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Applications of symbolic construction

of the fundamental solution

IEBE TRAP AR BEMAM SR T 2 (Chisato Iwasaki)
| Department of Mathematics

Himeji Institute of Technology

§0. Introduction. Let M be a n dimensional compact complex mani-
fold, and let L, = -q_15*_1 + 5;(1, be the Laplacian actiong on differential (0, q)-
forms A9 (M) = T(ACDT*(1r)).

Then Riemann-Roch theorem states as follows:

(0.1) S (~1)7 dim H, = /M(27rz')“"[Td(TM)]2n,

where H, is the set of all harmoniq (0, g)-forms fof L, and Td(TM) is the Todd

class defined as

(0.2) Td(TM) = det(

)

e -1

with the curvature form Q.

Analytical prooves of the above thorem are based on
(0.3) S (~1)7 dim H, = / S (1) treglt, 7, z)dvs,
q=0 M 4=0
where tr e, (¢, 7, z) is the trace of the kernel e,(t, z, z) of the fundamental solution
Eq4(t) of the following heat equation;

0

(55 + Lg)Ey(t) =0 in (0,T) x M,

E,0)=1I in M.



119

So, by (0.3) an analytical proof for Riemann-Roch theorem is complete, if the

following equation holds;

/ stre(t,x,x)d'v::/ (2m) ™™ [Td(TM)]3p,
M M

where stre(t,z,z) = 37 (~1)9tre,(t,z,z) and we call it the supertrace of the

fundamental solution.

We call the following equation ”a local version of Riemann-Roch theorem ”

(0.4) stre(t, z,z)dv, = (274) " [Td(T M)z, + O(t2).

Our aim of this paper is to give a rough sketch of a proof of the above formula
(0.4), constructing the fundamental solution a,ccording- to the method of symbolic
caluculus for a degenerate parabolic operator instead of that of a parabolic operator.
Our point is that if M is a Kaehler manifold, we can prove the above formula by only
calculating the main term of the fundamental solution, introducing a new weight of

symbols of pseudodifferential operators (See C.Iwasaki[10]).

In this paper, we study also ”a local version of Riemann-Roch theorem ” under
the condition that M is a compact complex manifold. In this situation, does ”a
local version of Riemann-Roch theorem ” hold? It is known that the answer of this
question is negative(See P.B.Gilkey[4].) So the problem is to characterize complex
manifolds where ”a local version of Riemann-Roch theorem ” holds. Our results is

that the characterization is given by 80® = 0, where & is the Kaehler form of M.

If M is a Kaehler manifold, the above equation (0.4) is obtained by many
authors. T.Kotake[6] proved this formula for manifolds of dimension one. Then

V.K.Patodif13] has proved for Kaehler manifolds of any dimension. P.B.Gilkey[5]



also has shown, using invariant theory. E.Getzler[3] treated this problem by different

approach.

In section 1 we give an rough skech of the proof of Gauss-Bonnet-Chern theo-
rem for a Reimann manifold by constructing a fundamental solution of a parabolic
equation according to C.Iwasaki[g]. We give the representation of the operator L,
on a Kaehler manifold, which is called Bochner-Kodaira formula in section 2. In
section 3, we give an algebraic lemma which works essentially in calculating the su-
pertrace of the fundamental solution. In section 5, we give a rough sketch of a proof
of a "a local version of Riemann-Roch theorem” by the method of symbolic con-
struction of the fundamental solution for degenerate parabolic equation discussed
in section 4. Last section is devoted to discuss on a compléx manifold. The method
of a proof is almost similar with that of on a Kaehler mdnifold, if 80® = 0. On
the other hand, unde the conditon 83® # 0, the method is similar to that of local

version of Gauss-Bonnet-Chern theorem.

§1. A proof of Gauss-Bonnet-Chern theorem. Let M be a smooth
Riemannian manifold of dimension n without boundary . We give a rough sketch

of a local version of Gauss-Bonnet-Chern theorem according to [9].

local version -of (Gauss-Bonnet-Chern theorem

- _ [ the Euler form + O(y/t) ast— 0, if nis even;
ZO(—l)p tr e, (t, 2, z)dv. = {0’ , if n is odd,
—

where ep(t,z,z) is the kernel of the fundamental solution E,(t) for the Cauchy

problem of the heat equaiton on AP(M) = ['(APT*(M));

0

o (5 + BB, () =0 in (0,T) x M,

E,(0)=I inM.
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Let g be the Riemannian metric and V denotes the Levi-Civita connection.
Let U be a local patch of M. Choose X1, X5, -, X, a local orthonormal frame of
of T(M) in U and let w!,w?,. -, w™ be its dual.

In this section we use the following notations:

Notations.

e(ww =wi Aw = ajw, UXjwY, -, Ypu1) =w(X;, Y1, Ypu1) = ajw.

We have the following representation for A = dv + 9¥d, which is known as

Weitzenbock’s formula.

Lemma 1. The Laplacian A on A*(M) = }°7_, AP(M) has the formula

A= —-{Z ijij -Vp+ Z C(wi)@(xj)R(Xian)},
=1

J i,5=1

where

D =) Vx,X;
=1

and R(X,Y) is the curvature transformation.

By the above lemma, using cf ; such that

n
Vx.Xj=) cl;Xe
£=1
and the coefficients R, of the curvature tranformation, we can obtain
' n n ) n
A= “{Z(Xjf“ Gj)2 - Z C«Z,i(XjI" G;) — Z R";ija:aja;am}
=1 ‘ :

1,5=1 1,5,4,m=1
on A*(M). Here
. n
G; = E c;-',‘za}‘am
4m=1

m=



and 7 is the identity operator on A*(T*(M ).

Now let us consider the Cauchy problem on R™:

3} , n

1.2) a_t +R(z,D))U(t) =0 in (0,T) x R,
' U@ =I inR"

where E(z, D) is a differential operator of which symbol r(z,§) = p2(x, &) I+p1(z, €).

Here [ is the identity matrix, p;(z, £) belongs to Sf,o (7 =1,2), pa(x, €) is a scalar

function satisfying p, > |¢]2 (6 > 0) .
Let us give a matrix A by A = (A;;), Ai; = aja; 1<4,j<n.

Definition 1. A subset K™ of ST is given by K™ = {p(z,¢ :
A); polynomials with respect to ¢ and Aij, (1,5 = 1,2,---,n) of order m with
coefficients in B(R")}. We define a pseudo-differential operator P = p(z, D : A)
acting on A*(M) of a symbol o(P) = p(z, £ : A) = >rspri(z,€aja; € K™ as
follows;

p(z,D : A)(pxw™) =Y p1,1(z, D)pxajas ().
I1,J

In our case the symbol r is of the form r = ry + 71, where
Ty = — Z(ajl - Gj)2 + R.
j=1
Here

n
R= E R;;070;050m.

%,5,,m=1
We note that py = — Z}’:l (a7)%I. Tt is proved that the fundamental solution U (¢)

of (1.2) is constructed as a pseudo-differential operator with parameter . Moreover
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the main part of its symbol is given by

uo(t, z, €) = e~ tr2(=.6:4)

So we can calculate the trace of the kernel of pseudo-differential operator Uy (t)

%@a@=@ﬂ%/.w@x@%-%wﬁ)dkhﬂ+m¢ﬁ€m
Applying Berezin-Patodi theorem which is stated in section 3, we have

strdo(t, 7, z) = (Wl"——t)"\/aetg str{gf"r—i%—Rmtm} +O(t), ifn=2m;
O(v1), if 7 is odd.

Also we can show

. _JO@®), ifniseven;
stre(t, z, z)dvy — strio(t, 2, z)dr = {O(\/E), if 7 is odd

as t — 0. By the following fact we achieve the local version of Gauss-Bonnet-Chern

theorem. If n = 2m, it holds that

str{(-nﬂmRm} ( \/_ Z ( )" sign(m)sign(o)

m,o0€S

1 n
(5—\/;-)

X Rr(1)r(2)o(1)o(2)  * *Br(n-1)r(n)o(n-1)o(n)-

§2.The representation of L. Let M be a smooth Kaehler manifold
with a hermitian metric g. Set Z),Z,, -, Z, be a local orthonormal frame of
T19(M) in a local patch of chart U, that is 9(Zi, Z;) = 0,9(Z;, Z;) = 0,9(Z;, Z;) =
d:5. And let w!,w?, ... W™ be its dual. The differential & and its dual §* acting on

A%9(M) are given as follows, using the Levi-Civita connection V;

5=Ze(dﬁ)vzj, o* =—ZZ(Zj)VZj’
i=1 i=1
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where we use the following notations.

Notations.
o Yp—l)-

e(ﬂ)w =1 Awa Z(Z)w(yl’ Tty Yp—l) = W(Z,},]_,'

A={la"'>naia"'7ﬁ'}

ew®) =as,  uZs)=as, (x,B€A)
aI:ailaZ,"‘afp, d}:agp...a%‘l forI:{i1<i2<...<iP},
for I ={i; <i3 <+ <ip}.

Gl =@ AGR A AG

Let R(Za, Zp) be the curvature transformation, that is

R(Za, Zﬂ) = [Vzaa VZﬁ] - V[Za:zﬁ]'

Remark 1. Owing to that {Z;, Z;}=1,....n is an orthnormal frame, we
have Rg'ki = Rz‘}ki = g(R(Zk, Zz)Zj, Z,') = R(Zi, Zj, Z]c, Zg)

From the fact that our connection is the Riemannian connection, we have

R(Wy1, Wy, Ws, Wy) + R(W1, W3, Wy, W) + R(W1, Wy, Wy, W) = 0,

R(Wh W2, W3, W4) = "R(Wla W21 W41 WS))

R(Wl, W2> W3, W4) \= —R(W2) Wl’ W3a W4)
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The assumption M is a Kaehler manifold leads that the curvature transformatior

satisfies
R(Z;,Z;) =0, R(Z;,Z;) =0,

because V preserves the type of vector fields.

Let c}, 5,(@, 8,7 € A) and R"ﬁi;(a, 8,7, 6 € A) be the following functions:

Vz,23 = Z cz,ﬁZ.,,

YEA
1) J)Zﬁ = Z R‘y
YEA
Proposition 1. The coefficients ¢! ,p Of connection form satisfy
Cijzcg;.;:()’ ;j= c:g (CXGA,’i,jE{l,"',n,})

(Za, Zg] = Z(caﬂ - cﬁ )2y (a,B€AN).

YyeEA

We have the following representation for L = 83* + *8 which is known as

Bochner-Kodaira formula.

Theorem 1. On A%* (M) = > g—0 A%9(M) we have

L———{Z(Vz V2,+V3,9z,)-Vp - ZR(ZJ,Z)}, ~

=1 i=1
where

D= Z(VZij + VZJ.ZJ').

Jj=1



By Theorem 1 and Proposition 1 we have

1 5 7
L =2 {(ZI - Gi)(Z;I - G3) + (Z,I - G;)(2,] - G;)}
7j=1
13 . . 1 ¢
3 2 (GBI =G+ (BT =Gt~ 5 3. Rugoiar

Jik,£=1

on A%*(M). Here -
Go = Z Cat0z0m (@ € A)
Lm=1
and I is an identity operator on A*(T%*(M)).

The following proposition is fundamental for aq, ap.

Proposition 2. For any o, 3 € A, we have
003 + agaq =0,
agap + agay, =0,

aaaB + U-Eaa = 0ag;

§3. Berezin-Patodi’s formula. Let V be a vector space of dimention

n with inner product and let AP(V) be its anti-symmetric p tensors. Set A*(V) =

n

transformation on A*(V) defined by a}v = v; A v and set a; be an adjoint operator

of a} on A*(V). Then {a},a;} satisfy Proposition 2. The following Theorem 2 and

Corollary are shown in [2] under the above assumptions.

p=0 NP(V). Let {v1,---,vn} be an orthnormal basis for V. Set a! be a linear

126




127

Theorem 2(Berezin-Patodi[2]). For any linear operator A on A*(V),
we can write uniquely in the form A = >.1.70Qr1,50}a; and
Ztr[(—l)pAp] = (—'l)na{l,Z,---,n}{l,2,-~-,n}7
p=0

where Ay = A|ppvy.

Corollary . (1)If multi index I and J satify §(I) < n or 8(J) < n, we

have

) " trl(-1)Paja,) = 0.

p=0
(2)Let m and o be elements of permutation of n. Then

Ztr[(—l)”a,"‘r(l) aa(l)a:r(z)a'a'@) e a;(n)aa(n)] = (—1)"sign(r)sign(o).
p=0 .

§4. Fundamental solution for a degenerate operator. In this
paper we use the pseudo-differential operators of Weyl symbols, that is, a symbol

p(z,€) € S7’;(R™) defines an operator as

Pu@)=@m™ [ [ deegllY ougayd,  ues@),

Definition 2. (1) Vp means a vector
(2, 0 0 0
Vp— (Vep) - (01:1p’ 16$np1 6611’, ’aénp)

for a linear transformation p(z, ¢) with parameter (z, ¢).

(2) J is a transformation on C™ x C™ defined by
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for u,v € C™. We also use the same notation J in case 4 =! (U1, Un),uy is a
linear tranformation on some vector space.

3)<t, 8§ >= Z?:l t;8; for a pair of vectors t =* (t,---,t),s =* (s, -, sg).

We consider the construction of the fundamental solution U(t) for a degenerate

parabolic system
d

pn + P)U(t) =0 in (0,T) x R™®,

U (O) =1 onR™
for the Cauchy proBlem on R™ (See I-Iwasaki [7], C.Iwasaki[8]). Here P is a
differential operator of a symbol p(z, £) = ps(z, €)+p1(z, €)+po(x, €), where pi(z, &)
are homogeneous of order j with respect to €. In [7] construction of the fundamental
solution is studied for degenerate parabolic equatidns of more general case, which

had been charactarized by A.Melin[12]. We restrict ourselves to an application to

the Laplacian.

Condition (A).

d
(4) - (1) pa(z,€) = Y _bj(z,€)c;(z,8) (c; =by),

—1

where b;(€ S} o) are scalar symbols.
M
(4) - (2) p1L+try (—2“) 2 cl¢

for some positive constant ¢ on the characteristic set © = {(z,¢) € R™ x R™;

bj(z,€) = 0 for any j }, where try M is the sum of all positive eigenvales of M:
M == JE.

Here Z is 2n x 2n matrix such that & = (Vey, -+, Veg, Vby, -+, Vby).
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Set b = (by,---,by), ¢ =t (cy, -- -, ¢4). Then we have

Theorem 3. Let p(z, ) satisfy Condition (A). Then the fundamental
solution U(t) is constructed as a pseudo-differential operator of a symbol u(t) be-

longing to Sg 1 With parameter t. Moreover u(t) has the following expansion for

3

D

any N:
N-1 N
u(t) - j:zo u;(t) belongs to Sé,g’
uo(t) =expp, u;(t) = f;(tuo(t) € S;i,
where
_tyye Mt /b 1 Mt
$=-3 <(b) ) F(——z——) (c)> - -z-tr[log{cosh(-—z—-)}] — p1t,
F(s) = s 'tanhs.
§5. Sketch of the proof for Kaehler manifolds. We can not obtain

(0.4) by the same method in section one, because the length of the complex are half

of the dimension of manifolds. So we must modify our operator.

Fix a point £ € M and choose a local chart U of a neighborhood 2. Choose a

local coordinate 21, 22, - - -, 2z, of U such that
0 e 0
Z = ;o= ——— ; Z)(— jklz=2 = 0.
z=0, ZJ (6zj)+;n’k(z’z)(6zk)’ njkt
We use the following notation.

Zj=12z; Gj=Gjl.=0.

Set

(5.1) W(z,2) =) (2,G; +%G;) = > 2aGo,
=1

a€el
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N N 1 ~ N -
Fo, =G4 -G, — Z KkapGp + 3 Z[GQ, Gﬁ]Zﬁ + F,

BeA BeA

with

. A 4 1 .

Fa = ZZﬁ[Ga - Ga,Gp] - 5 Z[naﬁGﬂ,W]

BeA BeA .
—I:;_(l,Cz'(ZaW : W) : W) + Iz(l,Cz(Ga W) W),
where
i ) —
. . — (t—S)J ! ~sApn_sA
Ij(t,B : A) = A —(j—-i—)T_e Be®“ds

and

Ca2(B: A) = [[B, A], A].

Lemma 2. We have for W (z, %) defined by (5.1)

~ |

LeW =", |

where ‘
|
. 1 — _ _

(5.2) L=-- Y {21~ F)(Z,1 - F5) + (2,1 - F5)(Z;I - F;)}

j=1

R : 1

+3 > {c:(Zi1 - Fy) + & (2,1 - Fy)} - 3R
i,5=1

with

n
— oW ok W
R=e¢ ( Z Rekjja,—cae)e .
Jik, =1

In order to construct the fundamental soluiton for ( ;% + L), we introduce a new

class of symbols instead of Definiton 1.
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Definition 3.

K™ = {ZPI,J(IL', §)azas : prs(z,€) € Sfo, k+ 7] ‘;‘ ]

I,J

<m}

If we apply Theorem 3 in symbol class K™ to construction of the fundamental
solution for ( a% + i), we obtain, in this case, the fundamental solution whose main
part is given by uo(t) = e, where ¢ is of the form (4.1) with

_ Mo O
M= ( 0 Mo )
where (Mo)i; = R(Z;,Z;). So the kernel to(t, z, ) of pseudodifferential operator

with symbol ug (¢, z, €) is obtained as

- _ tMy
Uo(t,z,x) = (2mt) ™™ det(exp(tM;)) — 1)\/‘detg.

Then we have

strio(t, z, ) = (27t) "str [det(exp (:./\A//!t(?) — 1)]\/detg.

Applying Theorem 2 , we have
strtio(t, 2, z)dz = (273) "™ [T'd(TM)]2p,

where

Td(T(M)) = det(

)

e —1
with curvature form Q, that is,
n . .
Q=(9}), Q=) Ry, Ad.
1,j=1
Noting
stre(t,z,z)dv = striig(t, z, r)dx + O(ti), t—0,



we obtain (0.4).

§6. The representation of L on a complex manifold and calculation
of the supertrace. Let M be a complex manifold with a Hermitian metric

g. Choose a local frame as in secton 2.

The differential d and its dual ¢ acting on AP9(M) are given as follow, using
the Levi-Civita connection V .

d= Ze(wj)sz + Z e(wj)sz, ¥=- ZZ(Zj)sz - z z(Zj)sz.
j=1 =1

From the fact that our connection is the Levi-Civita connection, that is, Vg =0
and the torsion is free. But, V does not preserve the type of vector fields, that is,

VI # 0, where I is the complex structure. So we have

Proposition 3. The coefficients c,, 5 of connection satisfy

C.{,ﬂ = —cg,ﬁv a,,@,')’ € Aa

Cz,k=0’ C%’E=O j’k)ee{]-’"',n};

Raﬁ-y& = “Rﬂa'yé' = "Raﬁé-y = Ry&aﬂ a, .B;7a de A)

Raﬂ76 + Ra'y&ﬂ + Ra&ﬁ’y =0 0‘1:817: d €A

Remark 2. We can not assume that in our case

i a1
caj"'ca,j

=0, R(Z,Z;)=0, R(Z;,Z;)=0,

which hold if M is a Kaehler manifold.

We introduce new connections VS and V*° and give their characterization.
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Definition 4.

(1) Let V5 be the Hermitian connection on M, which is the unique connectio:

satisfing with its torsion 7'

Vig=0, VI=0, TS(V,W)=0, VeT@Ou) W ¢ TOD (1),

Let 57, be the coefficients of the connection V5 , that is

V3%Zi=Y 82, V5z=% 82
. k=1 k=1

(2)Let V5 be the unique connection on M , satisfing with its torsion 7°5
Vig=0, V5I=0,
and

W, T5(U, V) +g(U,TS(W,V)) =0 for U,V € THO (M), W e TOV (M).

Proposition 4. Using the above connections, we have
n n n -
G-y 8=-3ad,+3d)
r=1 r=1 i=1

with for any o € A

n
§ : k¥ _ § : Gk %
Da = Za — Ca_;a;ak —_ Sajajak-

jk=1 k=1

The Kaehler form is given ®(u,v) = g(Ju,v) and also we get the following

formula for & =43 7 | wi A@7



Proposition 5.

n
1002 = Y wini@ A@™Awi AGF,

j,lc,ﬂ,m:l
where
6.1)  winip = =Ry, +li{cf R A R S
. Imjk g “Umjk T 5 1 Crl kCim Cﬁzkcji"cijclcm}-
r=1

Instead of the Bochner-Kodaira formula, we have a representaion of L on com-

plex manifolds, using (6.1).

Theorem 4. On A%* (M) = Y=o A%9(M) we have

3 % ax 3 1 <
L=383"+5 a:-i{;(vgjvgj +V3,V3,) - V3
J=

+ > e@)(Z0)g(R5(Z;, 24) 20, Z,)}

Ik, r=1

n n
- —ke=k —  — _ =k
- E WimnjkOg Q00K — 2 E Wigrk Qg O,

¢,m,j,k=1 ré,k=1
where
D=) (V% 2, + V% Z. + T5(Z., Z,)).
r=1
Remark 3. If M is a Kaehler manifold, the we have the following equalities

908 =0, V¥ =V =V, 75 =75 = 0.
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In case 80 # 0 using the above Theorem 4 instead of Lemma 1, a fundamental
soluiton of parabolic equation (‘a@{ + L) on a complex manifold can be constructed
by symbolic calculus in the similar way. But in this case, calculating the super trace
of the main part of symbol of the fundamental soluiton, we have a singularity with
respect to t. In case 6% = 0, by (6.1) and Theorem 4 we obtain the assertion of

Theorem 5, following the method similar to that of section 5.

Theorem 5.

(1) If 80® # 0 and n is even, then we have

stre(t, z, x)dv, = (2m)~"(-1)% -(—w-(-aﬁj?—'zzt‘? + 0@t~ 3+1),
'2_ .

(2)If 80% = 0, then we have

stre(t, z, z)dv; = O(1).
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