Bifurcation of the Kolmogorov flow with an external friction

東京理科大学理工学部 松田 真実 (Mami Matsuda)
Faculty of Science and Technology,
Tokyo University of Science

1 Introduction

Through my graduate school days studying under professor Sadao Miyatake, I have considered some bifurcation problems about the Kolmogorov flow. The Kolmogorov flow means a plane periodic flow of an incompressible fluid under the action of a spatially periodic external force. Since proposed in 1959, it has been conceived of only as a convenient object for theoretical investigations. But twenty years later, the flow was realized physically as a laboratory model by Bondarenko and his group (see its outline in [2] and Obkuhov[9]). The results of their experiments were found to be in good qualitative agreement with the previous theories described in Meshalkin and Sinai[8] and Iudovich[4], but in some cases, probably because they could only create a thin layer, there were some serious disagreement caused by a friction on the bottom of the channel. Then, they asserted that they should understand the influence of the friction in order to investigate a motion in a thin layer and built an updated model of the Kolmogorov flow with an external friction.

The corresponding equations in stationary case take the form:

$$\begin{cases} uu_x + vu_y = -P_x + \nu \Delta u - \kappa u + \gamma \sin y, \\ uv_x + vv_y = -P_y + \nu \Delta v - \kappa v, \\ u_x + v_y = 0, \quad \text{in } R^2, \end{cases}$$

where u = u(x, y) and v = v(x, y) are the velocity components, P = P(x, y) is the pressure, $\nu > 0$ is the kinematic viscosity, γ is the intensity of the external force $(\gamma \sin y, 0)$, Δ is the two-dimensional Laplace operator, and κ is the coefficient of external friction

which can be defined by the formula $\kappa \equiv 2\nu/h^2$ with h, the depth of the fluid layer. Let the system of solutions $V(x,y) = {}^t\!(u(x,y),v(x,y))$ and P(x,y) satisfy

(1.2)
$$\begin{cases} V(x,y) = V(x+2\pi/\alpha,y) = V(x,y+2\pi), \\ P(x,y) = P(x+2\pi/\alpha,y) = P(x,y+2\pi), \\ \iint_D V(x,y) dx dy = 0, \quad \iint_D P(x,y) dx dy = 0, \end{cases}$$

where $D = \{(x, y) : |x| \le \pi/\alpha, |y| \le \pi\}.$

Introducing the stream function $\psi(x,y)$, we represent the velocity as $(u,v) = (\psi_y, -\psi_x)$. The pressure is known to be determined by the velocity. Then, eliminating P and replacing ψ with $\gamma \nu^{-1} \psi$, we reduce the problem (1.1-2) to:

(1.3)
$$\lambda J(\Delta \psi, \psi) = \nu \Delta^2 \psi - \zeta \Delta \psi + \cos y, \quad J(f, g) \equiv f_x g_y - f_y g_x,$$

(1.4)
$$\begin{cases} \psi(x,y) = \psi(x+2\pi/\alpha,y) = \psi(x,y+2\pi), \\ \iint_D \psi(x,y) dx dy = 0, \end{cases}$$

where $\lambda \equiv \gamma/\nu^2$ and $\zeta \equiv \kappa/\nu = 2/h^2$.

We can see that $\psi_0(x,y) \equiv -(1+\zeta)^{-1}\cos y$ satisfies (1.3-4) for any $\lambda > 0$ and $\zeta \geq 0$. We call this a basic solution. The velocity field of the basic solution is given by $(u_0, v_0) = (\gamma \nu^{-1} (1+\zeta)^{-1} \sin y, 0)$, which represents a shear flow parallel to the x-axis. We would like to search solutions in the form $\psi = \psi_0 + \varphi$. From (1.3), we have

$$(1.5) f(\lambda,\varphi) \equiv \left\{ \Delta^2 - \zeta \Delta - \lambda (1+\zeta)^{-1} \sin y (\Delta+I) \partial_x \right\} \varphi - \lambda J(\Delta\varphi,\varphi) = 0,$$

where I is the identity operator. $\varphi = 0$ corresponds to the basic solution for all λ and ζ . We consider φ in the Sobolev space X satisfying (1.4) such as $X \equiv H^4(D)/R$ with the inner product defined by

$$(\varphi, \varphi)_X \equiv (\Delta^2 \varphi, \Delta^2 \varphi)_{L^2} < \infty, \quad \varphi \in X.$$

The symbol /R implies that only those functions with zero spatial mean are collected.

Theorem 1 We fix $\alpha \in (0,1)$ and $\zeta \in [0,\infty)$. Let $r \in N$ satisfy $r\alpha < 1 \le (r+1)\alpha$. Then there exists $\lambda = \lambda_k$ where $k \in K_\alpha \equiv \{\pm 1, \dots, \pm r\}$, and in a neighborhood of $(\lambda_k, 0)$ there exists one parameter family of solution of (1.5) except the basic solution:

$$(\lambda, \varphi) = (\mu(s), \varphi(s)), \qquad |s| < 1,$$

where $\mu(0) = \lambda_k$, $\varphi(0) = 0$ and $\mu_s(0) = 0$. Moreover, $\mu_{ss}(0) > 0$ is obtained for each $\zeta \geq 0$ when $k\alpha$ is close to one, which leads that this bifurcation is supercritical.

The problem is reduced the same one studied in [7] if $\zeta = 0$. As for this case where there's no external friction, professor Sadao Miyatake and myself have examined the bifurcation curves of solutions to the problem with a symmetric condition $\varphi(x,y) = \varphi(-x,-y)$ in order to use Crandall-Rabinowitz bifurcation theorem which requires dim ker $f_{\varphi}(\lambda_0,0) = 1$. However, in this time we first remove the symmetric condition for the velocity, then obtain the similar result as seen in [7].

2 Guideline of the proof

2.1 Linearlized equations

First, we solve the linearized equation and obtain the function $\lambda = \lambda(\beta, \zeta)$ defined on $\beta \in (0,1)$ and $\zeta \in [0,\infty)$. The linearized eigenvalue problem for fixed α and ζ is

(2.1)
$$f_{\varphi}(\lambda,0)\varphi = \left\{ \Delta^2 - \zeta \Delta - \lambda (1+\zeta)^{-1} \sin y (\Delta+I) \partial_x \right\} \varphi = 0,$$

where λ is called eigenvalue if (2.1) has a solution $\varphi \neq 0$.

 $\varphi \in X$ is expanded in the Fourier series:

$$\varphi = \sum_{m,n} c_{m,n} e^{i(m\alpha x + ny)}, \quad \sum_{m,n} (m^2 \alpha^2 + n^2)^4 |c_{m,n}|^2 < +\infty, \quad c_{0,0} = 0,$$

where the summation is taken over all the pairs of integers but (m, n) = (0, 0). $c_{0,0} = 0$ follows from $\iint_D \varphi dx dy = 0$.

For each integer m, the coefficients $c_{m,n}$ satisfy the infinite system of linear equations:

$$(m^{2}\alpha^{2}+n^{2})(m^{2}\alpha^{2}+n^{2}+\zeta)c_{m,n}+\frac{\lambda m\alpha}{2(1+\zeta)}\{m^{2}\alpha^{2}+(n-1)^{2}-1\}c_{m,n-1}-\frac{\lambda m\alpha}{2(1+\zeta)}\{m^{2}\alpha^{2}+(n+1)^{2}-1\}c_{m,n+1}=0, \quad n=0,\pm 1,\pm 2,\cdots.$$

We see $c_{0,n} = 0$ for any integer n. For $m \neq 0$, we put

$$a_{m,n} \equiv rac{2(1+\zeta)(m^2lpha^2+n^2)(m^2lpha^2+n^2+\zeta)}{\lambda m lpha(m^2lpha^2+n^2-1)}, \qquad b_{m,n} \equiv (m^2lpha^2+n^2-1)c_{m,n},$$

then the above equations are simply described by

$$(2.2) a_{m,n}b_{m,n} + b_{m,n-1} - b_{m,n+1} = 0, n = 0, \pm 1, \pm 2, \cdots$$

We remark that the set of solutions $\{b_{m,n}\}$ is one dimensional. Let us seek non-trivial solutions of the system (2.2) such that $b_{m,n} \to 0$ as $|n| \to \infty$ for each $m \neq 0$. In order to find these $b_{m,n}$, we need to solve the following equation:

$$-\frac{a_{m,0}}{2} = \frac{1}{a_{m,1}} + \frac{1}{a_{m,2}} + \cdots$$

We may restrict ourselves to the case where m>0, since for negative m the argument is similar because of $a_{m,n}=-a_{-m,n}$. We omit m and put $\beta\equiv m\alpha$ and $a_n\equiv a_{m,n}$ simply. Denoting the right hand side of (2.3) by $G(\lambda,\beta,\zeta)$, we rewrite (2.3)

(2.3')
$$\frac{(1+\zeta)\beta(\beta^2+\zeta)}{\lambda(1-\beta^2)} = G(\lambda,\beta,\zeta).$$

We state properties of (2.3') in the following proposition (the proof is written in [12]).

Proposition 1 For the solutions of (2.3'), we obtain the following results:

- (1) (2.3') has no positive solution if $\beta > 1$ and $\zeta \geq 0$.
- (2) If $0 < \beta < 1$, there exists a continuous function $\lambda(\beta, \zeta)$ such that:
 - (i) (2.3') has a solution if and only if $\lambda = \lambda(\beta, \zeta)$;
 - (ii) For fixed $\zeta > 0$, $\lim_{\beta \to 0} \lambda(\beta, \zeta) = \lim_{\beta \to 1} \lambda(\beta, \zeta) = +\infty$ and for $\zeta = 0$, it holds $\lim_{\beta \to 0} \lambda(\beta, 0) = \sqrt{2}$ and $\lim_{\beta \to 1} \lambda(\beta, 0) = +\infty$;
 - (iii) For fixed $\beta \in (0,1)$, $\lambda(\beta,\zeta)$ is a strictly monotone increasing function of $\zeta > 0$.

Because of this difference between $\zeta > 0$ and $\zeta = 0$, Bondarenko and his groups created an updated model with an external friction.

From (2) of Proposition 1, (2.3) has a solution $\lambda = \lambda(\beta, \zeta) \equiv \lambda_k$ only if $\beta \equiv k\alpha \in (0, 1)$. Then, integer k is restricted as follows:

$$k \in K_{\alpha} \equiv \{1, 2, \cdots, r ; r \in N, r\alpha < 1 \leq (r+1)\alpha\}.$$

Then, we take a solution $b_{k,n}$ for $k \in K_{\alpha}$ defined by

(2.4)
$$b_{k,n} \equiv \begin{cases} \prod_{i=1}^{n} \rho_{k,i} & \text{for } n > 0, \\ 1 & \text{for } n = 0, \\ (-1)^{n} \prod_{i=1}^{-n} \rho_{k,i} & \text{for } n < 0, \end{cases}$$

** 11010

$$\rho_{k,i} = \frac{-1}{a_{k,i}} + \frac{1}{a_{k,i+1}} + \cdots, \qquad a_{k,i} = a_{k,i}(\lambda_k), \quad i \ge 1.$$

Let us consider the case where m < 0 and $|m| \in K_{\alpha}$. As we note $a_{m,n} = -a_{-m,n}$, we obtain that $b_{-k,n} = (-1)^n b_{k,n}$ for $k \in K_{\alpha}$ also satisfy (2.2). Therefore, the set of the non-trivial solutions of (2.1) is given as follows:

(2.5)
$$\ker f_{\varphi}(\lambda_{k}, 0) = \left\{ \varphi^{(k)} = t_{1} \varphi_{k} + t_{2} \varphi_{-k} ; t_{1}, t_{2} \in R \right\},$$

where $\varphi_k \equiv \sum_{n=-\infty}^{+\infty} c_{k,n} e^{i(k\alpha x + ny)}$, $c_{k,n} = (k^2\alpha^2 + n^2 - 1)^{-1}b_{k,n}$. We see that φ_{-k} is equal to $\bar{\varphi}_k$, the conjugate function of φ_k , since we have $c_{-k,n} = (-1)^n c_{k,n} = c_{k,-n}$ due to $b_{-k,n} = (-1)^n b_{k,n} = b_{k,-n}$. Moreover, using Euler's formula, we can rewrite (2.5):

(2.5')
$$\ker f_{\varphi}(\lambda_{k}, 0) = \left\{ \varphi^{(k)} = s_{1} \varphi_{k,1} + s_{2} \varphi_{k,2} \; ; \; s_{1}, s_{2} \in R \right\},$$

where $\varphi_{k,1} \equiv \sum_{n=-\infty}^{\infty} c_{k,n} \cos(k\alpha x + ny)$ and $\varphi_{k,2} \equiv \sum_{n=-\infty}^{\infty} c_{k,n} \sin(k\alpha x + ny)$. Similarly, let us seek non-trivial solutions Φ of the conjugate equation of (2.1):

$$(2.6) f_{\varphi}^*(\lambda,0)\Phi = \left\{\Delta^2 - \zeta\Delta + \lambda(1+\zeta)^{-1}(\Delta+I)\sin y\partial_x\right\}\Phi = 0,$$

in the form $\Phi(x,y) = \sum_{m,n} d_{m,n} e^{i(m\alpha x + ny)}$. f_{φ} is a bounded operator from H_0^{ℓ} to $H_0^{\ell-4}$ where $\varphi \in H_0^{\ell}$ means $\varphi(x,y) = \sum_{m,n} c_{m,n} e^{i(m\alpha x + ny)}$ with $c_{0,0} = 0$ and $\sum_{m,n} (m^2 + n^2)^{\ell} c_{m,n}^2 < \infty$. And we have the following relation of $d_{m,n}$ for each integer m:

$$a_{m,n}d_{m,n}-d_{m,n-1}+d_{m,n+1}=0.$$

Putting $b'_{m,n} \equiv (-1)^n d_{m,n}$, we have also

$$a_{m,n}b'_{m,n}+b'_{m,n-1}-b'_{m,n+1}=0,$$

which is the same form as (2.2). Applying the same argument as that in (2.2), we obtain the non-trivial solutions of (2.6) if $\lambda = \lambda_k \ k \in K$:

(2.7)
$$\ker f_{\varphi}^*(\lambda_k, 0) = \left\{ \Phi^{(k)} = t_1 \Phi_k + t_2 \Phi_{-k} ; \ t_1, t_2 \in R \right\},$$

where $\Phi_k = \sum_{n=-\infty}^{\infty} d_{k,n} e^{i(k\alpha x + ny)}$, $d_{k,n} = (-1)^n b_{k,n}$ and $b_{k,n}$ are given by (2.4). Note that each $\Phi^{(k)} \in \ker f_{\varphi}^*(\lambda_k, 0)$ is smooth function. We rewrite $\Phi^{(k)} \in \ker f_{\varphi}^*(\lambda_k, 0)$ as

(2.7')
$$\ker f_{\varphi}(\lambda_{k}, 0)^{*} = \left\{ \Phi^{(k)} = s_{1} \Phi_{k, 1} + s_{2} \Phi_{k, 2} ; s_{1}, s_{2} \in R \right\},$$

where $\Phi_{k,1} \equiv \sum_{n=-\infty}^{\infty} d_{k,n} \cos(k\alpha x + ny)$ and $\Phi_{k,2} \equiv \sum_{n=-\infty}^{\infty} d_{k,n} \sin(k\alpha x + ny)$. We remark that the both ker $f_{\varphi}(\lambda_k, 0)$ and ker $f_{\varphi}^*(\lambda_k, 0)$ are two dimensional spaces.

2.2 Existence of bifurcation points

For $\alpha \in (0,1)$ and $\zeta \in [0,\infty)$, (2.1) has non-trivial solutions if and only if λ is equal to the values λ_k given in the previous section. Using the method of Ljapunov-Schmidt, we prove that $\lambda = \lambda_k$ is the bifurcation point of (1.5).

Assume $\varphi \in X$ and $\omega \in Y \equiv L_0^2$ where $g \in L_0^2$ means $g \in L^2$ and $\iint_D g dx dy = 0$. We decompose them orthogonally by:

$$\varphi = \varphi_1 + \varphi_2, \quad \varphi_1 \in X_1, \quad \varphi_2 \in X_2,
\omega = \omega_1 + \omega_2, \quad \omega_1 \in Y_1, \quad \omega_2 \in Y_2.$$

 X_i and Y_i (i = 1, 2) are defined as follows: $X_1 = \ker f_{\varphi}(\lambda_k, 0)$, X_2 is the orthogonal complement of X_1 . Y_2 is the range of $f_{\varphi}(\lambda_k, 0)$ and Y_1 is the orthogonal complement of Y_2 .

According to Section 2, $X_1 = \ker f_{\varphi}(\lambda_k, 0)$ and $\ker f_{\varphi}^*(\lambda_k, 0)$ are two dimensional space. We also see dim Y_1 is two, namely, we verify

$$(3.1) Y_1 = \ker f_{\omega}^*(\lambda_k, 0).$$

In fact, put $T \equiv f_{\varphi}(\lambda_k, 0)$ and $T^* \equiv f_{\varphi}^*(\lambda_k, 0)$, then $\omega_1 \in Y_1$ satisfies $(\omega_1, T\psi)_{L^2} = 0$ for $\psi \in X$. Hence we have $T^*\omega_1 = 0$ in the sense of distribution. Although ω_1 belongs to L_0^2 space and $\ker T^*$ is subspace of $X = H_0^4$, we can see that this ω_1 is smooth enough to belong to $\ker T^*$ by the hypo-ellipticity as follows. From (2.6), we write $T^* \equiv \Delta^2 + T^{(3)}$. Then $T^*\omega_1 = 0$ implies $\Delta^2\omega_1 = -T^{(3)}\omega_1$. Since $\omega_1 \in Y_1$, the right hand-side of this equation belongs to $H_0^{(-3)}$, namely, the Fourier expansion coefficients of ω_1 satisfy $\sum (m^2 + n^2)^{-3} c_{m,n}^2 < \infty$. Then the left hand-side belongs to $H_0^{(-3)}$, which implies $\omega_1 \in H_0^1$. Repeating this several times, we see that ω_1 is sufficiently smooth.

We denote the projection to Y_1 of Y by P. Then, $Q \equiv I - P$ is the projection to Y_2 . Corresponding to the above decomposition, we have the system of the following two equations which is equivalent to (1.5):

$$\begin{cases} Qf(\lambda, \varphi_1 + \varphi_2) = 0 & \text{in } Y_2, \cdots (3.2) \\ Pf(\lambda, \varphi_1 + \varphi_2) = 0 & \text{in } Y_1. \cdots (3.3) \end{cases}$$

Hereafter, we seek the solution (λ, φ) of this system, depending on one parameter $s \in (-1,1)$ as follows: $(\lambda, \varphi) = (\mu(s), \varphi_1(s) + \varphi_2(s))$. We suppose that $\mu(s) \in R$, $\varphi_1(s) \in X_1$ and $\varphi_2(s) \in X_2$ satisfy $\mu(0) = \lambda_k$. We put $\varphi_1(s) = s\varphi^{(k)}$ where $\varphi^{(k)}$ is a non-trivial solution of (2.1) given in (2.5). Then we look for $\lambda = \mu(s)$ and $\varphi_2(s)$.

First, let us consider (3.2). We put $Qf(\lambda, \varphi_1 + \varphi_2) \equiv g(\tau, \varphi_2)$ with $\tau \equiv (\lambda, s)$ for fixed $\alpha \in (0, 1)$ and $\zeta \in [0, \infty)$. Note that $g(\tau_k, 0) = 0$ for $\tau_k \equiv (\lambda_k, 0)$ since $f(\lambda, 0) = 0$. By definition we see that $g_{\varphi_2}(\tau_k, 0) = Qf_{\varphi}(\lambda_k, 0)$ is a bijective mapping from X_2 to Y_2 . Then from the implicit function theorem, there exists a function $\psi(\tau)$ which satisfies $g(\tau, \psi(\tau)) = 0$ and $\psi(\tau_k) = 0$ in the neighborhood of $(\tau_k, 0)$. We shall determine $\psi = \psi(\tau)$ more precisely. From (3.2), with $\varphi_1 = s\varphi^{(k)}$ and $\varphi_2 = \psi$, ψ satisfies the following equation:

$$H[\psi] - \tilde{L}[s\varphi^{(k)} + \psi] - \lambda J(\Delta(s\varphi^{(k)} + \psi), s\varphi^{(k)} + \psi) = 0,$$

where $H \equiv Qf_{\varphi}(\lambda_k, 0)$, $\tilde{L} \equiv (\lambda - \lambda_k)(1 + \zeta)^{-1}\sin y(\Delta + I)\partial_x$. Since H is a bijective mapping from X_2 to Y_2 , it holds that

$$\psi - H^{-1}\tilde{L}[s\varphi^{(k)} + \psi] - \lambda H^{-1}J(\Delta(s\varphi^{(k)} + \psi), s\varphi^{(k)} + \psi) = 0.$$

We define a sequence of functions $\{\psi_n\}$ $(n=0,1,2,\cdots)$ as follows:

$$\psi_0 = 0, \quad \psi_n \equiv H^{-1} \tilde{L}[s\varphi^{(k)} + \psi_{n-1}] - \lambda H^{-1} J(\Delta(s\varphi^{(k)} + \psi_{n-1}), s\varphi^{(k)} + \psi_{n-1}).$$

Let us show that $\{\psi_n\}$ is a Cauchy sequence in the neighborhood of s=0. In fact, since the non-linear term becomes $O(s^2)$, it can be omitted. Choosing λ such as $|\lambda-\lambda_k|\leq 4^{-1}\|H^{-1}\|^{-1}$, we have $\|\psi_1\|=O(s)$ and $\|\psi_2-\psi_1\|\leq 2^{-1}\|\psi_1\|$. Similarly, it holds that $\|\psi_{n+1}-\psi_n\|\leq 2^{-n}\|\psi_1\|$. Then $\{\psi_n\}$ is a Cauchy sequence and converges to a limit $\psi=\psi(\lambda,s)$ which belongs to X_2 satisfying $\psi(\lambda,0)=0$ and

$$(3.4) \qquad \qquad \psi = H^{-1}\tilde{L}[s\varphi^{(k)} + \psi] - \lambda H^{-1}J(\Delta(s\varphi^{(k)} + \psi), s\varphi^{(k)} + \psi)$$

for small s.

In order to show that λ_k is a bifurcation point, we have to prove the existence of the solution $\mu(s)$ of (3.3) satisfying $\mu(0) = \lambda_k$. Substituting $\varphi_2 = \psi(\tau)$ into the left hand side of (3.3) and defining

$$Pf(\lambda, s\varphi^{(k)} + \psi(\lambda, s)) \equiv h(\lambda, s),$$

we denote

$$\chi(\lambda, s) \equiv \begin{cases} \{h(\lambda, s) - h(\lambda, 0)\}/s, & \text{for } s \neq 0, \\ h_s(\lambda, 0), & \text{for } s = 0. \end{cases}$$

Note that $h(\lambda, 0) = 0$ holds and the continuity of χ follows from that of h_s . The reason why we define $\chi(\lambda, s)$ is that we cannot apply the implicit function theorem to

 $h(\lambda,s)$. Remark that $h_{\lambda}(\lambda,0)=0$ holds from $\psi(\lambda,0)=0$ for all λ . From $h_s(\lambda,s)=Pf_{\varphi}(\lambda,s\varphi^{(k)}+\psi(\lambda,s))[\varphi^{(k)}+\psi_s(\lambda,s)]$, it holds that $h_s(\lambda,0)=Pf_{\varphi}(\lambda,0)[\varphi^{(k)}+\psi_s(\lambda,0)]$. Now we verify $\psi_s(\lambda_k,0)=0$. Differentiating $Qf(\lambda,s\varphi^{(k)}+\psi(\lambda,s))=0$ by s and putting $(\lambda,s)=(\lambda_k,0)$, we have $Qf_{\varphi}(\lambda_k,0)[\psi_s(\lambda_k,0)]=0$. Since $Qf_{\varphi}(\lambda_k,0)$ is a bijective mapping from X_2 to $Y_2, \psi_s(\lambda_k,0)=0$ holds.

 $\chi(\lambda, s) = 0$ is equivalent to the following equations:

(3.5)
$$\chi^{(1)}(\lambda, s) \equiv (\chi(\lambda, s), \Phi_{k,1})_{L^2} = 0,$$

(3.6)
$$\chi^{(2)}(\lambda, s) \equiv (\chi(\lambda, s), \Phi_{k, 2})_{L^2} = 0,$$

where $\Phi_{k,i} \in Y_1 = \ker f_{\varphi}^*(\lambda_k, 0)$ (i = 1, 2). First, we seek a solution λ of (3.5) putting $\varphi^{(k)} = t_1 \varphi_{k,1} + t_2 \varphi_{k,2}$ for $(t_1, t_2) \neq (0, 0)$. Differentiating (3.5) by λ , then we have

$$\chi_{\lambda}^{(1)}(\lambda_{k},0) = \left(\lim_{\Delta\lambda\to 0} \frac{\chi(\lambda_{k}+\Delta\lambda,0)-\chi(\lambda_{k},0)}{\Delta\lambda}, \Phi_{k,1}\right)_{L^{2}}$$

$$= \left(Pf_{\varphi\lambda}(\lambda_{k},0)[\varphi^{(k)}], \Phi_{k,1}\right)_{L^{2}} = \left(f_{\varphi\lambda}(\lambda_{k},0)[\varphi^{(k)}], P^{*}\Phi_{k,1}\right)_{L^{2}}$$

$$= \left(f_{\varphi\lambda}(\lambda_{k},0)[\varphi^{(k)}], P\Phi_{k,1}\right)_{L^{2}}$$

$$= t_{1}(-(1+\zeta)^{-1}\sin y(\Delta+I)\partial_{x}\varphi_{k,1}, \Phi_{k,1})_{L^{2}}.$$

We show

$$(3.7) \qquad (-(1+\zeta)^{-1}\sin y(\Delta+I)\partial_x\varphi_{k,1},\Phi_{k,1})_{L^2} > 0.$$

Since $\varphi_{k,1}$ is a solution of (2.1), we have

$$-(1+\zeta)^{-1}\sin y(\Delta+I)\partial_x\varphi_{k,1}=\lambda_k^{-1}(\zeta)(-\Delta^2+\zeta\Delta)\varphi_{k,1}.$$

Using $\varphi_{k,1} = \sum_n c_{k,n} \cos(k\alpha x + ny)$ and $\Phi_{k,1} = \sum_n d_{k,n} \cos(k\alpha x + ny) = \sum_n (-1)^n (k^2 \alpha^2 + n^2 - 1)c_{k,n} \cos(k\alpha x + ny)$, we obtain

$$((-\Delta^2 + \zeta \Delta)\varphi_{k,1}, \Phi_{k,1})_{L^2} \equiv \frac{1}{2}|D|\sum_{n} (-1)^{n+1} \tilde{c}_{k,n},$$

where $\tilde{c}_{k,n} \equiv (k^2\alpha^2 + n^2)(k^2\alpha^2 + n^2 + \zeta)(k^2\alpha^2 + n^2 - 1)c_{k,n}^2$. Meanwhile, we can verify $\sum_n \tilde{c}_{k,n} = 0$ (seen in Iudovich[4]). In fact, from $f_{\varphi}(\lambda_k, 0)\varphi_{k,1} = 0$, multiplying this equation $(\Delta + I)\varphi_{k,1}$ and integrating over the rectangle D, we obtain

$$\begin{split} 0 &= \iint_D (\Delta + I) \varphi_{k,1} (\Delta^2 - \zeta \Delta) \varphi_{k,1} dx dy \\ &- \lambda_k (1 + \zeta)^{-1} \iint_D (\Delta + I) \varphi_{k,1} \sin y (\Delta + I) \partial_x \varphi_{k,1} dx dy, \end{split}$$

and see that the second term vanishes. Then, we have

$$\iint_{D} (\Delta + I) \varphi_{k,1}(\Delta^{2} - \zeta \Delta) \varphi_{k,1} dx dy = \frac{-1}{2} |D| \sum_{n} \tilde{c}_{k,n} = 0.$$

From $\sum_{n} \tilde{c}_{k,n} = 0$ and $\tilde{c}_{k,-n} = \tilde{c}_{k,n}$, we obtain (3.7) since it holds

$$\sum_{n} (-1)^{n+1} \tilde{c}_{k,n} = -\tilde{c}_{k,0} + 2 \sum_{m=1,3,5,\dots} \tilde{c}_{k,m} - 2 \sum_{m=2,4,6,\dots} \tilde{c}_{k,m}$$
$$= 4 \sum_{m=1,3,5,\dots} \tilde{c}_{k,m} > 0.$$

As a result, we have $\chi_{\lambda}^{(1)}(\lambda_k, 0) \neq 0$ if $t_1 \neq 0$. From the implicit function theorem, there exists a function $\lambda = \mu(s)$ satisfying $\chi^{(1)}(\mu(s), s) = 0$ and $\mu(0) = \lambda_k$.

Next, we suppose the question whether $\lambda = \mu(s)$ satisfies (3.6). Since $h_s(\lambda_k, 0) = 0$ holds from $h_s(\lambda, 0) = Pf_{\varphi}(\lambda, 0)[\varphi^{(k)} + \psi_s(\lambda, 0)]$ and $\psi_s(\lambda_k, 0) = 0$, we can see $\chi^{(2)}(\lambda_k, 0) = (h_s(\lambda_k, 0), \Phi_{k,2})_{L^2} = 0$. As for $s \neq 0$, it holds

$$s\chi^{(2)}(\lambda, s) = (h(\lambda, s), \Phi_{k,2})_{L^2}$$

$$= (Pf(\lambda, s\varphi^{(k)} + \psi(\lambda, s)), \Phi_{k,2})_{L^2}$$

$$= (f(\lambda, s\varphi^{(k)} + \psi(\lambda, s)), \Phi_{k,2})_{L^2}.$$

Then we have the following formula:

$$\begin{split} s\chi^{(2)}(\mu(s),s) &= (f(\mu(s),s\varphi^{(k)} + \psi(\mu(s),s)), \Phi_{k,2})_{L^2} \\ &= \left(\{\Delta^2 - \zeta\Delta - \mu(s)\sin y(\Delta + I)\partial_x\}[s\varphi^{(k)} + \psi(\mu(s),s)], \Phi_{k,2} \right)_{L^2} \\ &- \mu(s) \left(J(\Delta(s\varphi^{(k)} + \psi(\mu(s),s)), s\varphi^{(k)} + \psi(\mu(s),s)), \Phi_{k,2} \right)_{L^2}. \end{split}$$

The question is how we choose $\varphi^{(k)}$. From (3.4), if $\varphi^{(k)}$ is represented as a liner combination of $\varphi_{k,1}$ and $\varphi_{k,2}$, $\psi(\mu(s),s)$ is expanded by both sine and cosine functions. In this case, we cannot expect in general that the above formula goes to zero. However, if we put $\varphi^{(k)} = \varphi_{k,1}$, $\psi(\mu(s),s)$ is expanded by cosine only. As a result, the inner-product with $\Phi_{k,2}$ becomes zero and, hence, $\mu(s)$ satisfies (3.6). Thus, we obtain the former part of Theorem 1.

2.3 Properties of the Bifurcation curve

We shall consider the convex property of $\lambda = \mu(s)$ with regard to s. Putting $T \equiv f_{\varphi}(\lambda_k, 0)$ and $\tilde{\lambda}(s) \equiv \mu(s) - \lambda_k$, we rewrite $f(\mu(s), \varphi(s)) = 0$ as

(4.1)
$$T\varphi(s) = \frac{\tilde{\lambda}(s)}{1+\zeta}\sin y(\Delta+I)\partial_x\varphi(s) + \mu(s)J(\Delta\varphi(s),\varphi(s)),$$

where $\varphi(s) \equiv s\varphi_{k,1} + \psi(\mu(s), s)$. Let us differentiate (4.1) by s:

$$T\varphi_{s}(s) = \frac{\tilde{\lambda}_{s}(s)}{1+\zeta}\sin y(\Delta+I)\partial_{x}\varphi(s) + \frac{\tilde{\lambda}(s)}{1+\zeta}\sin y(\Delta+I)\partial_{x}\varphi_{s}(s) \\ + \mu_{s}(s)J(\Delta\varphi(s),\varphi(s)) + \mu(s)J(\Delta\varphi(s),\varphi(s))_{s};$$

$$T\varphi_{ss}(s) = \frac{\tilde{\lambda}_{ss}(s)}{1+\zeta}\sin y(\Delta+I)\partial_{x}\varphi(s) + \frac{2\tilde{\lambda}_{s}(s)}{1+\zeta}\sin y(\Delta+I)\partial_{x}\varphi_{s}(s) \\ + \frac{\tilde{\lambda}(s)}{1+\zeta}\sin y(\Delta+I)\partial_{x}\varphi_{ss}(s) + \mu_{ss}(s)J(\Delta\varphi(s),\varphi(s)) \\ + 2\mu_{s}(s)J(\Delta\varphi(s),\varphi(s))_{s} + \mu(s)J(\Delta\varphi(s),\varphi(s))_{ss};$$

$$\varphi_{s}(s) = \varphi_{k,1} + \psi_{\lambda}(\mu(s),s)\mu_{s}(s) + \psi_{s}(\mu(s),s).$$

Putting s = 0, we have

(4.2)
$$T\varphi_{ss}(0) = \frac{2\mu_s(0)}{1+\zeta}\sin y(\Delta+I)\partial_x\varphi_{k,1} + 2\lambda_k J(\Delta\varphi_{k,1},\varphi_{k,1}).$$

If we take the L^2 inner-product with $\Phi_{k,1} \in \ker T^*$, (4.2) becomes

$$0 = rac{2\mu_s(0)}{1+\zeta}(\sin y(\Delta+I)\partial_x arphi_{k,1}, \Phi_{k,1})_{L^2} + 2\lambda_k (J(\Delta arphi_{k,1}, arphi_{k,1}), \Phi_{k,1})_{L^2},$$

and from $T\varphi_{k,1}=0$, we obtain

$$0 = \frac{2\mu_s(0)}{\lambda_k} ((\Delta^2 - \zeta \Delta)\varphi_{k,1}, \Phi_{k,1})_{L^2} + 2\lambda_k (J(\Delta\varphi_{k,1}, \varphi_{k,1}), \Phi_{k,1})_{L^2}.$$

Since the Fourier coefficients of $J(\Delta\varphi_{k,1},\varphi_{k,1})$ consist of a linear combination of $\cos ny$ and $\cos(2k\alpha x + ny)$, we have $(J(\Delta\varphi_{k,1},\varphi_{k,1}),\Phi_{k,1})_{L^2} = 0$. Also, from the proof of (3.7), we have

$$((\Delta^2 - \zeta \Delta)\varphi_{k,1}, \Phi_{k,1})_{L^2} < 0.$$

Therefore, we obtain $\mu_s(0) = 0$.

Differentiating (4.1) once more and putting s = 0, we have

$$T\varphi_{sss}(0) = 3\mu_{ss}(0)(1+\zeta)^{-1}\sin y(\Delta+I)\partial_{x}\varphi_{k,1} +3\lambda_{k}\left\{J(\Delta\varphi_{ss}(0),\varphi_{k,1})+J(\Delta\varphi_{k,1},\varphi_{ss}(0))\right\} = 3\mu_{ss}(0)\lambda_{k}^{-1}(\Delta^{2}-\zeta\Delta)\varphi_{k,1} +3\lambda_{k}\left\{J(\Delta\varphi_{ss}(0),\varphi_{k,1})+J(\Delta\varphi_{k,1},\varphi_{ss}(0))\right\},$$

and taking the L^2 inner-product with $\Phi_{k,1} \in \ker T^*$,

$$\begin{array}{lll} 0 & = & (T\varphi_{sss}(0), \Phi_{k,1})_{L^2} \\ & = & 3\mu_{ss}(0)\lambda_k^{-1}((\Delta^2 - \zeta\Delta)\varphi_{k,1}, \Phi_{k,1})_{L^2} \\ & & + 3\lambda_k(J(\Delta\varphi_{ss}(0), \varphi_{k,1}) + J(\Delta\varphi_{k,1}, \varphi_{ss}(0)), \Phi_{k,1})_{L^2} \end{array}$$

holds. Then we have

$$\mu_{ss}(0) = rac{-\lambda_k^2}{((\Delta^2 - \zeta\Delta)arphi_{k,1}, \Phi_{k,1})_{L^2}} \Big(J(\Deltaarphi_{ss}, arphi_{k,1}) + J(\Deltaarphi_{k,1}, arphi_{ss}), \Phi_{k,1}\Big)_{L^2}.$$

Let us determine the sign of $\mu_{ss}(0)$. From (4.3), this sign is equal to that of

(4.4)
$$\iint_{D} \left\{ J(\Delta \varphi_{ss}, \varphi_{k,1}) + J(\Delta \varphi_{k,1}, \varphi_{ss}) \right\} \Phi_{k,1} dx dy.$$

Here $\varphi_{ss} \equiv \varphi_{ss}(0) = \psi_{ss}(\lambda_k, 0)$ is obtained by

$$(4.5) T\varphi_{ss} = 2\lambda_k J(\Delta\varphi_{k,1}, \varphi_{k,1}).$$

The right-hand side of (4.5) consists of two terms extended respectively by $\cos \ell y$ and $\cos(2k\alpha x + \ell y)$.

We have the following proposition:

Proposition 2 The solution of (4.5) takes the following form:

(4.6)
$$\varphi_{ss} = {}^{t}\boldsymbol{w}^{(0)}\boldsymbol{\Lambda}\boldsymbol{c}(0) + {}^{t}\boldsymbol{w}^{(2k)}\boldsymbol{D}\boldsymbol{E}\boldsymbol{c}(2k\alpha) \equiv Z_{1} + Z_{2},$$
$$Z_{1} \equiv {}^{t}\boldsymbol{w}^{(0)}\boldsymbol{\Lambda}\boldsymbol{c}(0), \qquad Z_{2} \equiv {}^{t}\boldsymbol{w}^{(2k)}\boldsymbol{D}\boldsymbol{E}\boldsymbol{c}(2k\alpha).$$

Here c(0), $c(2k\alpha)$, $w^{(0)}$ and $w^{(2k)}$ are column vectors with the following ℓ -th components:

$$(c(0))_{\ell} = \cos \ell y, \quad (c(2k\alpha))_{\ell} = \cos(2k\alpha x + \ell y),$$

$$(w^{(0)})_{\ell} = \lambda_{k} k\alpha \ell \, {}^{t}\varphi^{(k)}KS^{\ell}\varphi^{(k)},$$

$$(w^{(2k)})_{\ell} = \lambda_{k} k\alpha \, {}^{t}\varphi^{(k)}K(2N - \ell I)RS^{\ell}\varphi^{(k)},$$

where $\varphi^{(k)}$ is a column vector corresponding to the Fourier coefficients of $\varphi_{k,1}$ with n-th component $\varphi_n = (k^2\alpha^2 + n^2 - 1)^{-1}b_{k,n}$ $(b_{k,n}$ is defined by (2.6)), K and N are diagonal matrices with n-th elements $-k_n \equiv -(k^2\alpha^2 + n^2)$ and n respectively. S^{ℓ} and R are matrices with (i,j) elements as follows:

$$(S^{\ell})_{i,j} = \begin{cases} 1 & \text{for } j-i=\ell, \\ 0 & \text{otherwise,} \end{cases}$$
 $(R)_{i,j} = \begin{cases} 1 & \text{for } i+j=0, \\ 0 & \text{otherwise.} \end{cases}$

 Λ and E are diagonal matrices with n-th elements

$$\mathbf{\Lambda}_n = \left\{ \begin{array}{ll} (n^4 + \zeta n^2)^{-1} & \text{for } n \neq 0, \\ 0 & \text{for } n = 0, \end{array} \right. \quad \mathbf{E}_n = \frac{1 + \zeta}{\lambda_k k \alpha (4k^2 \alpha^2 + n^2 - 1)},$$

and $D = (\cdots d^{(m)} \cdots)$ is a matrix where $d^{(m)}$ are column vectors with n-th component $d_n^{(m)}$ as follows:

$$\boldsymbol{d}_{n}^{(m)} = \left\{ \begin{array}{ll} \left(\Pi_{i=m+1}^{n} \eta_{i}^{+} \right) N_{m+1}^{-1} & \text{for } n > m, \\ N_{m+1}^{-1} & \text{for } n = m, \\ \left(\Pi_{i=n+1}^{m} \eta_{i}^{-} \right)^{-1} N_{m+1}^{-1} & \text{for } n < m, \end{array} \right.$$

where

$$\eta_{n}^{+} \equiv \frac{1}{a'_{n}} + \frac{1}{a'_{n+1}} + \cdots,
\eta_{n}^{-} \equiv -a'_{n-1} + \frac{-1}{a'_{n-2}} + \cdots,
N_{m+1} \equiv \eta_{m+1}^{+} - \eta_{m+1}^{-},
a'_{n} \equiv \frac{(1+\zeta)(4k^{2}\alpha^{2} + n^{2})(4k^{2}\alpha^{2} + n^{2} + \zeta)}{\lambda_{k}k\alpha(4k^{2}\alpha^{2} + n^{2} - 1)}.$$

We can prove Proposition 2 in the same way to Section 3.2 of [7]. Substituting (4.6) into (4.4), we have

$$egin{aligned} &\iint_D \{J(\Delta arphi_{ss}(0),arphi_{k,1}) + J(\Delta arphi_{k,1},arphi_{ss}(0))\}\Phi_{k,1}dxdy \equiv D_1 + D_2, \ &D_1 \equiv \iint_D \{J(\Delta Z_1,arphi_{k,1}) + J(\Delta arphi_{k,1},Z_1)\}\Phi_{k,1}dxdy, \ &D_2 \equiv \iint_D \{J(\Delta Z_2,arphi_{k,1}) + J(\Delta arphi_{k,1},Z_2)\}\Phi_{k,1}dxdy. \end{aligned}$$

As for D_1 and D_2 , we obtain the following proposition.

Proposition 3 For each fixed $\zeta \geq 0$, $D_1 > |D_2|$ holds if $k\alpha$ close to one.

The proof is given in my current preprint [12], which is based on the previous paper (Section 4 and 5 of [7]). This proposition means that $\mu_{ss}(0) > 0$ holds if $k\alpha \in (0,1)$ is sufficiently close to one. Thus, Theorem 1 is proved.

References

- [1] L. A. Belousov, The asymptotic behavior for large t of the Fourier coefficients of solutions of the Meshalkin problem, Russian Math. Surveys 41:3, (1986), 199-200.
- [2] N. F. Bondarenko, M. Z. Gak and F. V. Dolzhanskiy, Laboratory and theoretical models of plane periodic flows, Izv. Atmos. Oceanic Phys. 15, (1979), 711-716.
- [3] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 17, (1971), 321-340.
- [4] V. I. Iudovich, Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Appl. Math. Mech. 29, (1965), 527-544.
- [5] V. X. Liu, An example of instability for the Navier-Stokes equations on the 2-dimensional torus, Comm. Partial Differential Equations 17, (1992), 1995-2012.
- [6] K. Masuda, Nonlinear mathematics, Asakura-Shoten, Tokyo, (1986), (Japanese).
- [7] M. Matsuda and S. Miyatake, Bifurcation analysis on Kolmogorov flows, Tôhoku Math. J. 54, (2002), 329–365.

- [8] L. D. Meshalkin and Y. G. Sinai, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech. 25, (1961), 1700-1705.
- [9] A. M. Obukhov, Kolmogorov flow and laboratory simulation of it, Russian Math. Surveys 38:4, (1983), 113-126.
- [10] H. Okamoto and M. Shōji, Bifurcation diagrams in Kolmogorov's problem of viscous incompressible fluid on 2-D flat tori, J. J. Indust. Appl. Math. 10, (1993), 191-218.
- [11] M. Yamada, Nonlinear stability theory of spatially periodic parallel flows, J. Phys. Soc. Japan 55, (1986), 3073-3079.
- [12] M. Matsuda, Bifurcation of the Kolmogorov flow with an external friction, preprint.