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Artin component and Weyl group
for dihedral singularity

FERE - BTHEE FH 2 (Miki Aoyagi)
Sophia University, Faculty of Science and Technology

Abstract
In this paper, we give the Artin components for dihedral singularities explicitly.

1 Introduction

Let (X, z) be a rational surface singularity and let x — Def(X) be a versal deformation
of X. In the sequel, we denote a base space of the versal deformation of X by Def(X).
Riemenschneider [8] showed that a versal deformation (relatively to the exceptional set)
% = T = Def(%) of the minimal resolution X of X can be blow down simultaneously to
a deformation x — T of X. Then from versality, we have a mapping T' = Def(X) —
Def(X). About the mapping, Artin[1], Lipman[6], Wahl[17] proved that

(Def(X))ar = Def(X)/ T[ W,

where (Def(X))ar is a component of Def(X), called the Artin component and W; are the
finite Weyl groups belonging to the maximal connected (—2)-configurations, i.e. the ratio-
nal double point configurations supported by the exceptional set of X. This theorem was
first considered by Brieskorn[2], [3] and Tyurina[15] for a singularity of type ADE, using
the theory of simple complex Lie groups and their Weyl groups of corresponding type. In
the case of all cyclic quotient singularities, by following the method of Riemenschneider
[9], one can construct a canonical candidate for the full Weyl group explicitly.

In this paper, we consider the case of dihedral singularities.

This result will be useful for consideration of deformations in terms of representations
of quivers. The quiver-theoretic approach was proposed by P. Kronheimer [5] and then
Ebeling, Slodowy[14] and Cassens[4] constructed the versal deformation using representa-
tions of the quivers for Kleinian singularity. Riemenschneider {11} generalized the method
to yield the monodromy covering of the Artin component for all cyclic quotients using the
special representations by the work of Wunram[18] and Riemenschneider{12]. To extend
the Riemenschneider’s result to the dihedral singularity, we need to calculate the Artin
component, and which is the motivation of this paper.

In Section 2, we obtain generators of the graded affined algebra of its minimal resolution
(Theorem 4) using Pinkham result{7]. Then in Section 3, we extend these generators to
the deformation space of the minimal resolution (Theorem 5) and the results give the
Artin components.
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2 Generators of the graded affined algebra

1
In what follows, we denote by — ————— by by — 11bp —---—_1]b and let {r}
by — :
1

b

always be the least integer greater than or e(;ual to r.
Let n,q be positive integers with 1 < ¢ < n and ged(n,q) = 1. We define 2 x 2
. Mg O _[7mm O 0 m4
t ,Th = 1,0 = and 7 = h
matrices ¢, ¢, T by ¢ (0 ﬂqu) é (_0 772m) T A(m o | Where
m. = exp(2mi/k). The group D, , C GL(2,C) generated by

0, 0,7, ifm=n—-g=1(mod?2)
¢, por, if m=n—g=0 (mod 2)

determines the dihedral singularity of the quotient C?/D, .

Weset n/g=b—§/i=b— 1[b; —---— _1[b, with b,by,ba,---,b, > 2.

The minimal resolution for the dihedral singularity of type D, 4 is written down explic-
itly by the union of 4 + r copies of C?

1 1
— a2, ! o 2
u=—, v=u"gv", ug ==, vp=u’(v—1),
Ug u
1 b
== U=V
)
) 1 b :
(1) U = —, U = U; vy,
Uy
_1 N
U3 = —, U3z = Uy Ug,
2

-2

Let A be the graded affine algebra of X. We denote by D the divisor of positive degree
b = —(Eo - Ey) on E,, where Ey is the central curve of the resolution. Let D be the
divisor l l -

DY =D - {§}y1 - {‘2‘}312 - {%}y;;

where y; are the intersection points of Ey with the other components of the exceptional
set. By applying Pinkham result[7] to the our case, we have A = @;»¢ A; with A; =
Ho(E,, Og(DW)). By taking three points y; = 0, yo = 1, y3 = 00, one sees immediately
that generators of A in degree [ are, for example,

utvi(v —1)* for {l/2} <t <bl-{gl/n}—{l/2},s = {l/2}.
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To get minimal generators, we use the following theorem in Riemenschneider [9].

Let /(R —§) =a1 — 1@z —---— _1[@, with a,as,---,a, > 2 and let
W="n, 11 =N=¢, le=0c 11 — le—2
Jo=0, =1, Je = Ge-1Je~1 — Je—2
kg = 1, kl = 1, ke = ae_lke_l - ke—2 for 2 <e< p+ 1.

Theorem 1 (Riemenschneider[9]) Then
1. p=1+37_,(b; — 2).
2 g =R>i =A—G>ig> e >ip=1>ip =0.
3. te + Gje = Tike, t.e., {Gje/Ti} = k. for e > 1.
4. For integers i, j, k, ifi+ §j =nk, 0 <i <7 and je < j < jJe+1, then it holds that
12> e

5. Fore=Ym Y by — 2) + h and by, > 3,

[ Mg —my + 2 z‘jh=1,1§m0§r,
and ifby = by = -+ =bpy,—1 =2, then my =1,
otherwise 3b,,, # 2,
bm1+1 = Omy42 = " =bmo—1 = 2.
ae =4 2 f2<h<bp,—2,1<my <.
T —my + 2 ifh=1,mg=1+1,
andz'fb1=b2=--~=b,=2, thenmlzl,
otherwise 3by,, 7 2,
\ bm1+1 =bm1+2 == bmo——l = 2.

Corollary 1 If j < js then {qj/ii} = j and if j > js then {Gj/n} < j— 1.

Corollary 2 If jo_1 < j < j then {Gj/n} = {Gje/7i} + {G(j — je)/7}. Moreover, for any
Iy > 1 and ly > 1 such that l; + ly = j,, it holds that {Gje/N} = {Gh/R} + {gla/7} + 1.

(Proof.) By Theorem 1 (3) and (4), {G(5 —je)/7t} = {§j/R} — ke. The second statement
follows from Theorem 1 (2), (3) and (4). Q.E.D.

In order to clear the relation between a. and C(um,vn), let us prepare the following
Lemma.

Theorem 2 Assume that by = by = -+ = bypy_1 = 2,bmy 7 2 (if by 7 2, then mg = 1)
and that two sequences of numbers s, (1 < e < p+1) and ) (1 <m < 7,1 < hy < by,)
satisfy : o

(2) Se4+1 = QeSe — Se-1
(3) @ = 1, i) = e 4 10 for by = 2,00+, by

Then if s, = If” and s, = @),

2<hn<bpn—-1,m=1,---,r
Also it holds that spyq = 107).

it holds that s, = I{*) where e = Y7 (b; — 2) + A,
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(Proof.) Let us prove it by induction. Suppose we have s = l,(:,m') for ¢ = g’;’;l(bi —

2) + by < (b —2) + Ay
If A, >3, 'chense g =I5, 5 =1m=2) and s, |~ Semg = 1077 1), Since by, > 4, we

have a._; = 2 using Theorem 1 ( ). Thus, we have s, = 25,1 — 8¢_g = l(hm“l) +l b’" 1)
l(hm)

If by, = 2 and m = my, then e = T (b-—2)+h = 2.

If By = 2, b, % 2 and by, 4y = bmﬁg = oo = bp_y = 2 then 5,y = IV =B =
= W = 10m Y s =1 and @)= 10, +12, = Y, N T

bm1 —1) + l(bml)

(m—my — l)l,(,tz“ + l(b"“) (m —my — 1)lm] Therefore,

Se = Ge-18e1 — ez = (m —my + 2)Ifm = — [(mi=2)
= (m—my+ )G 4 (Ema=D — [Om=2)

= (m—my+1)I¢m-Y 4 l(bm_l_l)
™my m1—1

and

1D = 1D +12 ) = 1Em D 4 (m - my — 1)I%mD 4 g fbm)
= (m—m)IlmD 41 = (m — my + 1)IEm D 4 Em) — =D

= (m-—m+ l)l,(,':;"l_l) + lf,g;"ifl).

That is, s, = I,
Ifh, =b,,m=r,bn, 7#2and by 41 =bp42=---=b, =2, sincep=1+37_,(b; —2),
we have

Spr1 = (T—my+2)sp — spo1 = (r —my +2)ITm~1 - l,(,’:’l"l =2
= (r—my+2)ICmD 4 (O omy )
= (r—my+ 1)I%m=D 4 Omi) 1) )

ls.b'r)

Q.E.D.
Let us define two sequences of integers n,,, ¢, by

no=1,90 =0, /gm = b1 — 1[0y — -+ = 1[bp, gcd(nm,qm) =1
for m=1,2,---,r. Those numbers n,,, g,, satisfy that

no = 1,n; = by, Nm = bnMm—1 — Nm—2, Ty > Nyp—1,
w=0a=10=0, ¢gn=bndn-1—0n-2, @m> @m-1,

form=2,-.-,r.

Corollary 3 We have je = hpnNm—1 — Nm—2 and ke = hpmGm—1 — Gn—o wherem =1,---, 7,
2< by <bn—1ande="7"(by — 2) + hm. Also jpp1 =i = np = bpny_1 — np_y and
kp+1 =q0=¢ = err—l — Qr-2.



15

(Proof.) Assume that b; = by = -+ = bpgo1 = 2,0, 7 2. Let n_; = 0 and (=) =
-1 — Mm—2(1 < hp < by — 1). Then, we have 1 = j; = ng = 151) and j» = a; =
mo+1 = 2npme—1 — Nmy—2 = lf(ﬁg by ngm =2n,-1 —npmo=m+1form=1,--- ,mqy. Also
we have

l}gm) = bmNm—1 — Nm—2 = Ny

Q)

= Npe1 = Bm—2 = by 1Mm—2 — Nm—3 — Nin—2
= (bt = Ditmes — g = 1&m7 7Y
ls-,}:m) = AmNpm1 — Nz = (hm - 1)'n/m——l — Nm—2 + Nm-1
= [Bm=D) g g Crc) for B =2, by
Therefore by Theorem 2, we have the proof for j.

By setting ¢_; = 0 and iﬁ,’fm) = hm@m-1— gm—2(1 < hm < by, — 1), similarly we have the
proof for k..

Q.E.D.
Corollary 4 Consider the coordinate system C(ump,vn) defined by the
h
; Gepbie—ke — oderke _ ) UmUp M odd = 1...
equations (1). We have u’ev ul* v} vouh  m even form = 1,---,r,

2< hy <bp—1and e = Y™ (b — 2) + hpp.

Theorem 3 Minimal generators of holomorphic functions on X defined everywhere are
the following.

Let 81 = ((=1)211 +1)/2, 85 = {j2/2}, Se = Ge-18¢—1 — Se-2 for 3<e<p+1.

1. Whenb=b; =+ =bp, =2, (if by >0, then we put my =0)
ul(w(v - 1))*(v — 1/2)
=go, [ =2, s=1, t=0
=g, l=54+1, s={(G2+1)/2}, t=((-1)"""+1)/2
= fe, 1= je, - 8= 8¢, t = 2j, — ke — 23,
2<e<p+1
and the relation is
1, g A UL NI /L L 2)
rank ’ o a € e < 2,
(Ua g1, f22+L%2—17 fe

where U = w1 (v(v — 1)){02-0/2 (y — 1/2)("D27+D/2 gpd 3 < e < p+ 1.
2. When b > 2,

#4+D 1=1, s=1, t=0,---,b—3
l s t = go, 91, l:2a s =1, t=0,1
wv(v—1))(v—1/2 . . . .
(( ))( /) = fe, l=1Jje, 8=Je t=0je—ke—2Je
2<e<p+1,
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and the relation is

(2) (b-2)
1 9o, g1, 10, Ty fl
rank ( ’ ) \ » <9
v=3 g, (FOP-2, [0, ., [
rank( 1 (f1(b~2))a1> :iil_l :32_2-..f;"’_z(ffb—2))a1—1 s
1
U= 9 fa, 1,

for3<e<p+1.

To prove the theorem, we prepare two lemmas.
In general, Ay, - A, C Ay, since {m} + {n} > {m + n}. On the other hand,

Lemma 1 ulvi(v — 1)* € A, is an element of Aj, - A, if and only if l = l; + 15, t >
{1/2} +{12/2}, s > {l/2} + {l2/2}, t + s < bl — {Gl/n} — {gl2/7i}.

(Proof.) Recall that 4; = {u'vt(v — 1)%t,s > {I/2},t +s < bl — {gl/n} }.

Q.E.D.
Lemma 2 For vlvt(v — 1)* € A;, we have the following.
1. Forl1>3,t+s <bl—{§l/i} —1, we have u'vt(v — 1) € 4, 5 - A,.
2. We assume thatb=by = --- = by, =2, 1l =1, + 1 and {Gl/n} = {gl/n} + {gl2/7}

(I, > 1,13 > 1). For s ={l/2} and t+ s = bl — {gl/n}, we have
(a) if2 <1y < jo=mo+2, then ulvi(v —1)* € Ay - 45.

(b) 'if lh,la > 72, then ’U,I‘Ut(’U — 1)3 € Ah . A12 + Aj_9 - A,

(c) ifli=1andly > jo + 1, then ulv*(v — 1)° € 43 - Ai_s.

3. We assume that b > 2,1 =13 + 13 > 3 and {Gl/n} = {gh/n} + {gl/0} (L > 1,02 >
1). Fors = {1/2} and t+s = bl —{§l/n}, we have ulv'(v—1)* € A}, - A, + A;_2- A,.

(Proof.)
1. It follows from Lemma 1 and the fact {gl/7} +1 > {g(l — 2)/n} + {g2/A} and

{(t-2)/2} +{2/2} = {1/2}.
2. (a) Lh={gh/n}=2+1 —2={g2/a} +{q(ly — 2)/n} by Corollary 1. Thus,
{g/n} = {gh/n}+{dh/n} = {g2/a} +{4(L — 2)/A} + {gla/n}
> {g2/n} +{q(h + - 2)/a} = {§2/n} + {4( - 2)/R}
> {ql/n},

that is, {gl/A} = {2/} +{G(l —2)/7}. Therefore by Lemma 1, u'v*(v—1)* €
As - Ajo.
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(b) By Corollary 1, {gli/n} < i — 1 and {glo/A} < I — 1. Thus, since for
s' = {l1/2} + {l2/2}, we have ¢’ = 2] — {gl/a} — & > {l./2} + {i/2}. By
Lemma 1, uv!' (v — 1) € 4, - Ay,.

If l1ly is even, t' =t and 8’ = s. If [; and Iy are odd, s’ = {l1/2} + {lx/2} =
{l/2} +1 = s+ 1. Then, using Lemma 2 (1) and

(4) uvt(v —1)° = vl (v — 1)*F + ulot o - 1)°,

we have u'vt(v —1)* € A, - Ay, + A2 - Aa.
(c) By Corollary 1, {G(j2 — 1)/fi} = jo» — 1 = kg = {@j2/n}. Thus,

1+ {gh/a} = {d(1+b)/A} < {@h/A} +{dll - j2 + 1)/7)
= {§z - 1)/a} + {§(la — 2 + 1)/A} < 1 + {dla/R},

that is, {G(j2 — 1)/A} + {G(la — j2 + 1)/7} = {d(lo + 1)/A}. It comes back to
(a)-

3. For ' = {l;/2}+{lo/2}, we have ¢’ = bl — {gl/i} — ' > {l./2} +{l/2}. By Lemma
1, vt (v —1)* € Ay, - Ay,. Using Lemma 2 (1) and the equation (4) again, we have
’U,l’Ut('l) — l)s € Al] . Alz + Ao - Ag.

Q.E.D.

(The proof of Theorem 3.)

In the case of b = b; = -+ = by, = 2, one sees A; = 0 for 1 < 25 — 1 < jy, since
b(25 — 1) = {4(2j — 1)/a} =2(2j - 1) - (2j —1) = 2j —1 < 2j = 2{(2j —1)/2} by
Corollary 1. Also one sees that j, +1 hasonly [; =1 and l; = ja such as jo+1=1{; + [
and {G(jo + 1)/n} = {gl/7} + {gl2/7}. Therefore, by Lemma 2 and Corollary 2, we have

Ay = {vPv(v-1)},
ur 1y 20t ) a0/} {(2+1)/2} () — 1){0a+D)/2}

Aj2+1 3
> wrt(v—=1)%, e>2,s={je/2},t = 2] — {Gjc/Ti} — s

A;

are minimal generators. Since one sees easily s, > j¢/2, 2je — ke — Se 2> Jje/2, we have
generators, substituting s = s, for s = {j./2}, using the equation (4). Finally by

(5) Wy~ D)~ 5) = e = 1)+ (—3) (= 1,

the proof is completed for b = 2.
In the case of b > 3, easy computation yields that A; and A, are generated by uvi(v —
1),t=1,---,b—2 and uv?v*(v — 1),t = 1,2. By Lemma 2 and Corollary 2, we have

A > wiv—-1),t=1,---,b—2,

Ay 3> u*i(v-1),t=1,2,
A;. 3 uvt(u—1)°, e>2,s={je/2},t = bje — {qje/R} — 5
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are minimal generators. Again using the equation (4), we have generators, substituting
s = j for s = {j./2} and then the equation (5) completes the proof for b > 2.
The relations are obtained using j. = @e—1je—1 — Je~2 = (@e—1 — 1)je—1 + Jee1 — Je—z =
= (@e-1 — 1)Je-1 + (@e—2 — 2)Je-2 + (@e-3 — 2)Je—3 + -+ + (a1 — 2)j1 + j1 — Jo, etc..

QE.D.
Theorem 4 Letn/(n—q) =a) — _1[a) —--— _L[a] withal, a, ---, a, > 2 and let
.76 =0, .7{ =1, je - ae—lje 1 je 2
ky=1, ki=1, kl=a,_jk,_,—k._, for 2<e<p +1.

Also let s} = ((=1)F* 4+1)/2, s, = {ky/2}, 5. = =0 _18c1 — Se—p for3<e<p +1.
Minimal generators of holomorphic functions on X defined everywhere are

ut(v(v — 1))*(v — 1/2)

=gy, =2, s=1, t=0

=g, l=k,+1, {(k2+1)/2} t=((-1)%* +1)/2

=fl, =k, s:se, t=j.—2s,
2<e<p+1

and the relations are given by all the 2 X 2-minors of the matrices;

c_ L2 nah—2
( 90, 5, ’ fl ___fl;’a f’;2 )
_ ah—1 '
91, flg + L_&4L’ fé
for 3 < e and given by all the generalized 2 X 2-minors of the quasi-matriz;
4 I /AT
O
3 fa s o fp

(Proof.) When b = 2, we have o] = a; +1,a, =g, fore=2,---,p+1=p"+1 by
Theorem 1 (5). Thus ji =1 =25, —ky, jb=a) = a1 +1 = j,+1 = 25, — ko and
Je=2je—k.fore=3,---,p+1=p'+1. Alsoki =1=j, ki =a]—1=a; =j; and
ki, =j.fore=3,---,p+1=p' +1.

When b > 2, we have af = - = ay_, = 2, a)_; = a1+ 1, @, = Ge_pyo for e =
b---,p'+1=p+b—1by Theorem 1 (5). Thus j; =1, 55 =2, .-+, 54, = b—-1,
Jo = Gp_1dp—1 — Jp—2 = (a1 + 1)jp_y — jsp = bjo — k2 and j, = bje_p1a — Ke_py2 for
e=b-,p+1=p+b—-1 Alsokl =k, =---=kj_, =1kl =aj_k_;—k,_, =
a1 +1—1=jyand k., = jeprofore=5b,---,p +1=p+b—1. QE.D

3 Extended function

Next let us extend these generators to holomorphlc functions on the deformation space
of the minimal resolution.
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For variables T = {t”(1 t”(l) (()1),...,téb 2 t(z) j=1,. =1,...,b;—1}, consider
the versal deformation space of the minimal resolutxon.

1) 77

vp=ul(v—1) + t”gl) u,
, U = u_+_t(1) b—1 + .- (b'-l)
UQZEI-, 2—u1 U1 +t(1) bi- 1+ +t(b1 1) 1,

v3 =, 3—1)2 uz+t(1) b2 1+---+-tgb2 1) V2,

U= _’1,_, U= U”Z’U” + tn(

Let
Héo) = u
HY = w+t!)
H? = (uv + t((,l))v + 1P
H" = (o +to+ )+ 41Dy +E7Y

Hfl) = H(gb_l) + t(ll) = ui1v; + t(ll)
H? = HYHE Y +42 = (uyo + t0)u; + P
H](.h—l) — Hfbl—Z)Héb—l)v+tgb1~l)
= (- (v + 0w + 8 + -+ 6 )uy + 7Y
HY = &Y +t“’ —u2v2+t”
H§2) — H(l)H(b1~—1)H(b 1)v+t(2) (U2U2+t VY, +t(2)
H® = Hz)H(bl’l)H(b'l) +t(3)—((u2v2—+—t( ))v2+t‘2))v2+t§3’
HE) = e glo-b g,

These functions are holomorphic defined everywhere on C? of the coordinate systems
C(u,v) and C(um, vm) (m > 1), which are introduced by Riemenschneider [9] as ”extended
functions” of generators ufv* for corresponding cyclic quotient singularity C, ,.

Using these functions we will construct extended functions for D, , singularities, which
become extremely more comphcated than those for cyclic smgula.ntnes

Let w_y = (t” O+t wy = @80 -0/ w =t - @0 - D)/,
w =t + t(l) +- t(l) + (— t”m. t”(ll))/Z forl =1,.---,ki — 1. Also let us denote
Liio<sr<ja<-<ju<i Wi Wiy *** Wy, by 25 W,

Let
(6) Go = (u(v—1)+w_; —w_o)(uv +w_; +w_g) + w?,,

0
v(u(v —1) + w_y +wp) — 1/2_Z2WJ1

(7) Xo
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(8) X, = (Go—wd)(v—1/2)+ (wo+w)Xo —1/2 [ we
k=—2

Inductively, let X; (I > 2) be

-2

1
©) Xi = Xi2{Go — (wi—1)?} + (wi-1 + w) X1y — 2 T we
k=-2

{(-1)/2} ! {1/2} P
= v(u(vl_ 1) Z GIOc Zsz-—zk + Z GI(;ZWJ:H-%)
k=0 0 k=0 -1
1 {1/2} . i
- 5 Z GO ZWJH—I—ZIc

k=0 -2

Lemma 3 G is a holomorphic extended function of go.

(Proof.) Because it is clear that Go|r=o = go, we need to show that G is holomorphic
on each coordinate system and it is proved by

Go

(W ov”0 — w_2)? — v”
= (uguy+ w_2)® + vp
= (HS" - wo)? — HO(H" — wo +w_y).
Lemma 4 X, is an extended function of
u‘“(v(v _ 1)){(l+1)/2}(,u _ 1/2)((—1)'+1+1)/2.
“Moreover X 1, Xk’,lwkfo are holomorphic, and Xy, 1, Xi |wu2 —o are ezxtended functions
of g1, f3-
Remark: The variables w; are defined at [ < ky — 1. So Xy |wk;=0 means Xké_g{Go -
(Wiy-1)?} + w1 X1 — 3 H:lf_-__Qg W
(Proof.) By easy computation, we have
Xilr=o = u'* (v(v — )12y — 1/2)(EDTHD2,
Since

Xo = uwo((u”ov”0 — w_g — w_1)(u” 0”0 — wW-2 + Wo) — V")
+(w_g +w_y — wp)/2
= uf((upvh +w—g — w_1)(ugvy + w_2 + we) + vy)
+(w—g — w_1 + Wo)/2

and the definitions of X; (9), all X; are holomorphic on C? of the coordinate systems
C(u”0,v"0) and C(ug, vp)-
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Let X, = X, - HVH® ... Wy,
Inductively, it is proved that X, are expressed by polynomials of Gy, uv = Hél) g
and parameters w; by

0
Xo = —uwv—1/2> wy
)
- ' 1 1 1 1 .
X1 = _(uv)2 - UUZWJl - '2— Z Gg ZWJQ—ZA:
k=0 -2
X, = —Hél)Hl(l) H(l)zuv(uv + w_p + w-1)
=
+X12{Go — (wi_1)*} + Xja (i + w) — = H W,
2,200

Thus since Gy, uv = Hél) — w-1 — wy are holomorphic on C? of the coordinate systems
C(Um, vm) (m > 1), X; are holomorphic on the whole space if and only if Hél)Hl(l) .- Hl(l)v
are holomorphic on C? of the coordinate systems C(um,, vm) (m > 1).

fb=b=---=b_1=2b > 2, Hl(z) = HSI)HP) . -H,(l)'v + t§2) is holomorphic on
C(tm,vm) (m > 1) and if b > 2, HéQ) = Hél)v-i-t(()z) is holomorphic on C (¢, vym) (m > 1).

Therefore Xk,—1 and Xk’g'%é —o are holomorphic on the whole space.

Q.E.D.

Lemma 5 Let by = b. Assume that the sequence of functions satisfy for m > 0, hy, =
21 Tty bm:

(10) O = flmam o plm) = flhmmD) fOm)

ISZ)—Z: lgz)l/fl and ;5!2)_2 f3.

Then it holds that f! = fibm) where e = Y73 (b; — 2) + B, 2 < hp < b — 1 and
m = ()’ cee, T,

Also it holds that f,,, = £,

(Proof.) Since f,EZ) = fél) f (2) , we have f; (1) = = f; and Theorem 2 completes the proof.
Q.E.D.
Lemma 6 Let by = b. There exist functions F,E,:)_w Fhm) (kb —1<m < 1,1 < hy < bp)

of u,v with parameters in T and polynomials C¢) of ” gl), o ts,':,'"') (m'<m)inT
such that

® Xiy—2 ky > 2
F { v—3 ky=1

2 _ 2) (2)
Fk(;g)—l = Xka—l + ti;—1 - Ck;-l



(11)
(12)

FW
F(hm)

m

F(bm 1= 1) ()

- 1

F,S{""‘I)F,(,f”_"{l) +

hm) _ O )
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with C’,(,’j'") =0 and that for k, —1 <m <r,1 < hyp < by — 1, F,(n"m) are holomorphic on
the whole space with F*)|r_q

(Proof.)

For simple notation, we set H,, = H¢»~Y and L,, = (I_1,- - -,

0,0<s<m1<h<b, -2}
Since X, _; is holomorphic on the whole space, the function has a polynomial expression

with H®, B, HE) |, Hy
Using the relation HY) = H,,_; +t{}) we have

where C7 (2)

We set F,S,) 1 = Xk +t£, 1=

Fk(:l)z

where C}’

2

, and C’,(f) , are polynomials of t” 51’, t” 9), ti,’:,"") (m' < Kk} —

2)
h—1

= f. where e =

and parameters in 7.

i+ Y o)

Ly s

ms(b; - 2)

+ hm.

lm—1a37 h’)

is not holomorphic on C(um,vm) (m > 1) but similarly we have

(2)

(2)
Fy s

= Hy 3Hp 4

HO'U+ Z CLJJ

L., _
k22

{l—la -

(OB + o),

1), t

H(O))l—l HloH(h) + D(2)

, and Dk, ' o are polynomials of t”(l t”(l) t( ) (m' <k} —2).

2
Inductlvely using the relations such as

H1§rl:-+1)
hl
HPHY

HM

HY
HY

HMHy \Hp - How + t8+)
H®EY Y, .. Hy + &)

HE Y

N LR A

'Hm+1

c++ Hpy + HWL)

H(h)H R 1+H(h)t(1)

H,_,+ t(l)

we construct F,(n"‘m)(kg -1<m<rn1<hy, <b, —1) with expressions

(13)

(14)

FU

Fim D 440)
HY) + 32 Cp) (HY) - HY Hy -
L

e e

H™ + 3 CL (Hy)'~ H Hy

Lm

Clhm)

Hir 1 g®

.o HtH®

(1)

ky—1°

m—l >
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Fim) = Frgfm—l)FSTfl): m—1Hm—g -+ Hov

+ 3OO HOY - o HY - Hin HP + D)
Ly

where C’(h"' Chm) and D®=) are polynomials of £*(Y, 7§V, t%m") (m! < m), 1) (B! <
).

For k,—1 < m < 1,1 < Ay, < by—1, by equations (13) and (14), F*~) are holomorphic
on C? of the coordinate systems C(uy, vy,) (m > 1), and by equations (1 1) and (12), F{#m)
are holomorphic on C? of the coordinate systems C(u”g, ") and C(uyp, vp).

By Lemma 5, we also have F{*m)|r_q = f! where e = 75 (b; — 2) + h.

Q.E.D.

Theorem 5 We set F, = F{tm) — t(tm) 4 Clhm) where e = Y751 (b — 2) + hm > 2 and
bg = b

Then Go, B = Xy, 1, A= Xk:2|wk_,2:0 and F, (e > 2) are extended functions of go, f3,
g1 and f. (e > 2), respectively.

There ezists the set of variables W = {wghl),wg:m); 2<I<a-1,2<m<p,1<
hm < al. — 1} which is algebraic isomorphic to T such that the relations of the functions
Go, A, B, F, and W are given by all the 2 x 2-minors of the matr'ices;

6o W5y A i B
' a1 =3 (k) o138 (R)y2 (h) 2
A _ wgal 2)B + (Hh__22w1 )’ Bz h—..g( G0+( 4G)0) nh—_z(w ) ,

(Femy — w002 7 (P —w<h>>)

Fe
for 3 < e and given by all the generalized 2 X 2-minors of the quasi-matriz;
Ey F; F, - Fy
LR -of)) MEAFE-of)
F3 F4 F5 v Fp’+1
(Proof.)
It follows by if b,y = -+ = ba,

F(bm—l) F(bﬁ—l)
= FRrD(FS D + 420 (S + 1k + ko)
(BT g e 1)

and
kz—z we
k 1, Go wkl 17 A + wk’z_]_B - k—;ﬂ )
ran k -3 & _3 ) & 2 2

2 L wk 2 (—Getwi)-I,2 ,w}
ch’—2, A~ wk'~lB+ k 2 , B2+ k=—2 4G: h=—2 ,
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(b _1—1) (bj—1~1) +(1~1)
Fk’z—21 "'FJ'~1] Fj )<2.

O _ 0 0

Q.E.D.
Moreover from those relations we can see a canonical candidate for the full Weyl group.

1. In the case of b = b; = --- = b, = 2, i.e., a rational double point, the relation of
these functions which was also shown in G. N. Tyurina [15], is

r _ 2 _TIr 9
0 = A%?- B?Gy+ BIT}__,wy, — M= _5(=Go + v}) k=—2Wk

4Gy
The corresponding Weyl group is S,,31x Z52.
2. In the case of b =b; = -+ = by _3 = 2,ba; -5 # 2(3 < a}), the corresponding Weyl
group is Sy X Zgil_l X S%_z X .+ %X 84 _p and it is easy to see how to act the Weyl

group.
3. In the case of b > 3, a part of the relations

W=Dy~ 1)
. Go — (wi”)?, A+ufB-mi_ )
ran A_u®p 42 o'~ 2>w(—1) B2 4 Gos (w{ 2))2 (! 2 Dy2 <
1

and the corresponding Weyl group is Sz X Sz X Sgp—g X - X Sy 5.
P
By putting w&"z’ = w{‘” + w( Y and w( D= w( 2 _ wg'l), one can see how to act
the Weyl group since w{ 2w~ ) _ = (@i 2))2/4 @ ™)2/4 and (w{™2)2 + (wi™V)? =
(@1 )?/2+ (@) /2.
When 7 =1 and b > 2, the exact coefficients C{"») are calculated ([16]) but in general
these values which are defined by induction are very complicated.

4 Appendix

The theorem is proved by the similar way of Theorem 1 but another proof is shown here.
Theorem 6 For any integer l, there ezist 0 < t,, < bpy1 — 1 such asl = Y7 _otmnim,.
Then

q’ T

n m=1

(Proof)

Let s,, be a positive integer defined by Im = for m =

Gm  by—1lbs —---— 1lbn

(2} ~



n'i(j) = (b‘L - _ll bm+1 — _1_Jb-j)ni_1 — Nj_2

nd
¢i(5) = (b = L by —--- = 1[b; )gi1 — gj-a-
hen
niy1(5)
(bigr — Lbirs — = 1[8; )ni —~ iy
= (big1— L[bivg — -+ — _1]8; )(bini—1 — mi—2) — My
= (bi(biyr — A bz — - — 1[b; ) — Dniy
_(bi+1_m—_""_m)ni—2
= (buss — Abiza =~ AT5)0 ~ L[Tr == 1[5
—(bir1 = L biyz — - — 1[5 Jnia
= (o~ LBz o ATE) (b AT v+~ A5 s —nea)
= (b1 — 1 bigz — - — 1[5 )ni(r)
Also
Gi+1(r) = (biy1 — _1_l—bz+_2 -t M)%’(J')
We have i i bia s
14m — °m
At = 5 n =) = T T,
gm — s,
=gq _*_bz—ilbs —---—_11b,
m A - T
1 1
-—-qm+qmbz—ﬁ_'“_—gb’ bp— 1ibg —---— 1/bn =g
by— 1lby — - —_11br
1 1
U U U TSSO | [ MY | R
{br (bo— 185 =+ = 108, ) =1} {bp — 1185 —--- - 1[bm }
1 1
_ by— 1[by — -+~ 1[b, by— 1[by —:--— 1[bym_
=0m +qm
na(r)ga(m)
1 1
_ ba— 10b — -~ 116, by— 17b —---— 1[bm_
=qm +dm
na(r)gs(m)
1

brops — 1 bprz — - — 1[b,

N (T)gm (M)

=qm + dnm

25
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m+1 __]]- bm+2 - —]1 b‘f‘ =gq 1

=gm+ dm 'm +
m T4 N () G Nm41(T)
On the other hand,
(br — 1) bmt1 — bmi1 =
4 by — 1) /by + bp_y — 2) +
nm+1<r) g (O = D+t =2 Z o
1 r—3 +l
" nei(r) (s = +mz_o nm+1(T)

1
nr_z(r) by — 1 r = mp Tang1(r)

__1 1 bmts = 2
= nr_z(r) (br 2~ b 1) +Z nm+1(r)
1
:bl(bg—M—... _l_fb_)—l( - 1[% =+~ 1[5, ~1)

b —2

+"1(7') =b1— 1[5, _..._E(bl‘_ljgz‘—---— 1[5, _1)
1
S R—alm - an

Hence by 7 = (b, — 1)n,_1 + 372y (b — 2)7um + (b1 — 1)ng, it holds that for 0 < I < 7,

r—1

0<

< 1,ie. l_ tmQm + 1.
2 nm+1(r) { } Z m
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