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CR manifolds in Grauert tubes
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In this article, we introduce a result on the logarithmic term of the Szegd kernel on
the boundary of two-dimensional Grauert tubes. In Section 1, we give the definition of
Grauert tube and some examples. In Section 2, we introduce a result in [5]. This result
plays very important roles in studying CR manifolds in Grauert tubes. Finally, in Section
3, we state the main theorem in [8] and some remarks.

1 The definition of Grauert tube and examples

Let (X, g) be an n-dimensional complete C* Riemannian manifold, and let v : R = X
be a geodesic. Then we define the mapping ¢, : C —- TX by

Yy(o +i7) := 79(0).

Definition 1.1. Let 77X := {v € TX]| g(v,v) < r?}, where 0 < 7 < c0. A complex
structure on 77X is said to be adapted if 1, is holomorphic for every geodesic v on X.

If an adapted complex structure exists, then it is uniquely determined (see [9]).

The Grauert tube of radius r over X is the manifold 77X with the adapted complex
structure. X is called the center of the Grauert tube.

Let 7max(X) be the maximal radius r such that the adapted complex structure is defined
on T X. It is known that rpma(X) > 0 if X is compact or X is homogeneous.

Example 1.2. Let X := R*. Then T®R" is biholomorphic to C".

Example 1.3. Let X := S", the unit sphere in R**!. Then T°S™ is biholomorphic to
the manifold Q" := {z = (21,...,2n41) € C*}| 22 +--- + 22,; = 1}. We call Q" the
complex quadric. '

Example 1.4. Let X be the n-dimensional real hyperbolic space with constant sectional
curvature —1. Then T7/2X is biholomorphic to B", the unit ball in C*. We note that
rmax(X) = 7/2 (see [11, Theorem 2.5]).
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2 CR manifolds in Grauert tubes

Let (X, g) be an n-dimensional compact C* Riemannian manifold, and let 77.X be the
Grauert tube. We define the mapping p : 77X — R by p(v) := 2¢(v,v) for v € T"X.

Theorem 2.1 ([5], [9]). p has the following properties:

(1) p is strictly plurisubharmonic,

()X = p~1(0), B

(3) the metric ds?.  obtained from the Kihler form i00p/2 is compatible with g, that is,
dst.x|x =g, and

(4) (80,/p)"=0inT"X - X.

Let  := {p < €%} C T™X, and let M, := 0Q,. Then we see that M, is a strongly

pseudoconvex CR manifold.

One of the interesting problems on Grauert tube is to study relations between M, and
(X,g). Several results have been known on this problem. Stenzel [10] studied orbits of
the geodesic flow and chains. Kan [7] computed the Burns-Epstein invariant, and showed
that M., and M., are not CR equivalent if £; # £; when dim X = 2. This Kan’s result
is also true for dim X > 3 (see [12]). This implies that there exist many CR manifolds in
the Grauert tube. This fact is one of the reasons why we are interested in this problem.

3 Result

Let (X, g) be a two-dimensional compact Riemannian manifold, and let 77X be the
Grauert tube. We put Q, := {p < €2} C T"X and M, := 9.

Let 0 := .*(—idp), where ¢ is the embedding of M, in the Grauert tube. Then 0
defines a pseudo-hermitian structure on M,. Let S, be the Szegd kernel with respect to
the volume element 8 A df. Then by [2] and [1], the singularity of S, on the diagonal of
M; is of the form

Se(2,2) = p(2)pe(2) % + 9(2) log pe(2),

where ¢, ¥ € C*(8;) and p, is a defining function of Q¢ with p. > 0 in Q..

Theorem 3.1 ([8]). The boundary value of the logarithmic term coefficient o = ¥|a,
has the following asymptotic expansion as € — +0:

_ , 1 &
(3.1) Yo ~ CY) Z Floe?,
=0 )

where FY*(\2g) = A\~3-4F¥(g) for A > 0.

52



53

In particular, we have

1 2 o
(32) Fapo = _ﬁAk — g(sszk)lg':O,

where k is the scalar curvature, A is the Laplacian and T is the unique vector field on M,
such that 8(T) =1 and T'|df = 0.

We now make two remarks on the term (¢2T2k)|,_,. One is that we can regard this
term as a function on the circle _bundle over X, and it is not constant on each fiber of the
bundle in general (see [8, Lemma 4.5]). This means that the value to which 1, tends as
€ — +0 varies with the way € goes to +0.

The other is that

(3.3) / (2T%k)|,_ 0 N df = c52/ AkdV + O(e?),
M. X

where ¢ is a constant and dV is the volume form on X (see also [7]). It follows from
(3.1)-(3.3) and [, AkdV = 0 that the coefficient of €? in the integral

ob A d6

M,

is equal to 0. This is not contradict to the fact that the integral above is eqaul to 0.

Finally, we note that vy is a constant multiple of the Q-curvature of three-dimensional
CR manifolds (see [3], [4] and [6]). In conformal geometry, there has been great progress
recently in understanding the Q-curvature and its geometric meaning in low dimensions.
However, roles of Q-curvature in CR geometry are not clear. We hope that this result
will become an approach to studying CR @-curvature.
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