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Toroidal groups without non-constant
meromorphic functions

A KRS E & 5 (Kim Kyungnam)
Graduate School of Mathematics, Kyusyhu University

1 Introduction

Gheradelli and Andreotti [4] obtained fibration theorem for quasi-Abelian
varieties. Abe [1] proved the fibration theorems by getting some standard
forms of period matrices. Umeno [8] characterized the quasi-Abelian varieties
by the above standard forms of period matrices. ’

We shall study meromorphic functions on a toroidal group by using period
matrices for quasi-Abelian varieties. In the section 2, we shall give the con-
ditions that a toroidal group has no non-constant meromorphic functioins.
In the section 3, we shall discuss the example given by Abe and Kopfermann
using the recent results of Umeno [8].

2 Meromorphic functions on a toroidal group

In this section, we discuss meromorphic functions on a toroidal group.
Before proceeding, we introduce some definitions and terminologies.

A connected complex Lie group X is called a toroidal group if every
holomorphic function on X is constant.

Since any toroidal group is an abelian Lie group, there exists a discrete
subgroup I of C* such that X is isomorphic to C*/T. Let X = C"/T be a
toroidal group and T’ = Z{\;, -+, Ap+q},0 < ¢ < n be a discrete subgroup
of C" generated by R-linearly independent vectors Ay, -+ , Aptq. The matrix
P = [A1,+ , Ansgq) is called a period matrix for X = C"/T". We sometimes
write I' = Z{P} instead of ' = Z{\;, -+ , Antq}- Let Re =R{Ay, -, Anyq}
be the R-span of I'. We denote by Cr = Rp N v/—1Rr the maximal complex
subspace of Rr.

37



38

Definition 2.1 A toroidal group C*/T is of type g (g > 0) if
dimccr =4q. '

Definition 2.2 A toroidal group C"/I" is a quasi-Abelian variety, if there
exists a Hermitian form H on C" x C" such that

H | Cp X‘C]_" > 0 and

E:=ImH|I'xI isa Z-valued skew-symmetric form.

A Hermitian form H is called an ample Riemann form which defines a
quasi-Abelian structure on X = C*/I" . Let f(z) be a meromorphic function
on C". A period of f is a vector A € C" such that f(z+ ) = f(2) for all z €

C" and the period group of f is the set G(f) of all periods of f.
For later use, we first consider the following([3]):

Theorem 2.1 Let X = C"/T’ be a toroidal group and f be a meromorphic |
function on C* withT' C G(f). Then there ezist p,q € H*(C", O) with (p,q) = |
1 and f = p/q, and there ezist linear polynomials [y(A € T) such that

p(z+ ) = p(z)exp(ir(z)) and
g(z+2) = q(z) exp(lr(2)),

forallze C* and A €.
Next, let us set ely(2) := exp(lx(2)). Then we see
el (z + Nelx(2) = ela(z + X)ely (2),
since el ,(z) = ely (z + A)elr(2).

Definition 2.3 A system of holomorphic functions ey € H%(C", O*) satis-
fying

ey (z+ Nea(z) = ex(z + XN)ey (2)
is said to be multipliers.

We have already known the following(cf.[6)):
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Proposition 2.1 Let X = C"/T" be a toroidal group and L — X be a
complez line bundle. Then, for each A € I, there exist multipliers ey such
that

L=C"xC/T
where I' acts on C" X C by Ao (2,€) = (z+ A, ex(2)€) for A€ T.

Set e5(z) = exp(27v/—1fx(2)) where fi € H°(C", O). For the line bundle
L defined by ey € H*(C", ©0*), we see the following([6]):

Proposition 2.2 Let L be a line bundle on a toroidal group X = C*/T’
defined by ex(z) = exp(2mv/—1fr(2)) such that c;(L) = E. Then

E(1,22) = Hiu(z+ ) + f/u(2) = Hru(z+X2) — fr,(2) for z€C", and N €T

Here, we recall the definition of Néron-Severi group of X. Let X be a
toroidal group. The Néron-Severi group NS(X) of X is defined by

NS(X)={E :C" x C* — R|E : an alternating form with E(I'xT) C
Z and E(V-1AV-1p) = E(\ p)}.

Definition 2.4 A toroidal group C"/T" is called of cohomologically finite
type if
dim H'(C"/T, ©0) < +00

Now, we state our main theorem.

Theorem 2.2 Let X = C*/T" be a toroidal group of cohomologz’cally finite
type. Suppose that the Néron-Severi group NS(X) is zero. Then X has no
non-constant meromorphic functions.

To prove theorem 2.2, we need some results. So, we first consider the
following result well known in classical complex torus theory such as Appell-
Humbert decomposition [7].
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Theorem 2.3 Let X = C"/T’ be a toroidal group, L — X a complez line
bundle such that c;(L) = E € H*(X,Z) and H a Hermitian form on C* such

that In H | T x ' = E.
Then there exists a map o : ' — Ct = {z € C*||2| = 1} such that

a(A1, A2) = a(M)a(g) exp(rv/=1E(A1, A2)) for all A;, A € T and
ex(z) := a()) exp(rH(z, \) + gH()\, A))

are multipliers which define a complez line bundle L' — X satisfying
Cl(LO) = F.

Proof
Let us set gx(2) = 5= H (2, A) + By for any constants 8. Then, we have
(/)P (z + )‘1) + 9 (z) — gn (z + ’\2) — gx, (Z)
1
E—ﬁ(H(Z + Al, Az) + ,B,\2 -+ H(Z, )\1) + :BM - H(Z + /\Q,A)
—B — H(z, A2) — Br,)
1
————(H (A1, A2) — H(A2, A
2\/_—1( ( 1 2) ( 2 1))
= ImH(/\1, /\2)
= E(Ala A?)

for all A\;, X2 €T and z € C™.
Suppose that €3(z) := exp(2mv/—1gx(z)) are multipliers. Then
egz (Z + /\1)6?\1 (Z) = 69\1+>\2 (Z)

for all A;, 2 € " and z € C".
Then, we see that

1
2rv—1

So, from this fact,

(log €3, (2 + A1) + log €3, (2) — log €3, 1»,(2)) € Z.



9o (2 + A1) + 90, (2) = 9r10.(2)

1 1 '
= —— _H(z+ A, + —=—=H(z, A 1
Wi (z 4+ A1, A2) + B, Wi (2, A1) + B
1
_—-—2 _IH(Z, A1+ /\2) - ﬁ,\1+/\2
1
= ﬁH()\l,)\z) + B+ By — Prr, €Z
for all Ay, A2 €T
Thus, we get

%.H()‘l’ ,\2) + \/:Iﬁ'\l + \/__1'6>‘2 - \/:jﬂA]_-\}-Az € \/:IZ.

Next, setting +/—108y = 7\ + %H (A, A) for any constants 7y, we reduce
the above equation to

1 1 1
EH(/\la A2) + 7 + ZH(/\I: AL+, + ZH(/\z, Az)
1
—Yar+A2 — ZH(/\l + Ag, AL+ )\2)
1
= Z(H(Al, A2) — H(A2, A1) + 7 + T2 — Yt

| V=1 —
= PtV Va4r Tt _2_E(’\1; ’\2) € vV-1Z.

. Then, from this fact, we see that Rey, is additive in I , that is, Re, €
Hom(I', R).

Hence, Re, extends to an R-linear function x : C* — R such that
g | T = Revy, and there is a C-linear form ! : C* — C defined by I(2) =
w(z) — vV—=1p(v/—1z) with Re [ = p.

Now, setting 7y = vx — I(2), By = 7=5(7\ + $H(AA)) and hx(z) =
Wlﬁﬂ (z,\) + By, we calculate
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h')\z (z + /\1) + hz\1 (z) - hA1+)\2 (Z)
1 / / 7
ﬁ(H(Z + A1, A2) + H(z, A1) — H(z, A1+ A2)) + By, + By, — Bryn,

1 1 1 : ' ' '
= _\_/_——(-H()‘la AZ) - _(H(/\l, /\2) + H(’\2’ )‘1)) + (’Y)q + ’YA2 - 7)\1+/\2))

1 '
= 5 Im H(/\l, /\2) + \/—1(’)’)\1 + 7)\2 '7A1+A2)

1 '
= E(/\la A2) + \/—T(’YAI + “YAQ Yrtrg) € Z.

Thus, it follows from this result that exp(2my/—1hx(z)) are multipliers.
Next, to complete our proof of theorem, it suffices to show that €3(z) and
exp(2my/—1hy(z)) are equivalent in H'(X, O*). Since

exp(2my/~Thy) = exp(nH(z\) exp(2mrv/=14;)
= exp(nH(z X)) exp(2n(, + THO, X)
= exp(mH(z, A)) exp(2mv/~1,) exp(~I(}))
= exp(2nv/T(z = (2 ) + B) exp(—(Y)
= 3(2) exp(—I(z + A))exp(—I(N) 7,

so we obtain that e,\(z) is equivalent to exp(2mv/—1 hx(2)) in H 1(X O*). We
may assume that -y, is pure unagmary

Then, setting a()) = exp(277,), we see that |a())| = 1.

Then, since

' ' ' \/—-—]_
Tart Mae = Matrs T TE(/\l, X)) € V-1Z
for all A\j, Ay €T,

a(h +X) , .
a(M)a(rz) exp2T (V420 = T ~ M)

= exp(Zﬂ(gE(x\l, X2) — vV—1n))
= exp(mvV—1E(\, X)), n€LZ.
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Therefore €3 (2) is equivalent to a()\) exp(mH (2, A)+5 H(A, A)), and hence
the proof of theorem is completed.

A theta-function for I is a holomorphic function § € H°(C", O) such that
there exist linear polynomials /(z) which define multipliers el,(z) satisfying

6(z + A) = 6(z)elr(2)
for all z € C".

Definition 2.5 Let X = C"/T" be a toroidal group. A multipliers is said to
be a theta factor or linearizable if it is given by exponential system of linear
polynomials. A line bundle L on X is a theta bundle or linearizable, if it can
be given by a theta factor.

For an additive group F, we denote by C?(I', F) the group of p-cochains
with values in F, ZP(T', F) the group of p-cocycles with values in F and
BP(T', F) the group of p-coboundaries with values in F.

The following theorem was first proved by Vogt([9]).

Theorem 2.4 Let C*/T" be a toroidal group of a cohomologically finite type.
Then every complez line bundle L on C"/T is a theta bundle.

Proof By theorem 2.3, we have a theta bundle Ly on C"/I’ which is
defined by o'()\) exp(nH (2, ) + H(\,A)) such that ¢;(Lo) = (L) = E,
where E = Im H|I' xT. Put L, := L® Ly™". Then L, is topologically trivial.
Let exp(2mv/—1g)) (g9 € H*(C", 0)) be multipliers for L.

So, we see that

G (Ll)(’\la ’\2) = gx, (Z + A1) — 9+ (Z) + 9x (Z) € B2(F7 Z)

for all A;,A\2 €T
This means that there exist o, € C1(T, Z) such that

[1) P} (Z + A1) = Gri+) (Z) + gx (z) = @), — Qa4+, T Q-

Next, replacing g by g — ay, then we get



9 (2 + A1) — Gru+re(2) + 95, (2) = 0.

Thus, from the above equation, we see that gy € Z'(I', ), where H =
HO(C™, O).

So, according to our assumption that C"/T" is a cohomologically finite
type, the map

HY(C™/T,C) — H'(C/T,0) is surjective
and also the map
HY(',C) — HY(T,H) is surjective.
Then, there exist ¢, € Z*(T', C) such that
ox(2) — ex(2) = h(z + A) — h(z), for some h € C°(T',H).

From thé above equation, we get

exp(2mv/—1gx(2)) = exp(2mv—1cx(z)) exp(h(z + A))exp(h(z)) ™"

This implies that exp(2mv/—1cx(2)) are the multipliers for L;. Since the
line bundle L, is topologically trivial, so ¢, € Hom(I',C). Therefore, there
exists a C-linear form ¢ : C* — C satisfying

Imyp |T =Imec,.
So we get

exp 21V —1(cx — () = exp 21V —1(cx(2)) exp(2mvV=1(—p(z + A) + ©(2))).

This then means that exp 27v/—1(cy — ¢())) are also the multipliers for
L.

On the other hand, we see ¢y — ¢()\) € R since Im (¢y — ¢(A)) =0on I

Setting exp 2mv/—1(cx — ©(A)) = ¥(A) and a(X) = P(A)/(}), since
L := L® Ly, then a())exp(mH(z,A) + ZH(A, \)) are the multipliers for
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L. Therefore, it follows from this result that L is represented by linear poly-
nomial, and hence we complete the proof of theorem.

For a proof of main theorem, we need the following notations.

Let C*/T be a toroidal group of type g. After a linear change of coor-
dinates of C", we see C"/T" has a period matrix of the form P = [I,,,V],
where I, = [e1,... ,€,] is the n X n unit matrix and V = [v3;;1 <1< n,1 <
j <q] =[v1,...,7g is a n X ¢ matrix. Put V; = [v;;51 < 4,5 < q], and
Va = [vij;9+1 <1< n,1<j<g]. We may assume det (Im V}) # 0. We put
v; =+v/—1e; for g+1<i<n,and B =Imuv; for 1 <i<n. Then B,...,0
are lineary independent over C. Put

2=z + "+ 2nSn.

Then we have Cr = C{S1,--- ,6n}-
We have the following(cf. [10])

Lemma 2.1 Let L be a topologically trivial line bundle on a toroidal group
X = C"/T of cohomologically finite type. If there ezists s € H°(X,O(L))
which is not identically zero, then L is analytically trivial.

Proof
By Theorem 2.4, L is defined by multipliers

a()) exp(ﬂ'H(z,.)\) + %H(/\, A),

where Im H|I' x I = ¢;(L).

Since ¢;(L) = 0, we may assume H = 0. Then the holomorphic section
s(z) is a holomorphic function on C" satisfying

s(z+ A) = a(A)s(z), for z€ C* and A €T
Hence |

Is(z + A)| = |s(2)|, for z€ C* and A € T'.
Then |s(2)| is bounded on the maximal compact subgroup Rp/T" of C*/T.
Hence s(z) is a bounded holomorphic function on Cr. Then s(z) = constant
on Cr. ,

Let C*/T has a period matrix of the form P = [I,,V]. Then s(2) is
holomorphic function of 2411, -, zn. Put
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7 = Yz, ,2y) € C% 2" = Yzgq1, " ,2) € C"79, 7'(2) = 2’ and
n"(z) = 2", for z € C".
For any vectors fi1,--- , 4y in C* and matrix M = [uq,- - , u,|, we write

M =7'M = [y, - ,p.]. Similarly we write M".
We have a holomorphic function §(2”) on C*~? such that s(z) = §(7"(2)).
Suppose there exists z° € C" such that s(2°) = 0. We may assume 2° = 0.
Then s()\) = §(r"(A)) =0, for all A € T'. Put
V =a+v-18,
Then
P = [_IBIIﬂI—l’In_q,aII _ ,Bllﬂ—lal],
where I,,_, is the identity matrix of degree n — ¢. Put
P" = [I,_,, R],
where R = [_ﬁ"ﬂl—l, au _ ﬂllﬂ—lal].
Since C"/T is toroidal, to R ¢ *Z?? for any o # 0 € Z"9.
Hence Z{P"} is dense in R"79.
Since
s(A) =8(\") =0 for all A € T, and N\ € Z{P"},
5(z) = 0 for all z € R™9,
then
5(z") = 0 for all z” € C"9. Hence s(z) = 0 for all z € C".
But this is a contradiction. Hence the lemma is proved.

Now we return to prove theorem 2.2.

Proof Let f be a meromorphic function on C* with I' C G(f).
Then, there exist p,q € H°(C", O) with f = p/q and (p, q¢) = 1. Moreover
there exist linear polynomials [,(z) such that

p(z + A) = el (2)p(2) and q(z + ) = elx(2)q(2),

for all z € C*. By the assumption NS(X) = 0. Hence p(z) and ¢(z) are
the holomorphic sections of topologically trivial line bundle on X. Since p(2)
and g(z) are not identically zero, these are the sections of analytically trivial
line bundle. Since X is toroidal p(2) and ¢(z) are constant. Hence there are
no non-constant meromorphic functions on X and theorem is proved.
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3 Existence of non-constant meromorphic funs
tions on X

In this section we shall discuss the example given by Abe and Kopfermann.
They gave an example [2] of a non-compact toroidal group which has only
constants as meromorphic functions. It is a toroidal group X = C"/T", where

I' = Z{P} and

100 i +/2i

P=]01 0 v3i V5i
0 01 V7i i

They asserted that all meromorphic functions on X are constant. How-
ever, by using the recent results of Umeno (8], we can see that there exist
non-constant meromorphic functions on X.

Next, for later use, we shall state the following results proved in [8].

Theorem 3.1 ([8], Theorem 3.1) Let X = C"/T’ be a toroidal group of
type g, with a period matriz of the form P = A1, , Antq) = [In, V]

(1) IfC*/T is a quasi-Abelian variety with an ample Riemann form H,
then E := ImH |T" x T satisfies the following conditions:

Rl =*VE\V +'E)V —'VE;+ E3 =0

R2 = YZI(WWE,\V +'E,V —*VE, + E3) > 0,

E, E,

whereEz[ g, E
— Ly I

] , B € Zn+n, and FE5 € 779,

(2) Conversely, if we have a Z-valued skew-symmetric matric
E=[E\,A);1<i,j<n+gq|€ Zn+0x(n+9) which satisfies R1 and R2,
then X = C*/T is a quasi-Abelian variety with an ample Riemann form H
satisfying ImH |T' xT = E.

The following result is about a period matrix which characterize a quasi-
Abelian variety.

Theorem 3.2 ([8],Theorem 3.4) Let X = C*/T be a toroidal group. Then
X = C"/T is a quasi-Abelian variety of type q if and only if there ezxist o



basis A1, , Antq for T' and a complez basis e1,- - , e, for C™ such that the
period matriz '

P - [/\1, e aAn+q] = [A((L n)aW]’

where A(g,n) := [61€1,** ,04€q, €g+1,"** »€n] € Z"™, with positive integers
01|02] -+ |0 and W = [ %1 ] € C™*1 satisfying W, € C?? is symmetric
2

and ImW; > 0.

To do our goal, we have only to find F satisfying the conditions R1 and
R2 of theorem 3.1. Then, we have the following:

Proposition 3.1 Let C3/T', where ' = Z{P} be a toroidal group of type 2
100 i V2i
with a period matriz of the form P=[I3,V]=| 0 1 0 V3i /i
001 V7i i
Then we get a Z-valued skew-symmetric form E such that satisfies

VBV + BV —tVE, + Es =0 (1)
__"2‘1(tVE1V +tE,V —'WE, + E3) > 0, (2)

Proof We first recall the peroid matrix of the form P = [I3,V] =
100 i +2i
[0 1 0 V3i \/31]
001 V7i i
E, E,

Then, we set E as the following form: E = [ B, E ], where
—Lp L3

0 —p —a —e —h 0 —c

Ei=|p 0 =b|,Ey=]|—-f —t ,andE3=[ ]

. c 0
a b O —-g =J

We note E is a Z-valued skew-symmetric form.

Substituting F into R1 and R2, then we have R1 = [ _Or 6 }, where

r=(a—\/ﬁa+\/§b—\/ﬁb—c+\/gp—\/6p)
+z'(——\/_2_e—\/5f—g+h+\/§z’+\/’7j), where a, b,---, p€Z
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Vg g ] ‘
d R2 = .
o [ g9 Vg
Then, for satisfying the conditions (1) and (2), a =b=c=p =0,e =
f=i=j=0and g = h, where g > 0.

(000 0 —g]
000 0 O
Therefore, weget E=]0 0 0 —g 0 |, where g(>0) € Z which
00g 0 O |
g 00 0 0

satisfies the conditions (1) and (2). The proof is completed.

Then, the above proposition implies that C3/T is a quasi-Abelian variety
from Theorem 3.1.
After a linear change of coordinates, by setting

— ! — ! __ N S . .
/\1 —gel _639A2 = g€y -—-61,A3 = €3 —62,A4—'U]_,/\5——’U2,

0 0 —-A(g)
we get an alternating form [E(A;, Aj);1 <4,5 < 5] = 0 O 0 ,
A(g) 0 0

where A(g) = diag(g, 9).
Thus, it follows from the same way that we get the period matrix

g 00 V7gi gi
P'=[Ag),V]=| 0 g 0 gi +2i
0 01 V3 +5i

from the period matrix P, where V' is a represention of V with respect to a
new basis €}, €5, €3 for C*. Then

v Vigi g
V':—.[ 2]: j}' \/\/igi , where V] € C?*% and ¢g(> 0) € Z
‘ 3 5

satisfies that V] is symmetric and ImV/ is positive definite.

Hence C3/I", where I'" = Z{P'} is a quasi-Abelian variety of type 2 from
the Theorem 3.2.

Then, to make sure the result, we project the period matrix P’ to C2. It
suffices to show that the 2-dimensional torus group generated by P’ is an
abelian variety. Here, the period matrix P™ is of the form



g 0 V7gi gi | _

Then Z is symmetric and ImZ is positive definite. ‘
Therefore, from the Riemann conditions IIT [5], C2/I'*, where I'"* =
Z{P™*} is an abelian variety.
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