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1 Introduction

Let X be a smooth projective variety and Kx be a canonical divisor of X.
Then X is called of general type when pluricanonical system |mKx| defines
a birational embedding of X for some positive integer m. The behavior of
the pluricanonical systems is important to study varieties of general type. For
example, there is such a problem :

Problem 1.1 Let X be a smooth projective variety of general type. Find a
positive ingeger mq such that for every m > mq, [mKx| gives a birational map
from X into a projective space. U

In the case dim X = 1, it is well known that |3K x| gives a projective em-
bedding. In the case dim X = 2, E. Bombieri proved that |5Kx| gives a bira-
tional embedding([1]). Recently, H. Tsuji showed that there exists an integer
v, which depends only on n = dim X and satisfies above problem([6,7]). But
when dim X > 4, effective value of vy, is unknown. Even if dimX = 3, the
value of v,, becomes an astronomical number, and it is supposed that the value
computed in [7] is not best-possible.

I am interested in this problem for open surfaces. As long as I know, such a
situation is not studied yet. :

Definition 1.1 Let X be a surface and D be a divisor with normal clossings.
Then the pair (X, D) is called log-surface. If the liniar system |Kx + D| is big,
we say that (X, D) is of log-general type. O

Now we state the problem more precisely.
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Problem 1.2 Let (X, D) be a smooth projective surface of log-general type.
Find a positive ingeger mo such that for every m > mg, |m(Kx + D)| gives a
birational map from X into a projective space. (1

The main purpose of this paper is to answer the weeker version of this
problem. Our result shows the value of mg for a given surface. But it depends
on X and divisor D.

Theorem 1.1 Let (X, D) be a smooth projective surface of log-general type,
and let Kx + D = P + E be a Zariski-decomposition of Kx + D, where P is a
nef part and E is effective part of the decomposition. Then |m(K x + D)| defines
a birational map from X into projective space unless

6v2

m> — + 4 .

= 7pz

Remark 1.1 In the case (X, D) is log-general type, P2 > 0 holds ([3]).

2 Terminology

In this section we introduce a singular harmitian metric and some results we
use after. See [2] for more details.

Definition 2.1 Let L be a holomorphic line bundle on X, hy be a C™ -hermitian
metric on L, and ¢ be a L}, .-function on X. Then we call h =e~% - hy a sin-
gular hermitian metric wiht respect to . ¢ is called a weight function of h. O

Definition 2.2 We define a curvature current i©y, of a singular hermitian line
bundle (L,h) as follows:

10 = iaégp + 1O,

where 80 is taken as a distribution and 1O, is the curvature form of (L, ho) in
usual sense. :

A singular hermitian line bundle is said to be positive , if the curvature cur-
rent i©;, becomes a measure which takes values in semipositive-defined hermitian
matriz. 0O
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Next we introduce a concept of multiprier ideal sheaves. Let U C X be an

open set and O(U) be the set of holomorphic functions on U. Then

/e”‘P|f|2dV < +oo}
U

becomes a presheaf when U runs all open subsets of X. We put I(h) as the
sheafication of Iyy(h). I(h) is called the multiplier ideal sheaf with respect to
h. The following theorem which is a variant of Kodaira ’s vanishing theorem is
due to A.Nadel([5]).

Iy(h) := { feoU)

Theorem 2.1 Let (X,w) be a Kéhler manifold and (L, h) be a singular hermi-
tian line bundle on X. Assume that i1©, > egow for some ep > 0. Then

HY(X,Ox(Kx+L)®I(h)) = 0 @>1) .

3 Proof of Theoreml.1

In this section, we show the outline of the proof of Theoreml.1. The proof is
made along [6, section2], so please refer to [6] for detail.

Let (X, D) be a smooth projective surface of log-general type and z,y €
X ,z # y be generic two points. Assume that there exists a singular hermitian
metric h; y on m(Kx + D) + D such that:

1. z,y € suppOx /I(hz,y)
2. One of the z or y, say z, is an isolated point of supp Ox /I(h.,y)
3. 1©, > gow for some g > 0.

We consider the long exact sequence:

- — H°(X, Ox((m +1) (Kx + D)))

— H°(X, Ox((m+1)(Kx + D)) ® O/I(hsy))
— HY( X, Ox(Kx + m(Kx + D) + D) ® I(hz,y)) — -

Where H'( X, Ox (Kx+m(Kx+D)+D)®I(hs,)) = 0by Nadel ’s vanishing
theorem, hence we get surjection and we can conclude that there exists some
o € H*( X, Ox((m + 1) (Kx + D)) ) such that o(y) = 0 and o(z) # 0. This
shows that ®|(;m41) (kx+D)| separates z and y. Therefore to prove theoreml.1,
we have only to compute the value m such that we can construct a singular
hermitian metric h, on (m + 1) (Kx + D) which satisfies the condition 1,
2 and 3 above for arbitrary distinct two points z,y € U, for some nonempty
Zariski open subset U C X.
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3.1 Construction of h;,

Let Kx + D = P+ E be a Zariski-decomposition of Kx + D, where P is the nef
part and F is the effective part of the decomposition. We put X° as follows:

X°:={pe X |p¢ Bs|mP| and for some m, [mP)| gives biholomorpic near p}

Then X° is a nonempty Zariski open set of X.

We take arbitrary z,y € X° and we set My, = M, ® My, where
M, and M, are the maximum ideal sheaf of the points z, y respectively.
By considering a cohomology exact seqence and comparing the dimension of

2
H°(X,Ox(mP) ) and H°(X, Ox(mP) ®0x/Mf,£,‘/E;'(1—€)m] ), we can
show the following :

Proposition 3.1 For arbitrary small € > 0,

2
dim HO( X, Ox (mP) ® 0x /MY T 0-9™ ) 5 4

holds if we take m sufficiently large. O

JE2 . (1-
We take o € H°( X, Ox (moP) ®OX/M2L 7 (1me0) mo] ) for sufficiently
small ¢ and sufficiently large my.
If we set hy : = then hg is a singular hermitian metric on P with

positive curvature.
We set aq as follows :

1
|0'0|2 mo ?

oo := inf{ @ > 0|supp Ox/I(h§) 3 =,y } -
oo has zeros of order at least [{/5> - (1 —¢&)m], so we get @0 < {/Fr - 25
Next we decrease ap a little bit. Then one of the following two cases occurs.
Case 1. supp Ox/I(hg~%) does not include either z nor y.
Case 2. supp Ox/I(h$~%) includes one of z or y, say z.

In Case 1, we can consider a minimal center of log canonical singularities
at z. Let X; be a minimal center at x. In this case one of following two cases
occurs.

Case 1-1. supp Ox/I(h3%) does not include either x nor y.
Case 1-2. Otherwise.

We shall explain Case 1-1. (Other cases are easier to prove.)
Note that (X, - P) > 0 because X; passes through z € X°.

93



Proposition 3.2 For arbitrary smalle > 0,

S EL ). (1) m] )

dimHo(X]_, Oxl(mP) ®0X/Mm,y Z 1

holds if we take m sufficiently large. O

The proof of Proposition3.2 is the same as the proof of Proposition3.1.
- 0 XL E) . (1—€1) my ]
We take d; € H*( X, Ox, (m1P) ® Ox,[Mazy °* ) for suffi-

ciently small £, and sufficiently large m;.
Because P is nef big, P has a decomposition P = A+€ by Kodaira ’s lemma.
Where A is a Q-ample divisor and £ is a Q-effective divisor. We take integer [;

sufficiently large so that L, : = I;-Ais Z-very ample. Let 7 € H°( Xy,0x,(L1))

be a section which is not zero section. then
) Xq-P
Gi®T € H(Xy, Ox,(mP + L) ®OX/MELL‘J§"’-)"(1—E)m] )
holds.

Proposition 3.3 Form > 0,
H°(X,Ox(mP+Ly) ) — H°(X;, Ox, (mP + Ly) )
is surjective if we take I, sufficiently large. O

Proof. Set ¢ = oy log ff; Where hp is arbitrary C°°-hermitian metric on
P. We consider ¢ - hy,, - h Ko This is a singular hermitian metric on L; — Kx.

If we take I, sufficiently large, the curvature is strictly positive and Ox /I(p) =
Ox,. Since P is nef, we get H' (X, Ox (mP + L) ® I(hmpyL,-kx) ) = O.
This completes the proof. B

By using this proposition, we extend d; ® T to

(51 EHO(X, Ox((m1 +11)P) ) .

Let {p;} be generator of Ox((m1 + 1) - A) ® Ix. We put
| 1

(lo2l* + Zlesl*)
We take m,; sufficiently large so that ;',{1- < b Q%ﬂ holds.

h1 =

1/(ma1+11)

Proposition 3.4 Leta; = inf{a > 0 | suppOx/I(h§°™% - h$) 5 z,y }.
Assume x and y be regular points of Xy. Then .

oy < (3-{—12—13-)- + O(do)
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Proof. We can choose a neighborhood U of = and a local coodinate system
(z1,22) on U such that

unX, = {pGU'zﬂp):O} = {(0,2) }
holds. Then we get
(X1,P)
”0'1”2 + Z”PJ”z S C- (|21|2 + |z2|2'r+'(1“51)'m1]) ,

here || - || is taken with respect to some C°-hermitian metric on (m; + b)P,
and C is a constant depending on the norm || - ||. By the construction of oo,

llool| ™5 (= =% < O(jarf*~*)
also holds on some neighborhood of generic points of U N X;. Hence we get

(mi + 1) 2
< .
a = my (X1-P)

+ O(%) .

From the assumption 7—"}1- < & i%fl, we conclude the statement of the propo-
sition. W

Remark 3.1 FEven if z and y are not regular points of X1, we can show above
result is true by taking & and  as regular points of X, and letting & — = and
y—y.

Lemma 3.1 | m (Kx + D) | separates  andy form > [ao + a1 ] +1. O

Proof. By the egation
m(Kx+D) = Kx+(m-1)P+(m-1)E+D
and
(m-1)P = {{ag—b)+1 } P+ {m—-1- (- +a)} (A+E) ,
we can equip a singular hermitian metric h. y by
eff >

hay = hgoT%0 - hgn . i (C0mhoke) L,

where h4 is a C°-hermitian metric of Q-ample divisor A and hg is a semipos-
itive singular hermitian metric which comes from the other components. Then
by the construction of hy and h;, h,, satisfies the following conditions :
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1. z,y € suppOx/I(ha,y)
2. One of the z or y, say , is an isolated point of supp Ox /I(hz,y)-
3. i@, > gow for some gy > 0.

So there exists some o € H® (X , m (Kx+D)) such that o(y) = O and o(z) # 0,
or o(z) = 0 and o(y) # 0. This completes the proof. B

Cororally 3.1 | m(Kx + D) | separates = and y for

2v/2 2

2 mtmp T

m

3.2 Construction of X; as a family

Our construction of X; is depending on the choice of the points z and y. There-
fore it seems that the value of (X3, P) is also depending on z and y. But in
fact, (Xy, P) is independent of generic choice of z,y € X. We explain it in this

subsection.
Let Ax C X x X be a diagonal set. Weset B C X x X and Z C B x Xas
follows:

B := X°xX°-Ax

Z := {(21,22,23) |23 = 71 or 23 = 1) } .

Let p: XxB — X and ¢ : XxB — B be the frist and second
projection respectively. We consider

of/BL - (1-e)m] )

0. (Oxxp(mop*P) @ I,

instead of

HY(X, Ox(mP) ® Ox /MEWE 0=y

where Tz denotes the ideal sheaf of Z. For a sufficiently large integer mo and
sufficiently small €, we take & as a nonzero global meromorphic section of

2. (1-e)m
q:(OXxB(mOP*P)(@I?h/’; (1—¢) 1) )
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= 1

[&olz/mo ’

then hg is a singular hermitian metric on P (but curvature current of ho may
not be positive). We shall replace ag by

d = inf{a > 0| The generic points of Z C Spec(OxXB/I(ng)) } -

Then for every small § > 0, there exists'a Zariski open subset U of B such that
ho | x x{} is well-defined for every b € U, and

b ¢ Spec(Oxxis}/I(R§™?)) ,

where we have identified b with distinct two points in X. By the construction
of ag, we can see

b C Spec(Oxxis}/I(h§?))

for every b € B. Let X; be a minimal center of logcanonical singularities of
(X x B, —9-(00) ) at the generic point of Z (although (&) may not be effective,
but this is still meaningfull in this case because of our construction of 6o ). Then
X, N g~1(b) is almost a minimal center at b := { Distinct two points in X° }
"which we construct in the last subsection. Rema.rk that X; N ¢~1(b) may not
be irreducible even for a general b € B. But if we take a suitable finite cover

¢o : B — B ’
on the base change X xpg By, X, defines a family of irreducible subvarieties
f : X 1 — Uo

of X parametrized by a nonempty Zariski open subset Up of ¢35 (U).

From above arguments, we see that {X;} ’s are numerically equivalent to
each other when we move b = (z,y) € X° x X° — A x generically. The intersec-
tion number (X7, P) takes value in Q, therefore (X, P) is constant if we choose
b = (z,y) generically. Hence we get:

Proposition 3.5 |m(Kx + D)| defines a birational map from X to a projective
space if

N’ 2
2 \/— (X.-P

+ 1.
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3.3 An estimate of (X; - P)

To complete the proof of Theoreml.1 , we have to estimate (X; - P).
We consider the self-intersection number (X;)?. Then there are three possi-
bilities:

Case 1. (X;)® > 0
Case 2. (X3)? =0
Case 3. (X3)® < 0
_ Let (z,y) and (2,7) be pair of distinct two points of X°. We put X; and
X1 as a minimal center at (z,y) and (&,9) respectively. If we take (z,y) and

(,9)_general, X; and X1 have no common irreducible components. Since X;
and X, are numerically equivalent, we get

X)® = () = (X, %) 2 0.

So we have only to consider the case (X1)? > 0.

i) In the case (X;)* > 0.

By the Hodge index theorem, we get

(X1, P) > (x1)? - /(P .

Since X, is an integral divisor, (X1)2 takes balue in Z. As a consequence we
have (X;)? > 1 and

1L
(XlsP) - VP2 ’

So in this case the proof of Theoreml.1 is completed.

ii) In the case (X3)° = 0.

Let Nx, be a normal bundle of X;. Then we have Nx, = —Xi|x, and
degx, Nx, = — (X1)? = 0. So we see that the normal bundle of X; is trivial.
Furthermore, X; can move. As a consequence, we can conclude existence of a
fibration of X:

T: X — 5,
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where S denotes some algebraic curve. By the definition of ag, ao P — 7*(p,) —
7*(py) is a pseudeffective line bundle on X. Here p, and p, denote the point
n(z) and 7(y) respectively. Because degg Ks = 2gs —2 > —2, we have

apP > w*(2 pointsin S) > —7*Kg
and
H(X, Ox(m(l + a)(Kx +D))) D H°(X, Ox(m(Kx +D —7*Ks))) .

Recall that we regard H®( X, Ox(m(Kx + D —n*Ks))) as a subset of
H(X, Ox(m(1+ao)(Kx +D))) by using natural injective map derived from
the sheaf exact sequence

0 — Ox (m(Kx+D-1"Ks)) — Ox (m(l+ao)(Kx +D)) ,

and hereafter we will often use such notation. By the definition of Zariski
decomposition and above inclusion, we have the natural injection

¢ : H°(X,Ox(m(Kx +D-n*Ks))) — H°(X, Ox(m(1+a)P)) ,

if we let m be an integer such that m(1 + op)P is a Z-divisor.
The divisor 7,(Kx + D — n*K3) is semipositive by Kawamata ’s semiposi-
tivity theorem([4 , theorem 1], hence we get

H(S, Os(mn.(Kx +D —7"Ks))) — mm.(Kx +D —1"Ks) ® Os/m,
is surjective for sufficiently large m. From the above surjection, we get
HO(X, Ox(m(Kx +D - W‘Ks)) )

— HY(771(p), Ox-15) (m(Kx + D = 1 Ks)|x-1() ) )
is also surjective. Since 7*Ks|,-1(p) is trivial bundle, we have a surjection :
H(X,Ox(m(Kx +D-7"Ks)))

— H(771(p), Or-1(5) (m(Ex + D)la-1(5 ) ) -
Let us consider H°( X, Ox (m(1+ ao)P) )

map ¢, we can see

. By the natural injective

H°(X, Ox(m(l + a)P)) | > H(77(p), Or-1(p) (M(Kx + D)ln-1(p) ) )

n~1(p) :
holds.

Let 01 and o3 be a global section of H°( X, Ox (m(Kx +D—n"Kg)) ) such
that oy Iﬂ_1 (») and o3 Lr_l (p) BT€ linearly independent. Then, if we take a general
fiber 7~1(p), ¢ (01) I",, (») and ¢ (o2) Ivr“(p) are also linearly independent.

Hence we get an inequality on dimensions of holomorphic sections:



dimHo(X, Ox(m(1+ao)P))

== 1(p)

> dimHo(ﬂ'_l(p), O,r-l(p) (m7r,.(Kx + D)I,r—l(p) ) ) .
We know the asymptotic relations :

dim H°( X, Ox (m(1 + ao)P)) | ~ m(L+ ao)(P, 77 (p))

T=(p)
and
dimHo(ﬂ'—l(p), 0.,,—1(,,) (mw.(Kx + D)I,,—x(},) ) ) ~ m(Kx —I-‘D,ﬂ‘_'1 (p)) s

when we keep m(1 + ag)P be integral divisor and letting m to be sufficiently
large. Letting m — oo, we see

1+ ao)(x™*(p),P) 2 (x7'(»),Kx +D) .

By definition, (7~1(p), P) = (X1,P) and (7~*(p),Kx + D) = (X1,Kx + D)
holds. Hence we have

(1+ao)(X1,P) > (XlaKX +D) .
If we take a general fiber, (Kx + D) |, becomes a big divisor and
degy, (Kx +D) = (X1,Kx+D) 21

holds. Then we get an estimate for (X;, P) :

1
l+ag > ——c .
° = (X1,P)
Since ap < 1/ , then we have
2 2 22 V2 4
V2 + +1< v2 + V2 - + 3,
vP2  (X1-P) VP? VP2 l-¢

and this completes the proof of Theoreml.1.

References

[1] E. Bombieri, Canonical models of surfaces of general type, Pbul. LH.ES.,,
42 (1972), 171-219.

[2] J.-P. Demailly, L? vanishing theorems for positive line bundles and adjunc-
tion theory, Lecture Notes in Math., 16486, Springer, (1996), 1-97.

[3] Y. Kawamata, On the Classification of Non-complete Algebraic Surfaces,
Lecture Notes inMathematics, 732, Springer-Verlag, (1979), 215-232.

100




101

[4] Y. Kawamata, Kodaira Dimension of Algebraic Fiber Spaces Over Curves,
Invent. math., 66, (1982), 57-71.

[5] A.M. Nadel, Multiplier ideal sheaves and ezistence of Kdhler-Einstein met-
rics of positive scalar curvature, Ann. of Math. 132 (1990), 549-596.

[6] H. Tsuji, Pluricanonical systems of projective varieties of general type,
math.AG/9909021. : '

[7) H. Tsuji, Pluricanonical systems of projective 3-folds of general type,
math.AG/0204096.

Author’s address
Makoto Hisamatsu
Department of Mathematics
Tokyo Institute of Technology
2-12-1 Ohokayama, Meguro 152-8551
Japan
e-mail address: macco@math.titech.ac.jp



