
[Um+D+n=1 T (Um+D+n=1)* | T[] = [Um+E+D=1 | (m+Hm+D 1) (] =

that is, (ii) holds for n + 1 by the inductive assumption. Hence the proof is complete. [J
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Lemma 3.8. Let T = U|T| be the polar decomposition. For each natural number n, if
[UKT|(UX,|T]]=0 forallk=0,1,2,....,n—1,

then
|(T™)*| = U|T|U* - U*|T|(U?)" - - - UMT|(U™)"

Proof. We shall prove Lemma 3.8 by induction on n. It is obvious the case n = 1. Assume
that Lemma 3.8 holds for some natural number n. Then we shall show that it holds for
n + 1. By the inductive assumption, we have

|(T™)*| = U|T|U* - U*T|(U?)" - U™TI(U™)". (3.23)
Then we obtain

(7)) = UIT]| - |(T™)* ) - |T|U*) 2
1
- {U|T| (UIT|U* - URT|(U?)" - - - U|T|(U™)")° |T1U*}’ by (3.23)
= {UIT| - UITRU* - TR UM TRy T
by (vi) of Lemma 3.4
= {UITIU* V)™ - UITPU - UHTR@Y)’ - UNTRU™) - [T}
= {U|T|-U*U - UITPU* - U*U - UYTP(U?)" - U*U
U -UMTRU™* - UU - |T|U*}% by (ii) of Lemma 3.4
~ {UITI* - TR - TR UM T RO - v
=U|T|U* - U*|T|(U?)* - US|T|(U®)" - -- U™ T U™+
by (vi) of Lemma 3.4. O
Proof of Theorem 8.6. (i) = (ii), (ii) = (iii) and (iv) = (v) are obvious, and (v) <
(vi) follows from Theorem 3.3. Then we have only to prove (iii) == (v), (v) => (iv),
(v) = (ii) and (ii) = (i).
Proof of (iii) = (v). Fimstly [U[T|U*,|T|] = 0 and [U|T|U*,|T?] = O ensures
[U?|T|(U?)*,|T|] = 0 by Lemma 3.7. Secondly [U*|T|({U*)*,|T|] = 0 for k¥ = 1,2 and
[U|T|U*,|T3|] = 0 ensures [U3|T|(U3)*, |T|] = 0 by Lemma 3.7. By repeating this method,

we have (v).

Proof of (v) = (iv). (v) implies

(@)U ), UIT|U*] = 0 (3-24)
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by (v) of Lemma 3.4. Then we have
Uy|Tio™ - T = U { (U)ot UiTiuT U
=U*{U[T|U*- (U |TIU™ '} U by (3.24)
= |T|- (U™)"|T|U™,
that is, [(U™)*|T|U™, |T|] = 0 holds for all natural number n. Moreover we obtain
(U™*T|U™ - U™TI(U™)* = (U™ {|T|- U™ |T|({U™™)*} U™ by (iii) of Lemma 3.4
= U™ (U™ T - TR U™ by (v)
=U™T|(U™)* - (U™)*|T|U™ by (iii) of Lemma 3.4,
that is, [(U™)*|T|U™, U™|T|(U™)*] = 0 holds for all natural numbers n and m. Hence we
have (iv).
Proof of (v) = (ii). By (v) and Lemma 3.8, we have
(T™)*| = UIT|U* - U*|T|(U%)" - -U™T|(U™)* for all natural number m,  (3.25)
and also by (v) and Lemma 3.7, we have

[U™|T|(U™)*,|T"|] =0 for all natural numbers m and n. (3.26)
Hence we obtain (ii) by (3.25) and (3.26).
Proof of (ii) = (i). For s > ¢, we have
T* T = (T*) - [T~ - (TP - T
= (T - [T - [T T* by (ii)

= [T
and
[(T*) PIT)* 2 =T (T4 - 1T - (T)"
=T |T*F - [(T*7°)* [ (T*)* by (i)
= |(T*)"PI(T*)" P,
so that we have (i). a

Remark. As a parallel result to (vi) of Theorem 3.6, one might consider that if T" is
binormal for all natural number n, then T is centered. The converse obviously holds

by the definition of centered operators. But there exists an operator T" such that 7" is
0

binormal for all natural number n and 7" is not centered, for example T' =

~N o
)
=)
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We shall show a characterization of centered operators via the polar decomposition
and the Aluthge transformation. We remark that Theorem 3.9 corresponds to Theorem
3.1 for binormal operators, and is related to (iii) of Theorem 3.C.

Theorem 3.9. Let T = U|T| be the polar decomposition. Then the following assertions
are equivalent:

(i) T is centered.
(ii) T, = ﬁ;liﬂ i3 the polar decomposition for all non-negative integer n.
(i) T™ = U™|T™| is the polar decomposition for all natural number n.

In particular, if T is a partial isometry, then T is centered if and only if ﬁ orT" isa
partial isometry for all natural number n.

Proof. (i) <= (ii). Assume that T is a centered operator, then 7T}, is binormal for all
non-negative integer n by Theorem 3.6. Then we have that

T = U|T) is the polar decomposition (3.27)

by Theorem 3.1 since 7' is binormal. Next since T is binormal and (3.27) holds, we have
that
f’; = 5;|’I’;| is the polar decomposition

by Theorem 3.1. Repeating this method, we have that ﬁ = I’J:|’:l";l is the polar decom-
position for all non-negative integer n.

Conversely, assume that T, = ﬁ;lﬁ | is the polar decomposition for all non-negative
integer n. Then we obtain that ﬁ is binormal for all non-negative integer n by Theorem
3.1. Hence T is centered by Theorem 3.6.

(i) < (iii). Assume that T is a centered operator, then we have that
T? = U*|T?| is the polar decomposition (3.28)
by [|T],|T*|] = 0 and Theorem 2.3. Next by (3.28) and [|T?|, }T‘]] = 0, we have that
T3 = U®|T3| is the polar decomposition

by Theorem 2.3. Repeating this method, we have that 7" = U™|T™| is the polar decom-
position for all natural number n.

Conversely, assume that 7" = U™|T™| is the polar decomposition for all natural number
n. Then we obtain that

T 1 = U™ T and T = U|T|



86

are the polar decompositions. By Theorem 2.3, we have
(7", 1T*)} = 0

for all natural number n > 1. Hence T is centered by Theorem 3.6. [
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