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Abstract

In [2], R. Fehimann and F. P. Gardiner studied an extremal prob-
lem for a topologically finite Riemann surface and established the
slit mapping theorem by showing existence of a quadratic differential
which associated with the solution of the extremal problem. In this ar-
ticle, we give a condition for non-uniqueness of such slit mappings, by
using deformation of a Riemann surface using the foliation structure
of the differential associated with the solution.

1 Introduction

Suppose S is a finite bordered Riemann surface with the border I'. In other
words, the boundary T consists of a finite number of simple closed curves,
and the double of S with respect to the border I' is of finite analytic type. Let
T(S) be the Teichmiiller space of the interior S° of S. Let A(S) be the set
of integrable holomorphic quadratic differential ¢ on S with the properties
that ¢ = ¢(2)dz? is real along the border I'.

Definition 1.1 Let E be a compact subset of S° which satisfies that S\ E is
of finitely connected and of the same genus as S. We say that E with these
properties is an allowable subset of S.

Nezxt fiz an element ¢ € A(S). If each component of an allowable E is
a horizontal arc of ¢ or a union of a finite number of horizontal arcs and
critical points of ¢, we say that E is an allowable slit with respect to .

Let E be an allowable subset of S. Let (S, E) be the family of pairs
(g,S,), where g is a conformal map of S\ E into another Riemann surface
S, such that g maps the border I' onto the border of S, and the puncture
of S onto the puncture of S,. In particular, (g,S,) € F(S, E) induces an
isomorphism ¢, from the fundamental group ,(S) of S onto m1(Sg). Let f
be a quasiconformal map of S onto S, which induces the same isomorphism
tg, and p the Beltrami differential of f. We denote f also by f* and the
Teichmiiller (equivalence) class of f# in T(S) by [(1; 9, 5)]-
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Let &(S) be the family of simple closed curves in S° which is homotopic
neither to a point of S nor to a puncture on S. Let G[S] be the set of
homotopy class of an element of &(S5). For ¢ € A(S) and vy € &(S), we
denote the height of v with respect to ¢ by hy,(7), and that the height of
homotopy class [y] by hy[y]. For the details, see for instance [4].

Now it is known (cf. [4]) that, for every (f,Sr) € F(S,E) and ¢ €
A(S) \ {0}, there is a holomorphic quadratic differential ¢y on Sy whose
heights on S; are equal to the corresponding heights of ¢ on S. Fehlmann
and Gardiner posed the ezxtremal problem for (S, ¢, E), of maximizing

My = lloslsy = [ los
Sg

in §(8, E), and showed the following result.

Theorem 1.2 (Fehlmann-Gardiner) Suppose that S is a finite bordered
Riemann surface, and that ¢ € A(S)\ {0}. Let E be an allowable subset of
S. Then there ezists a point [(1;9,S,)] € T(S) associated with an element
(9,5,) € §(S, E) such that M, attains the mazimum :

M= max Mf.
(£,55)e3(S,E)
Moeover, for this point [(u; g,S,)] € T(S), E, = Sg\ 9(S\ E) is an allowable
slit with respect to @g.

The point {(z;9,5,)] € T(S) in Theorem 1.2 is called an extremal point
of the extremal problem for (S, p, E), the map g an extremal slit mapping
associated with it, and the associated differential ¢, the structure differential
for g.

We show in this note the following theorem which gives a condition for
extremal points, and hence extremal slit mappings, not to be unique.

Theorem 1.3 Suppose R is a finite bordered Riemann surface, and that
¢ € A(R)\ {0}. Let Ey be an allowable slit of R with respect to ¢ such that

1. there is a component of Ey which contains a zero point py of ¢ of order
m > 3 and at least two of horizontal arcs ¢,, 4> with an end point at po,
and that

2. each of the angles between ¢y, £, are larger than =5 +2

Then, there is a finite bordered Riemann surface I:Z, a pair (h, R) € 3(R, Ey),
and a holomorphic quadratic differential v € A(R) \ {0}, such that
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(i) Ej = R\ h(R\ Ey) is an allowable slit of R with respect to 0,

(11) the heights of ¥ on R is the same as the corresponding heights of 1 on
R, and

(iti) the point [(u;h, R)] € T(R) is different from the origin [(0;id, R)] of
T(R).

We call the conditions 1. and 2. for E, in the Theorem 1.3 the refolding
conditions, and the point pg a refolding point.

Corollary 1.4 Suppose S is a finite bordered Riemann surface and that ¢ €
A(S)\ {0}. Let E be an allowable subset of S, and [(i; g,8S,)] € T(S) the
extremal point of the extremal problem for (S,p,E). If the allowable slit
E, of S; with respect to the structure differential p, satisfies the refolding
conditions , then there exists another extremal point of the extremal problem

for (S, ¢, E) different from [(u; g, S,)]-

Proof. Take the triple (S,, ¢y, E;) as the triple (R, 4, Ey) in the Theorem
1.3. Then we obtain a finite bordered Riemann surface R, a pair (h, R) €
F(Sy, E,), and a holomorphic quadratic differential ¢ € A(R)\ {0} such that

(i) Ej is an allowable slit of R with respect to 9,

(i1) the heights of ¥ on R is the same as the corresponding heights of ¢, on
S, (and hence of ¢ on S), and

(iii) the point [(u;h, R)] € T(S,) is different from the origin [(0;4d, S,)] of
T(S,)-

Then, we know (cf. [2]) that, from (i) and (ii), the point [(u; hog, R)] e T(S)
is an extremal point of the extremal problem for (S,p, E). By (iii), the
point [(1; g, S,)] is different from the point [(u; h o g, R)]. Thus we have the
assertion. -

2 Example

In this section we give an example of the triple (S, ¢, E) which satisfies the
assumptions of Corollary 1.4.
First take three copies M;, My, M3 of a rectangle

M={z=z+iye C||z| <2,y <1},
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and let z; be the coordinate corresponding to z on each M;. Next on each
M;, identify two pair of parallel sides under the translations

zj = z; + 4, 2j = zj + 2i.

Then we obtain three copies T;,75,T3 of a torus 7. And the quadratic
differential dz2 on M induces the holomorphic quadatic differential g on 7.
Cut M; along the segment

Ij={z =z +iy; | -1 < z; <0,y; =0},

and connect them cyclically. More precisely, we paste the upper edge I of
the slit I; and the lower edge I; of the slit I5, the upper edge IJ of the slit
I, and the lower edge I; of the slit I3, and the upper edge I; of the slit I
and the lower edge I of the slit I;. Then we obtain a compact Riemann
surface S of genus three.

Now let II be the natural projection from S to the torus T', and ¢ the
pull-back of ¢y by II. Finaly, let E be a subset of S, consisting of the arcs
¢, and 45, where each ¥¢; is one on M; corresponding to

{z]|0<z<1,y=0}.

Now we consider the extremal problem for (S, ¢, E). Then the set E is an
allowable slit of S with respect to ¢. Hence we know the identical mapping of
S gives the extremal slit map associated with the extremal problem for this
triple. Moreover, we can easily see that E satisfies the refolding conditions.

Thus the assumptions in Corollary 1.4 are satisfied, and as a consequence,
the extremal points of the extremal problem for (S, ¢, F) are not uniquely
determined in T'(S).

3 Proof of theorem 1.3

Assume that a component J of E, contains a refolding point pg of 9 of order
m > 3 and horizontal arcs ¢; and #¢5, one of whose end point is pp and an
angle between ¢; and ¥, is

2km 2<k<m+2 '
m+2 - - 2

Here the arcs £;, 4, are segments on the real axis with an endpoint at the
origin with respect to the natural parameter ¢ = ¢y induced from .
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We take a subarc k; C ¢; such that py is an endpoint of each x; and that
% has no zeros on ; \ {pp}. Let p; be the other endpoint of x; for each j.
Also set K = k1 | k2.

Now, cut R along «; and k5. For each j, let nj* and r; , respectively, the
right-side and the left-side edge of the slit ;, with respect to the orientation
which corresponds to moving along the slit from pp to p;. Assume that x
and xJ, resp. x; and k5, makes the angle

2kr res 1——k— Viis
m+2’ p- m+2 )

Paste x; and k; so that points having the same absolute value withre-
spect to ¢ are identified. By the same way, paste «; and x5 . Then we obtain
a finite bordered Riemann surface R and the natural conformal embedding
h: R\K — R. This pair (h, R) is an element of a family §(R, K) C F(R, Ey).

Moreover, from the construction we can extend 4 restricted on R \~K
naturally to a holomorphic quadratic differential ¥ on R, and E; = R\
h(R\ E,) is allowable slit of R with respect to .

Now let f# be a quasmonformal map from R onto R which is a represen-

tation of the point [(u; b, R)] € T(R) .
Lemma 3.1

hgl3l = hyl(f*)7'(7)]
for every [7] € S[R).

Proof. 'We say that a simple closed curve 3 on R is a 1Z—polyg~on, if 3isa
union of a finite number of horizontal arcs and vertical arcs of . Note that
for every [4] € G[R)

hg[3] = inf hy(B),

B

where the infimum is taken over all w-polygons 8 homotopic to ¥ on R.
Now we can deform the pre-image h~ 1(,[3) of such a 4-polygon J to a
y-polygon 3 such that A is homotopic to h~(3) on R and

hy(B) = hy(B).

Hence we conclude that

hol(f)™H ()] < hy(B) = Ry(B)
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for every zZ—polygon B which is homotopic to 4, which in turn implies that
hy[(f*)7 (D] < Ryl

for ever [7] € S[R].
On the other hand, we can s1mﬂary see as above that

hglf* ()] < hy[]

for every [y] € S[R]. Thus we have the assertion. |
From Lemma 3.1, we see that the holomorphic quadratic differential ¥ e
A(R) \ {0} satisfies the condition (ii). Moreover, by definition, E; is an

allowable slit of R with respect to 1, and
Joh(W)? = on R\ E,.

Lemma 3.2 The point [(u; b, R)] € T(R) is different from the origin [(0;id, R)]
of T(R).

Proof. Assume that
[(1 h, R)] = [(0; id, R)].

Then there would exist a conformal map ¢ : B — R such that the induced
isomorphism (¢), : 71 (R) — 7 (R) is the same as the one induced by .
Fix a [y] € G[R)] arbitrarily. Then Lemma 3.1 gives that

haln)] = ol

Since ozl = hyle(7)], we obtain
h«i;:»(u)? (7] = hyln]

for every [y] € G[R]. Hence the heights mapping theorem implies that P o
¢(¢')2 = ¢ on R. In particular, the map ¢ maps the zeros of % to zeros of )
including multiplicities.

Now from the construction, the zero py of order m > 3 breaks into two
zeros §; and §; of ¢ of order k — 2 and m — k, respectively, with 2 < k <
(m +2)/2. And the endpoints p of k; and p; of K2 gather to a zero § of ¥
on R of order 2.

Set K = R\ h(R\ K). Then all zeros §,§ and g, of ¥ on K have the
orders strictly less than m. Hence we see that

«(po) ¢ K.



Since the conformal embedding k maps R\ K onto R\ K, h™! o 1(po) is well
defined and h™* o ¢(po) ¢ K. In particular,

h™! o u(po) # po-

‘Next assume that, for a positive integer n,

(™ 0 )"(po) # (™ © )" (po)

for every k with 0 < k < n — 1. Then, ¢ o (k™! 0 ¢)"(po) ¢ K, for the zero
vo(h=to1)™(pp) of ¥ is of order m. Hence similarly as above, (h=0:)"+!(po) ¢
K. In particular,

(7" 0 )™ (po) # po-

Also by the assumption,

(h™ 0 )™ (po) # (A" 0 1)*(po)

for every k with 1 < k < n.
Thus by the induction, we conclude that, for every positive integer n, we
have

(At o b}”(po) # (B! 04)* (po)

for every k with 0 < k < n — 1, which imples that ¢ has infinitely many
distinct zeros. This is absord, and we have shown that

[(; by B)) # [(054d, R)]-

|
Remark As the example in Section 2, if one can see the widths of % on
R and that of ¢ on R, it is easy to show the claim of Lemma 3.2. Because
if [(u;h, R)] = [(0;id, R)] in T(R), then from Lemma 3.1 and the heights
theorem we can see that widths of 1 on R is equal to the corresponding
widths of ¢ on R. For example, in the case of Section 2 we denote by S
a Riemann surface obtained from S by deformation and denote by ¢ an
integrable holomorphic quadratic differential whose heights is the same as
the corresponding heights of ¢ on S. Let v € &(S) be rounding I; on M;.
Then the width of [y] € &[9] is equal to 2. On the other hand, for this
[v] € &S] the corresponding width of ¢ on S is equal to 4. Therefore the
deformation actually change the surface in T'(S).

Thus we have completed the proof of Theorem 1.3.
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