LOG-PLURICANONICAL SYSTEMS OF SMOOTH PROJECTIVE SURFACES

March,2003

1 Introduction

Let X be a smooth projective variety and K_X be a canonical divisor of X. Then X is called of general type when pluricanonical system $|mK_X|$ defines a birational embedding of X for some positive integer m. The behavior of the pluricanonical systems is important to study varieties of general type. For example, there is such a problem:

Problem 1.1 Let X be a smooth projective variety of general type. Find a positive ingeger m_0 such that for every $m \ge m_0$, $|mK_X|$ gives a birational map from X into a projective space. \square

In the case dim X=1, it is well known that $|3K_X|$ gives a projective embedding. In the case dim X=2, E. Bombieri proved that $|5K_X|$ gives a birational embedding([1]). Recently, H. Tsuji showed that there exists an integer ν_n which depends only on $n=\dim X$ and satisfies above problem([6,7]). But when dim $X\geq 4$, effective value of ν_n is unknown. Even if dim X=3, the value of ν_n becomes an astronomical number, and it is supposed that the value computed in [7] is not best-possible.

I am interested in this problem for open surfaces. As long as I know, such a situation is not studied yet.

Definition 1.1 Let X be a surface and D be a divisor with normal clossings. Then the pair (X, D) is called log-surface. If the liniar system $|K_X + D|$ is big, we say that (X, D) is of log-general type. \square

Now we state the problem more precisely.

Problem 1.2 Let (X, D) be a smooth projective surface of log-general type. Find a positive ingeger m_0 such that for every $m \ge m_0$, $|m(K_X + D)|$ gives a birational map from X into a projective space. \square

The main purpose of this paper is to answer the weeker version of this problem. Our result shows the value of m_0 for a given surface. But it depends on X and divisor D.

Theorem 1.1 Let (X,D) be a smooth projective surface of log-general type, and let $K_X + D = P + E$ be a Zariski-decomposition of $K_X + D$, where P is a nef part and E is effective part of the decomposition. Then $|m(K_X + D)|$ defines a birational map from X into projective space unless

$$m \ge \frac{6\sqrt{2}}{\sqrt{P^2}} + 4 .$$

Remark 1.1 In the case (X, D) is log-general type, $P^2 > 0$ holds ([3]).

2 Terminology

In this section we introduce a singular harmitian metric and some results we use after. See [2] for more details.

Definition 2.1 Let L be a holomorphic line bundle on X, h_0 be a C^{∞} -hermitian metric on L, and φ be a L^1_{loc} -function on X. Then we call $h = e^{-\varphi} \cdot h_0$ a singular hermitian metric with respect to φ . φ is called a weight function of h. \square

Definition 2.2 We define a curvature current $i\Theta_h$ of a singular hermitian line bundle (L,h) as follows:

$$i\Theta_h := i\partial\bar{\partial}\varphi + i\Theta_{h_0}$$

where $\partial \bar{\partial}$ is taken as a distribution and $i\Theta_{h_0}$ is the curvature form of (L,h_0) in usual sense.

A singular hermitian line bundle is said to be positive, if the curvature current $i\Theta_h$ becomes a measure which takes values in semipositive-defined hermitian matrix. \square

Next we introduce a concept of multiprier ideal sheaves. Let $U \subset X$ be an open set and $\mathcal{O}(U)$ be the set of holomorphic functions on U. Then

$$I_U(h) := \left\{ \left. f \in \mathcal{O}(U) \, \left| \, \int_U \, e^{-arphi} \, \left| f
ight|^2 \, dV \, \right| < \, +\infty \, \,
ight.
ight.
ight.
ight.$$

becomes a presheaf when U runs all open subsets of X. We put I(h) as the sheafication of $I_U(h)$. I(h) is called the multiplier ideal sheaf with respect to h. The following theorem which is a variant of Kodaira 's vanishing theorem is due to A.Nadel([5]).

Theorem 2.1 Let (X, ω) be a Kähler manifold and (L, h) be a singular hermitian line bundle on X. Assume that $i\Theta_h \geq \varepsilon_0 \omega$ for some $\varepsilon_0 > 0$. Then

$$H^q(X, \mathcal{O}_X(K_X + L) \otimes I(h)) = 0 \qquad (q \ge 1)$$
.

3 Proof of Theorem1.1

In this section, we show the outline of the proof of Theorem1.1. The proof is made along [6, section2], so please refer to [6] for detail.

Let (X, D) be a smooth projective surface of log-general type and $x, y \in X$, $x \neq y$ be generic two points. Assume that there exists a singular hermitian metric $h_{x,y}$ on $m(K_X + D) + D$ such that:

- 1. $x, y \in \operatorname{supp} \mathcal{O}_X / I(h_{x,y})$
- 2. One of the x or y, say x, is an isolated point of supp $\mathcal{O}_X/I(h_{x,y})$
- 3. $i\Theta_h \geq \varepsilon_0 \omega$ for some $\varepsilon_0 > 0$.

We consider the long exact sequence:

$$\cdots \longrightarrow H^{0}(X, \mathcal{O}_{X}((m+1)(K_{X}+D)))$$

$$\longrightarrow H^{0}(X, \mathcal{O}_{X}((m+1)(K_{X}+D)) \otimes \mathcal{O}/I(h_{x,y}))$$

$$\longrightarrow H^{1}(X, \mathcal{O}_{X}(K_{X}+m(K_{X}+D)+D) \otimes I(h_{x,y})) \longrightarrow \cdots$$

Where $H^1(X, \mathcal{O}_X(K_X+m(K_X+D)+D)\otimes I(h_{x,y}))=0$ by Nadel 's vanishing theorem, hence we get surjection and we can conclude that there exists some $\sigma\in H^0(X,\mathcal{O}_X((m+1)(K_X+D)))$ such that $\sigma(y)=0$ and $\sigma(x)\neq 0$. This shows that $\Phi_{|(m+1)(K_X+D)|}$ separates x and y. Therefore to prove theorem1.1, we have only to compute the value m such that we can construct a singular hermitian metric $h_{x,y}$ on $(m+1)(K_X+D)$ which satisfies the condition 1, 2 and 3 above for arbitrary distinct two points $x,y\in U$, for some nonempty Zariski open subset $U\subset X$.

3.1 Construction of $h_{x,y}$

Let $K_X + D = P + E$ be a Zariski-decomposition of $K_X + D$, where P is the nef part and E is the effective part of the decomposition. We put X° as follows:

 $X^{\circ} := \{ p \in X \mid p \notin Bs|mP| \text{ and for some m, } |mP| \text{ gives biholomorpic near } p \}$

Then X° is a nonempty Zariski open set of X.

We take arbitrary $x,y\in X^\circ$ and we set $\mathcal{M}_{x,y}:=\mathcal{M}_x\otimes\mathcal{M}_y$, where \mathcal{M}_x and \mathcal{M}_y are the maximum ideal sheaf of the points x,y respectively. By considering a cohomology exact sequence and comparing the dimension of $H^0(X,\mathcal{O}_X(mP))$ and $H^0(X,\mathcal{O}_X(mP)\otimes\mathcal{O}_X/\mathcal{M}_{x,y}^{\otimes\lceil\sqrt{\frac{P^2}{2}}\cdot(1-\varepsilon)\,m\rceil})$, we can show the following:

Proposition 3.1 For arbitrary small $\varepsilon > 0$,

$$\dim H^0\big(\,X\,,\,\mathcal{O}_X\big(mP\big)\,\otimes\mathcal{O}_X/\mathcal{M}_{x,y}^{\otimes\lceil\sqrt{\frac{P^2}{2}}\,\cdot\,(1-\varepsilon)\,m\rceil}\,\,\big)\,\,\geq\,\,1$$

holds if we take m sufficiently large. \square

We take $\sigma_0 \in H^0(X, \mathcal{O}_X(m_0P) \otimes \mathcal{O}_X/\mathcal{M}_{x,y}^{\otimes \lceil \sqrt{\frac{P^2}{2}} \cdot (1-\varepsilon_0) m_0 \rceil})$ for sufficiently small ε_0 and sufficiently large m_0 .

If we set $h_0 := \frac{1}{|\sigma_0|^{2/m_0}}$, then h_0 is a singular hermitian metric on P with positive curvature.

We set α_0 as follows:

$$\alpha_0 := \inf \{ \alpha > 0 \mid \operatorname{supp} \mathcal{O}_X / I(h_0^{\alpha}) \ni x, y \}$$
.

 σ_0 has zeros of order at least $\lceil \sqrt{\frac{P^2}{2}} \cdot (1-\varepsilon) m \rceil$, so we get $\alpha_0 \leq \sqrt{\frac{2}{P^2}} \cdot \frac{2}{1-\varepsilon_0}$. Next we decrease α_0 a little bit. Then one of the following two cases occurs.

Case 1. supp $\mathcal{O}_X/I(h_0^{\alpha-\delta_0})$ does not include either x nor y.

Case 2. supp $\mathcal{O}_X/I(h_0^{\alpha-\delta_0})$ includes one of x or y, say x.

In Case 1, we can consider a minimal center of log canonical singularities at x. Let X_1 be a minimal center at x. In this case one of following two cases occurs.

Case 1-1. supp $\mathcal{O}_X/I(h_0^{\alpha-\delta_0})$ does not include either x nor y.

Case 1-2. Otherwise.

We shall explain Case 1-1. (Other cases are easier to prove.) Note that $(X_1 \cdot P) > 0$ because X_1 passes through $x \in X^{\circ}$.

Proposition 3.2 For arbitrary small $\varepsilon > 0$,

$$\dim H^0\big(\,X_1\,,\,\mathcal{O}_{X_1}\big(mP\big)\,\otimes\mathcal{O}_X/\mathcal{M}_{x,y}^{\otimes\lceil\frac{(X_1\cdot P)}{2}\cdot(1-\varepsilon)\,m\rceil}\,\,\big)\,\,\geq\,\,1$$

holds if we take m sufficiently large. \square

The proof of Proposition 3.2 is the same as the proof of Proposition 3.1.

We take $\tilde{\sigma_1} \in H^0(X, \mathcal{O}_{X_1}(m_1P) \otimes \mathcal{O}_{X_1}/\mathcal{M}_{x,y}^{\otimes \lceil \frac{(X_1 \cdot P)}{2} \cdot (1-\varepsilon_1) m_1 \rceil})$ for sufficiently small ε_1 and sufficiently large m_1 .

Because P is nef big, P has a decomposition $P = \mathcal{A} + \mathcal{E}$ by Kodaira 's lemma. Where \mathcal{A} is a **Q**-ample divisor and \mathcal{E} is a **Q**-effective divisor. We take integer l_1 sufficiently large so that $L_1 := l_1 \cdot \mathcal{A}$ is **Z**-very ample. Let $\tau \in H^0(X_1, \mathcal{O}_{X_1}(L_1))$ be a section which is not zero section. then

$$\tilde{\sigma_1} \otimes \tau \in H^0(X_1, \mathcal{O}_{X_1}(mP + L_1) \otimes \mathcal{O}_X/\mathcal{M}_{x,y}^{\otimes \lceil \frac{(X_1 \cdot P)}{2} \cdot (1-\varepsilon) m \rceil})$$

holds.

Proposition 3.3 For $m \geq 0$,

$$H^0\left(\,X\,,\,\mathcal{O}_X\!\left(mP+L_1
ight)\,
ight)\longrightarrow H^0\!\left(\,X_1\,,\,\mathcal{O}_{X_1}\!\left(mP+L_1
ight)\,
ight)$$

is surjective if we take l_1 sufficiently large. \square

Proof. Set $\varphi = \alpha_0 \log \frac{h_0}{h_P}$. Where h_P is arbitrary C^{∞} -hermitian metric on P. We consider $\varphi \cdot h_{L_1} \cdot h_{K_X^{-1}}$. This is a singular hermitian metric on $L_1 - K_X$. If we take l_1 sufficiently large, the curvature is strictly positive and $\mathcal{O}_X/I(\varphi) = \mathcal{O}_{X_1}$. Since P is nef, we get $H^1(X, \mathcal{O}_X(mP + L_1) \otimes I(h_{mP + L_1 - K_X})) = 0$. This completes the proof. \blacksquare

By using this proposition, we extend $\tilde{\sigma_1} \otimes \tau$ to

$$\sigma_1 \in H^0(X, \mathcal{O}_X((m_1+l_1)P))$$
.

Let $\{\rho_j\}$ be generator of $\mathcal{O}_X((m_1+l_1)\cdot\mathcal{A})\otimes\mathcal{I}_X$. We put

$$h_1 := \frac{1}{(|\sigma_1|^2 + \sum |\rho_j|^2)^{1/(m_1+l_1)}}$$
.

We take m_1 sufficiently large so that $\frac{l_1}{m_1} \leq \delta_0 \frac{(X_1 \cdot P)}{2}$ holds.

Proposition 3.4 Let $\alpha_1 = \inf \{ \alpha > 0 \mid \operatorname{supp} \mathcal{O}_X / I(h_0^{\alpha_0 - \delta_0} \cdot h_1^{\alpha}) \ni x, y \}$. Assume x and y be regular points of X_1 . Then

$$\alpha_1 \leq \frac{2}{(X_1 \cdot P)} + O(\delta_0)$$

Proof. We can choose a neighborhood U of x and a local coordinate system (z_1, z_2) on U such that

$$U \cap X_1 = \{ p \in U \mid z_1(p) = 0 \} = \{ (0, z_2) \}$$

holds. Then we get

$$\left|\left|\sigma_{1}\right|\right|^{2} + \sum_{j}\left|\left|\rho_{j}\right|\right|^{2} \leq C \cdot \left(\left|z_{1}\right|^{2} + \left|z_{2}\right|^{2 \cdot \left\lceil \frac{(X_{1},P)}{2} \cdot (1-\varepsilon_{1}) \cdot m_{1}\right\rceil}\right) ,$$

here $||\cdot||$ is taken with respect to some C^{∞} -hermitian metric on $(m_1 + l_1)P$, and C is a constant depending on the norm $||\cdot||$. By the construction of σ_0 ,

$$||\sigma_0||^{\frac{2}{m_0}\cdot(\alpha_0-\delta_0)} \leq O(|z_1|^{2-\delta_0})$$

also holds on some neighborhood of generic points of $U \cap X_1$. Hence we get

$$\alpha_1 \leq \frac{(m_1+l_1)}{m_1} \cdot \frac{2}{(X_1 \cdot P)} + O(\delta_0)$$
.

From the assumption $\frac{l_1}{m_1} \leq \delta_0 \frac{(X_1 \cdot P)}{2}$, we conclude the statement of the proposition.

Remark 3.1 Even if x and y are not regular points of X_1 , we can show above result is true by taking \hat{x} and \hat{y} as regular points of X_1 and letting $\hat{x} \longrightarrow x$ and $\hat{y} \longrightarrow y$.

Lemma 3.1 $\mid m(K_X + D) \mid separates x and y for <math>m \geq \lceil \alpha_0 + \alpha_1 \rceil + 1$. \square

Proof. By the eqation

$$m(K_X + D) = K_X + (m-1)P + (m-1)E + D$$

and

$$(m-1)P = \{(\alpha_0 - \delta_0) + \alpha_1\}P + \{m-1 - (\alpha_0 - \delta_0 + \alpha_1)\}(A + \mathcal{E}),$$

we can equip a singular hermitian metric $h_{x,y}$ by

$$h_{x,y} := h_0^{\alpha_0 - \delta_0} \cdot h_1^{\alpha_1} \cdot h_A^{m-1 - (\alpha_0 - \delta_0 + \alpha_1)} \cdot h_{\text{eff}}$$
,

where $h_{\mathcal{A}}$ is a C^{∞} -hermitian metric of **Q**-ample divisor \mathcal{A} and h_{eff} is a semipositive singular hermitian metric which comes from the other components. Then by the construction of h_0 and h_1 , $h_{x,y}$ satisfies the following conditions:

- 1. $x, y \in \operatorname{supp} \mathcal{O}_X / I(h_{x,y})$
- 2. One of the x or y, say x, is an isolated point of supp $\mathcal{O}_X/I(h_{x,y})$.
- 3. $i\Theta_h \geq \varepsilon_0 \omega$ for some $\varepsilon_0 > 0$.

So there exists some $\sigma \in H^0(X, m(K_X+D))$ such that $\sigma(y) = 0$ and $\sigma(x) \neq 0$, or $\sigma(x) = 0$ and $\sigma(y) \neq 0$. This completes the proof.

Cororally 3.1 $\mid m(K_X + D) \mid$ separates x and y for

$$m \geq \frac{2\sqrt{2}}{\sqrt{P^2}} + \frac{2}{(X_1 \cdot P)} + 1$$
.

3.2 Construction of X_1 as a family

Our construction of X_1 is depending on the choice of the points x and y. Therefore it seems that the value of (X_1, P) is also depending on x and y. But in fact, (X_1, P) is independent of generic choice of $x, y \in X$. We explain it in this subsection.

Let $\Delta_X \subset X \times X$ be a diagonal set. We set $B \subset X \times X$ and $Z \subset B \times X$ as follows:

$$B := X^{\circ} \times X^{\circ} - \Delta_X$$

$$Z := \{ (z_1, z_2, z_3) \mid x_3 = x_1 \text{ or } x_2 = x_1 \}$$
.

Let $p: X \times B \longrightarrow X$ and $q: X \times B \longrightarrow B$ be the frist and second projection respectively. We consider

$$q_* \left(\mathcal{O}_{X \times B}(m_0 \, p^* P) \otimes \mathcal{I}_Z^{\otimes \left\lceil \sqrt{\frac{P^2}{2}} \cdot (1 - \varepsilon) \, m \right\rceil} \right)$$

instead of

$$H^0\left(\,X\,,\,\mathcal{O}_Xig(mPig)\,\otimes\mathcal{O}_X/\mathcal{M}_{x,y}^{\otimes\left\lceil\sqrt{rac{P^2}{2}}\cdot(1-arepsilon)\,m
ight
ceil}\,
ight),$$

where \mathcal{I}_Z denotes the ideal sheaf of Z. For a sufficiently large integer m_0 and sufficiently small ε , we take $\tilde{\sigma}_0$ as a nonzero global meromorphic section of

$$q_* \big(\mathcal{O}_{X \times B}(m_0 \, p^* P) \otimes \mathcal{I}_Z^{\otimes \lceil \sqrt{\frac{P^2}{2}} \cdot (1-\varepsilon) \, m \rceil} \big) \ .$$

$$\tilde{h}_0:=\frac{1}{\left|\tilde{\sigma}_0\right|^{2/m_0}}\;,$$

then h_0 is a singular hermitian metric on P (but curvature current of \tilde{h}_0 may not be positive). We shall replace α_0 by

$$\tilde{\alpha}_0 = \inf\{\alpha > 0 \mid \text{The generic points of } Z \subset \operatorname{Spec}(\mathcal{O}_{X \times B}/\mathcal{I}(\tilde{h}_0^{\alpha})) \}$$
.

Then for every small $\delta > 0$, there exists a Zariski open subset U of B such that $\tilde{h}_0|_{X \times \{b\}}$ is well-defined for every $b \in U$, and

$$b \not\subseteq \operatorname{Spec}(\mathcal{O}_{X \times \{b\}}/\mathcal{I}(\tilde{h}_0^{\tilde{\alpha}_0 - \delta}))$$
,

where we have identified b with distinct two points in X. By the construction of α_0 , we can see

$$b \subseteq \operatorname{Spec}(\mathcal{O}_{X \times \{b\}}/\mathcal{I}(\tilde{h}_0^{\tilde{\alpha}_0}))$$

for every $b \in B$. Let \tilde{X}_1 be a minimal center of logcanonical singularities of $(X \times B, \frac{\tilde{\alpha}_0}{m_0}(\tilde{\sigma}_0))$ at the generic point of Z (although $(\tilde{\sigma}_0)$ may not be effective, but this is still meaningfull in this case because of our construction of $\tilde{\sigma}_0$). Then $\tilde{X}_1 \cap q^{-1}(b)$ is almost a minimal center at $b := \{ \text{Distinct two points in } X^{\circ} \}$ which we construct in the last subsection. Remark that $\tilde{X}_1 \cap q^{-1}(b)$ may not be irreducible even for a general $b \in B$. But if we take a suitable finite cover

$$\phi_0: B_0 \longrightarrow B$$
,

on the base change $X \times_B B_0$, \hat{X}_1 defines a family of irreducible subvarieties

$$f: \hat{X}_1 \longrightarrow U_0$$

of X parametrized by a nonempty Zariski open subset U_0 of $\phi_0^{-1}(U)$.

From above arguments, we see that $\{X_1\}$'s are numerically equivalent to each other when we move $b = (x, y) \in X^{\circ} \times X^{\circ} - \Delta_X$ generically. The intersection number (X_1, P) takes value in Q, therefore (X_1, P) is constant if we choose b = (x, y) generically. Hence we get:

Proposition 3.5 $|m(K_X + D)|$ defines a birational map from X to a projective space if

$$m \geq \frac{2\sqrt{2}}{\sqrt{P^2}} + \frac{2}{(X_1 \cdot P)} + 1$$
.

3.3 An estimate of $(X_1 \cdot P)$

To complete the proof of Theorem1.1, we have to estimate $(X_1 \cdot P)$.

We consider the self-intersection number $(X_1)^2$. Then there are three possibilities:

Case 1.
$$(X_1)^2 > 0$$

Case 2.
$$(X_1)^2 = 0$$

Case 3.
$$(X_1)^2 < 0$$

Let (x, y) and (\hat{x}, \hat{y}) be pair of distinct two points of X° . We put X_1 and \hat{X}_1 as a minimal center at (x, y) and (\hat{x}, \hat{y}) respectively. If we take (x, y) and (\hat{x}, \hat{y}) general, X_1 and \hat{X}_1 have no common irreducible components. Since X_1 and \hat{X}_1 are numerically equivalent, we get

$$(X_1)^2 = (\dot{X}_1)^2 = (X_1, \dot{X}_1) \geq 0$$
.

So we have only to consider the case $(X_1)^2 \geq 0$.

i) In the case $(X_1)^2 > 0$.

By the Hodge index theorem, we get

$$(X_1,P) \geq \sqrt{(X_1)^2} \cdot \sqrt{(P)^2} .$$

Since X_1 is an integral divisor, $(X_1)^2$ takes balue in **Z**. As a consequence we have $(X_1)^2 \ge 1$ and

$$\frac{1}{(X_1,P)} \leq \frac{1}{\sqrt{P^2}} .$$

So in this case the proof of Theorem1.1 is completed.

ii) In the case $(X_1)^2 = 0$.

Let \mathcal{N}_{X_1} be a normal bundle of X_1 . Then we have $\mathcal{N}_{X_1} = -X_1|_{X_1}$ and $\deg_{X_1} \mathcal{N}_{X_1} = -(X_1)^2 = 0$. So we see that the normal bundle of X_1 is trivial. Furthermore, X_1 can move. As a consequence, we can conclude existence of a fibration of X:

$$\pi: X \longrightarrow S$$
,

where S denotes some algebraic curve. By the definition of α_0 , $\alpha_0 P - \pi^*(p_x) - \pi^*(p_y)$ is a pseudeffective line bundle on X. Here p_x and p_y denote the point $\pi(x)$ and $\pi(y)$ respectively. Because $\deg_S K_S = 2g_S - 2 \geq -2$, we have

$$\alpha_0 P > \pi^*(2 \text{ points in } S) \geq -\pi^* K_S$$

and

$$H^0(X, \mathcal{O}_X(m(1+\alpha_0)(K_X+D))) \supset H^0(X, \mathcal{O}_X(m(K_X+D-\pi^*K_S)))$$
.

Recall that we regard $H^0(X, \mathcal{O}_X(m(K_X + D - \pi^*K_S)))$ as a subset of $H^0(X, \mathcal{O}_X(m(1+\alpha_0)(K_X + D)))$ by using natural injective map derived from the sheaf exact sequence

$$0 \longrightarrow \mathcal{O}_X\left(m(K_X+D-\pi^*K_S)\right) \longrightarrow \mathcal{O}_X\left(m(1+\alpha_0)(K_X+D)\right) ,$$

and hereafter we will often use such notation. By the definition of Zariski decomposition and above inclusion, we have the natural injection

$$\phi: H^0(X, \mathcal{O}_X(m(K_X+D-\pi^*K_S))) \longmapsto H^0(X, \mathcal{O}_X(m(1+\alpha_0)P))$$
,

if we let m be an integer such that $m(1 + \alpha_0)P$ is a **Z**-divisor.

The divisor $\pi_*(K_X + D - \pi^*K_S)$ is semipositive by Kawamata 's semipositivity theorem[4, theorem 1], hence we get

$$H^0(S, \mathcal{O}_S(m\pi_*(K_X+D-\pi^*K_S))) \longrightarrow m\pi_*(K_X+D-\pi^*K_S) \otimes \mathcal{O}_S/m_p$$

is surjective for sufficiently large m. From the above surjection, we get

$$H^0(X, \mathcal{O}_X(m(K_X+D-\pi^*K_S)))$$

$$\longrightarrow H^0(\pi^{-1}(p), \mathcal{O}_{\pi^{-1}(p)}(m(K_X + D - \pi^*K_S)|_{\pi^{-1}(p)}))$$

is also surjective. Since $\pi^*K_S|_{\pi^{-1}(p)}$ is trivial bundle, we have a surjection:

$$H^0(X, \mathcal{O}_X(m(K_X+D-\pi^*K_S)))$$

$$\longrightarrow H^0(\pi^{-1}(p), \mathcal{O}_{\pi^{-1}(p)}(m(K_X+D)|_{\pi^{-1}(p)}))$$
.

Let us consider $H^0(X, \mathcal{O}_X(m(1+\alpha_0)P))\Big|_{\pi^{-1}(p)}$. By the natural injective map ϕ , we can see

$$H^0(X, \mathcal{O}_X(m(1+\alpha_0)P))\Big|_{\pi^{-1}(p)} \supset H^0(\pi^{-1}(p), \mathcal{O}_{\pi^{-1}(p)}(m(K_X+D)|_{\pi^{-1}(p)}))$$

holds.

Let σ_1 and σ_2 be a global section of $H^0(X, \mathcal{O}_X(m(K_X+D-\pi^*K_S)))$ such that $\sigma_1|_{\pi^{-1}(p)}$ and $\sigma_2|_{\pi^{-1}(p)}$ are linearly independent. Then, if we take a general fiber $\pi^{-1}(p)$, $\phi(\sigma_1)|_{\pi^{-1}(p)}$ and $\phi(\sigma_2)|_{\pi^{-1}(p)}$ are also linearly independent.

Hence we get an inequality on dimensions of holomorphic sections:

$$\dim H^{0}(X, \mathcal{O}_{X}(m(1+\alpha_{0})P))\Big|_{\pi^{-1}(p)} > \dim H^{0}(\pi^{-1}(p), \mathcal{O}_{\pi^{-1}(p)}(m\pi_{*}(K_{X}+D)|_{\pi^{-1}(p)})).$$

We know the asymptotic relations:

$$\dim H^0(X, \mathcal{O}_X(m(1+\alpha_0)P))\Big|_{\pi^{-1}(p)} \sim m(1+\alpha_0)(P, \pi^{-1}(p))$$

and

$$\dim H^0(\pi^{-1}(p), \mathcal{O}_{\pi^{-1}(p)}(m\pi_*(K_X+D)|_{\pi^{-1}(p)})) \sim m(K_X+D, \pi^{-1}(p))$$
,

when we keep $m(1 + \alpha_0)P$ be integral divisor and letting m to be sufficiently large. Letting $m \longrightarrow \infty$, we see

$$(1+\alpha_0)(\pi^{-1}(p),P) \geq (\pi^{-1}(p),K_X+D)$$
.

By definition, $(\pi^{-1}(p), P) = (X_1, P)$ and $(\pi^{-1}(p), K_X + D) = (X_1, K_X + D)$ holds. Hence we have

$$(1+\alpha_0)(X_1,P) \geq (X_1,K_X+D)$$
.

If we take a general fiber, $(K_X + D) \big|_{X_1}$ becomes a big divisor and

$$\deg_{X_1} (K_X + D) = (X_1, K_X + D) \ge 1$$

holds. Then we get an estimate for (X_1, P) :

$$1+\alpha_0 \geq \frac{1}{(X_1,P)}.$$

Since $\alpha_0 \leq \sqrt{\frac{2}{P^2}} \cdot \frac{2}{1-\epsilon_0}$, then we have

$$\frac{2\sqrt{2}}{\sqrt{P^2}} + \frac{2}{(X_1 \cdot P)} + 1 \leq \frac{2\sqrt{2}}{\sqrt{P^2}} + \frac{\sqrt{2}}{\sqrt{P^2}} \cdot \frac{4}{1 - \varepsilon_0} + 3 ,$$

and this completes the proof of Theorem1.1.

References

- [1] E. Bombieri, Canonical models of surfaces of general type, Pbul. I.H.E.S., 42 (1972), 171-219.
- [2] J.-P. Demailly, L^2 vanishing theorems for positive line bundles and adjunction theory, Lecture Notes in Math., **1646**, Springer, (1996), 1-97.
- [3] Y. Kawamata, On the Classification of Non-complete Algebraic Surfaces, Lecture Notes in Mathematics, 732, Springer-Verlag, (1979), 215-232.

- [4] Y. Kawamata, Kodaira Dimension of Algebraic Fiber Spaces Over Curves, Invent. math., 66, (1982), 57-71.
- [5] A.M. Nadel, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. 132 (1990), 549-596.
- [6] H. Tsuji, Pluricanonical systems of projective varieties of general type, math.AG/9909021.
- [7] H. Tsuji, Pluricanonical systems of projective 3-folds of general type, math.AG/0204096.

Author's address
Makoto Hisamatsu
Department of Mathematics
Tokyo Institute of Technology
2-12-1 Ohokayama, Meguro 152-8551
Japan
e-mail address: macco@math.titech.ac.jp