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Bifurcation of the Kolmogorov flow
with an external friction
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1 Introduction

Through my graduate school days studying under professor Sadao Miyatake, I have
considered some bifurcation problems about the Kolmogorov flow. The Kolmogorov
flow means a plane periodic flow of an incompressible fluid under the action of a
spatially periodic external force. Since proposed in 1959, it has been conceived of only
as a convenient object for theoretical investigations. But twenty years later, the flow
was realized physically as a laboratory model by Bondarenko and his group (see its
outline in [2] and Obkuhov[9]). The results of their experiments were found to be
in good qualitative agreement with the previous theories described in Meshalkin and
Sinai[8] and Iudovich[4], but in some cases, probably because they could only create
a thin layer, there were some serious disagreement caused by a friction on the bottom
of the channel. Then, they asserted that they should understand the influence of the
friction in order to investigate a motion in a thin layer and built an updated model of
the Kolmogorov flow with an external friction.
The corresponding equations in stationary case take the form:

(1.1)

Uy + vUy = —FPp + vAu — ku + ysiny,
{ wz + vy = —FPy + vAv — kv,

ug+vy, =0, in R?%
where u = u(z,y) and v = v(z, y) are the velocity components, P = P(z,y) is the pres-
sure, v > 0 is the kinematic viscosity, -y is the intensity of the external force (ysin y, 0),
A is the two-dimensional Laplace operator, and « is the coefficient of external friction
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which can be defined by the formula x = 2v/h? with h, the depth of the fluid layer.
Let the system of solutions V(z,y) = {u(z,y),v(z,y)) and P(z,y) satisfy

V(z,y) =V(z+2r/a,y) = V(z,y + 27),
(1.2) { P(z,y) = P(z + 27 /a,y) = P(z,y + 27),

IpV(z,y)dzdy =0, [ P(z,y)dzdy =0,

where D = {(z,y) : |z| < 7/a, |y| < 7}

Introducing the stream function ¥(z,y), we represent the velocity as (u,v) =
(%y, —¥z). The pressure is known to be determined by the velocity. Then, eliminating
P and replacing ¢ with yv~1¢, we reduce the problem (1.1-2) to:

(1.3) A (A, 9) = vA*) — (Ap +cosy,  J(f,9) = fagy — fybas
(1.4) { Y(z, y) =¢Y(z +2r/a,y) = Y(z,y + 27),
' 0p ¥(z,y)dzdy = 0,

where A = v/v? and ¢ = /v = 2/h2.

We can see that ¥y(z,y) = —(1 + ¢)~! cosy satisfies (1.3-4) for any A > 0 and
¢ > 0. We call this a basic solution. The velocity field of the basic solution is given by
(ug, o) = (y»~1(1 + ¢)~'siny, 0), which represents a shear flow parallel to the z-axis.

We would like to search solutions in the form ¥ = 1)y + ¢. From (1.3), we have

(15)  fO9)={A%—(A-X(1+ ) siny(A+ DB} o — A (Bp,0) =0,
where I is the identity operator. ¢ = 0 corresponds to the basic solution for all A and
¢. We consider ¢ in the Sobolev space X satisfying (1.4) such as X = H*(D)/R with
the inner product defined by

(90, SO)X = (A2(p1 A2(70)L2 < 00, 2 € X.
The symbol /R implies that only those functions with zero spatial mean are collected.

Theorem 1 We fiz o € (0,1) and ¢ € [0,00). Let r € N satisfy ra <1 < (r+ 1)a.
Then there ezists A = A\, where k € K, = {£1,---,%r}, and in a neighborhood of
(Ak,0) there exists one parameter family of solution of (1.5) except the basic solution:

(A 0) = (u(s), (), ls| <1,

where 4(0) = Ag, ©(0) = 0 and ps(0) = 0. Moreover, uss(0) > 0 is obtained for each
¢ = 0 when ka is close to one, which leads that this bifurcation is supercritical.
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The problem is reduced the same one studied in [7] if { = 0. As for this case where
there’s no external friction, professor Sadao Miyatake and myself have examined the
bifurcation curves of solutions to the problem with a symmetric condition ¢(z,y) =
¢(—z,—y) in order to use Crandall-Rabinowitz bifurcation theorem which requires
dimker f,(Xo,0) = 1. However, in this time we first remove the symmetric condition
for the velocity, then obtain the similar result as seen in [7].

2 Guideline of the proof

2.1 Linearlized equations

First, we solve the linearized equation and obtain the function A = A(f, () defined on
B € (0,1) and ¢ € [0,00). The linearized eigenvalue problem for fixed @ and { is

(2.1) fo(A0)p = {A% = ¢A - A1+ ) siny(A + )8} o =0,

where ) is called eigenvalue if (2.1) has a solution ¢ # 0.
¢ € X is expanded in the Fourier series:

0 =3 Cmne M), Z(m o +n?) emul® < +00, o0 =0,

myn

where the summation is taken over all the pairs of integers but (m, n) (0,0). cgp =0
follows from [J, pdzdy = 0.

For each integer m, the coefficients ¢, , satisfy the infinite system of linear equa-
tions:

(m2o? + n2)(m2a2 +72 + C)emn + 725 {m?e? + (n— 1) — 1}emn

—sg{m?e? + (n+1)” — 1}empn =0, n=0,%1,£2,-
We see ¢, = 0 for any integer n. For m 3 0, we put

_ 21+ ¢)(m%a? + n?)(m2a? + n? + ()

= (r2n2 1 2
"= Ama(m2a? + n? — 1) ! bmn = (m0” + 1" = L)emn,

then the above equations are simply described by

(22) am,nbm,n + bm,n—l - bm,n+1 =0, n=0,%1,%2,--
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We remark that the set of solutions {bmn} is one dimensional. Let us seek non-
trivial solutions of the system (2.2) such that b, , — 0 as |n| — oo for each m # 0. In
order to find these b,, 5, we need to solve the following equation:

_Omo _ 1 J, 1 |, .
(2.3) =t mr t

We may restrict ourselves to the case where m > 0, since for negative m the
argument is similar because of ¢ = —a_pm,. We omit m and put § = ma and
Gn = Gm,n simply. Denoting the right hand side of (2.3) by G(A, 3, (), we rewrite (2.3)
as

1+4BB+Q)
A1 -p2)

We state properties of (2.3') in the following proposition (the proof is written in [12]).

=G}, 5,¢)-

(2.3)

Proposition 1 For the solutions of (2.3'), we obtain the following results:

(1) (2.3") has no positive solution if 3 > 1 and { > 0.
(2) If 0 < B < 1, there ezists a continuous function A(B,() such that:

(1) (2.3") has a solution if and only if A = X(5,¢);
(ii) For fized ¢ > 0, limg_,o A(B,¢) = limgy1 A(B,{) = +o0 and for { = 0, it
holds limg_,q A(3,0) = V2 and limg_,; A(3,0) = +o0; '
(iif) For fized B € (0,1), A(B,¢) is a strictly monotone increasing function of
¢>0.

Because of this difference between ¢ > 0 and ¢ = 0, Bondarenko and his groups created

an updated model with an external friction.
From (2) of Proposition 1, (2.3) has a solution A = A\(3,{) = A\ only if § = ka €
(0,1). Then, integer k is restricted as follows:

ke Ko={1,2,---,r;re€ Nyra<1<(r+1)a}.
Then, we take a solution by, for k € K, defined by

ITi Pk for n>0,
1 for n=0,

(24) bk,n = |
()" pes  for n<O,



AR LV | W)

-1 1 :
Pki = s L+ Tt . aki = aki(Ae), 121
Let us consider the case where m < 0 and |m| € K,. As we note ampn = —a_mp, We

obtain that b_g, = (—1)"b;, for k € K, also satisfy (2.2). Therefore, the set of the
non-trivial solutions of (2.1) is given as follows:

(2.5) ker f, (A, 0) = {‘P(k) = tipp + tapk ; t1,t2 € R} ,

where ¢ = S  cpqaefkest) o = (k%a? 4+ n? — 1)71b,. We see that @_y is
equal to @i, the conjugate function of ¢y, since we have c_gn, = (—1)"Ckn = Ck,—n due
to b_gn = (—1)"bgn = bx,—n. Moreover, using Euler’s formula, we can rewrite (2.5):

(2.5 ker f,(Ak,0) = {W(k) = 81¥k,1 t S20k,2 5 81,82 € R} ’

where g1 = 202 ckncos(kaz + ny) and pra = Y2 kg sin(koz + ny).
Similarly, let us seek non-trivial solutions ® of the conjugate equation of (2.1):

(2.6) fi(0,002={A2—CA+ X1+ ™A+ T)sinyd, } & =

in the form ®(z,y) = ¥ p dmn€’™*™), f, is a bounded operator from Hf to Hg*
where ¢ € H§ means ¢(z,y) = LpunCmn e’("‘"‘”"”) with ¢go = 0 and }:mn(m +
n?)tc2, . < oo. And we have the following relation of d,,, for each integer m:

am,ndm,n - dm,n.—l + dm,n+1 =0.
Putting b], ,, = (—1)"d, », we have also
amnbinn + b1 — Omnss =0,

which is the same form as (2.2). Applying the same argument as that in (2.2), we
obtain the non-trivial solutions of (2.6) if A = Ax k € K:

(2.7) ker f3(Ax,0) = {®®) = 4,8, + 1,0_s ; t1,12 € R},

where & = 100 dg nefketm) g, = (—1)"by,, and by, are given by (2.4). Note
that each ®® € ker f‘ (Mx,0) is smooth function. We rewrite ®® € ker f3(\,0) as

(2.7) ker f,( Ak, 0)* = {®) = 8, @41 + 52Bx2; 51,82 € R},

where &1 = T2 dyncos(kaz +ny) and Bpo = T2 _ diqsin(kaz + ny).
We remark that the both ker f,,(Ax, 0) and ker f; (A, 0) are two dimensional spaces.

81



82

2.2 Existence of bifurcation points

For a € (0,1) and ¢ € [0,00), (2.1) has non-trivial solutions if and only if ) is equal to
the values A\ given in the previous section. Using the method of LJapunov—Schmldt
we prove that A = ) is the bifurcation point of (1.5).

Assume ¢ € X and w € Y = L2 where g € L2 means g € L? and [[,, gdzdy = 0.
We decompose them orthogonally by:

p=p1+p2 ¢1€X1, € Xy,
w=w;twy, w €Y, w€Y,.

X; and Y; (i = 1,2) are defined as follows: X; = ker f,(Ak,0), X, is the orthogonal
complement of X;. Y; is the range of f,(Ax,0) and Y; is the orthogonal complement
of Ys.

According to Section 2, X; = ker f,(Ax,0) and ker f3()¢,0) are two dimensional
space. We also see dimY; is two, namely, we verify

(3.1) Y: = ker f; (A, 0).

In fact, put T = f,(A,0) and T* = f3(A,0), then wy € Y; satisfies (wy,T9)2 = 0
for ¢ € X. Hence we have T*w; = 0 in the sense of distribution. Although w; belongs
to L2 space and ker T* is subspace of X = Hj, we can see that this w; is smooth
enough to belong to ker T* by the hypo-ellipticity as follows. From (2.6), we write
T* = A2+ T®, Then T*w; = 0 implies A%w; = —T®w,;. Since w; € Y3, the right
hand-side of this equation belongs to H((,"s) namely, the Fourier expansion coefficients
of w; satisfy Z(m +n2)73¢2,, < oco. Then the left hand-side belongs to Hy (3 which
implies w, € H}. Repea,tmg thls several times, we see that w, is sufficiently smooth.

We denote the projection to Y; of Y by P. Then, @ = I — P is the projection to
Y;. Corresponding to the above decomposition, we have the system of the following
two equations which is equivalent to (1.5):

{Qf(/\,cp1+<p2)=0 inYs --- (3.2)
Pf(A,o1+¢92)=0 inY;. --- (3.3)

Hereafter, we seek the solution (), ¢) of this system, depending on one parameter
s € (=1,1) as follows: (A, ) = (u(s),p1(s) + ¥2(s)). We suppose that u(s) € R,
¢1(s) € X1 and @o(s) € X, satisfy u(0) = Ax. We put ¢;(s) = 3o where ¢® is a
non-trivial solution of (2.1) given in (2.5). Then we look for A = u(s) and @»(s).



First, let us consider (3.2). We put Qf(X, ¢1 + ¢2) = g(7, p2) with 7 = (), s) for
fixed o € (0,1) and ¢ € [0, 00). Note that g(7¢, 0) = 0 for 7, = (A, 0) since f(, 0) =0.
By definition we see that g,, (7%, 0) = Qf,()\k, 0) is a bijective mapping from X, to Y,.
Then from the implicit function theorem, there exists a function 1(7) which satisfies
g(m,%(r)) = 0 and #(7x) = 0 in the neighborhood of (7%,0). We shall determine
¥ = () more precisely. From (3.2), with ¢; = s¢©®) and @, = 9, 9 satisfies the
following equation:

H[y] — Lisp® + 9] — AT (A(s9® + ), s9® + ) = 0,

where H = Qf,(A,0), L = (A — \)(1 + ¢)'siny(A + I)8,. Since H is a bijective
mapping from X, to Y3, it holds that

¥ — H'L{sp® + ] — AH7YJ(A(so® + ), sp® + ) =0.
We define a sequence of functions {¢,} (n =0,1,2,--) as follows:
Yo=0, ¥n=H"Lise®™ + p_1] ~ \HI(A(s¢™ + ¢hn_1), 59® + 1h,_y).

Let us show that {1,} is a Cauchy sequence in the neighborhood of s = 0. In fact,
since the non-linear term becomes O(s?), it can be omitted. Choosing A such as
A= M| < 471 [H1)|2, we have [|y1]| = O(s) and |l — ]| < 2~} . Similarly; it
holds that ||¥n41 — ¥n|| < 27™||91||. Then {%,,} is a Cauchy sequence and converges to
a limit ¢ = v(A, s) which belongs to X, satisfying (), 0) = 0 and

(3.4) ¥ =HL[so® + o] — AH LT(A(s¢® + 1), 3™ + 1)

for small s.

In order to show that ) is a bifurcation point, we have to prove the existence of
the solution u(s) of (3.3) satisfying p(0) = M. Substituting @, = () into the left
hand side of (3.3) and defining

Pf(A, 5p® + (), 8)) = h(}, 5),

e dence (h(0,5) = K\, 0)} s, for s
_ A, 8) — h(A\,0)}/s, for s #0,
x(A, ) = { hs(,0), for s = 0.

Note that h(),0) = 0 holds and the continuity of x follows from that of h,. The
reason why we define x(J, s) is that we cannot apply the implicit function theorem to
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h(), s). Remark that hx(),0) = 0 holds from %(},0) = 0 for all \. From h,(\,s) =
Pfy(A, so® +p(X, 5))[0®) +1h4(], 3)], it holds that (), 0) = Pf,(A,0)[p® +1p,(A, 0)).
Now we verify 1,(\x,0) = 0. Differentiating Q (), s¢® +1(}, s)) = 0 by s and putting
(A 8) = (M, 0), we have Qf,( Mk, 0)[1s(Ak,0)] = 0. Since Qf,(Xk,0) is a bijective
mapping from X, to Y3, 9,(A, 0) = 0 holds.

x(A, 8) = 0 is equivalent to the following equations:

(3.5) XV 8) = (x(), 8), Br1),. =0,

(3.6) XP (A, 8) = (x(A, 8), Be2) 12 =0,
where ®;; € Y; = ker f3(\+,0) (i = 1,2). First, we seek a solution A of (3.5) putting
o) = t10x.1 + tax,2 for (t1,t3) # (0,0). Differentiating (3.5) by A, then we have

) o xOw+ AX0) = x(A,0)
X (A, 0) = ( Ali’_‘}o y) s Pr1 .
= (PftpA(’\kaO){(P(k)]a ‘Dk,l)Lﬁ = (fw\(Ak’O)[‘P(k)]»P*q)k,l)L’
= (for(Ae, 0)[W], P®y 1)
= tl(_(l + C)_l sin y(A+I)ax(Pk,1,¢k,1)L2.

We show
(3.7) (=14 ¢) ' siny(A + I)Brpr,1, Pk1) 2 > 0.
Since g, is a solution of (2.1), we have
—(1+0) 7 siny(A + Ddapra = 3 (O)(—A2 + (A) .
Using @1 = X, Ckn cOS(kaz+ny) and &1 = ¥, di » cos(kaz+ny) = 3, (1) (k2a?+

n? — 1)k q cos(kaz + ny), we obtain

1 <
(=A% +¢A)pr1, Bra)pe = 51D| 3 (=1)" ek,
where &, = (k?a? + n?)(k%a® + n? + () (k*a® + n® — 1)c} ,. Meanwhile, we can verify

Y Ckn = 0 (seen in Iudovich[4]). In fact, from f,(As,0)k1 = 0, multiplying this
equation (A + I)gy,1 and integrating over the rectangle D, we obtain

0= f /D(A + Dr1 (A% — (A) g 1dzdy
~A(1+¢)7 f /D(A + Dr,siny(A + 1), p,1dzdy,
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and see that the second term vanishes. Then, we have
, -1 .
JL A+ Dra(8? = (A)prpdndy = D] Y e = 0.
n

From ¥, & = 0 and &,—, = &, We obtain (3.7) since it holds
D), = —Eo+2 Y Hm—2 Y. &m
n m=1,3,5,-- m=24,6,

m=1,3,5,-

As a result, we have xf\l)()\k, 0) # 0 if ¢t; # 0. From the implicit function theorem,
there exists a function A = u(s) satisfying x((u(s), s) = 0 and p(0) =

Next, we suppose the question whether A = (s) satisfies (3.6). Since h,(\;,0) =
0 holds from h,(A,0) = Pf,(X0)[¢® + 4,(),0)] and ,(A,0) = 0, we can see
x@ (Ak,0) = (hy(Ax, 0), By 2)z2 = 0. As for s # 0, it holds

SX(z) ()" S) = (h(A, S), q>k,2)L5’
= (Pf0s9® +9(}, 9)), Br,2) s
= (f(Ar s‘p(k) + Q/)(A7 S)), ¢li:,2)L2‘

Then we have the following formula:

sx®(u(s),5) = (£((s), 56™ + $(u(s), 9)), Bea)yo
= (14 - (A - u(s)siny(A + DOLHsp +9(uls), o)} Bh2)

1) (Ao + P(u(5),9), 59 + $(1(5),5)), Bua)

The question is how we choose ¢*). From (3.4), if ¢*) is represented as a liner
combination of ¢, and @y 2, ¥(u(s), s) is expanded by both sine and cosine functions.
In this case, we cannot expect in general that the above formula goes to zero. However,
if we put <p('°) = k1, Y(u(s),s) is expanded by cosine only. As a result, the inner-
product with ®;, becomes zero and hence, p(s) satisfies (3.6). Thus, we obtain the
former part of Theorem 1.



2.3 Properties of the Bifurcation curve

We shall consider the convex property of A = u(s) with regard to s. Putting T =
£+, 0) and A(s) = (s) — M, we rewrite f(u(s), p(s)) = 0 as

WD Tl = 2L siny(A+ Doupls) + a(s)I(Ap(s),0(s)

where ¢(s) = s + ¥(u(s), s). Let us differentiate (4.1) by s:

Tpy(s) = ;‘Jfg siny(A + I)3,0(s) + *ff)c siny(A + I)3yp4(s)

+hs(8)J(Ap(s), (s)) + u(s)J(Ap(s), o(s))s;

Tou(s) = 32 siny(a + Dop(s) + 2o siny(a + Dol

1/\'(:)4' sin y(A + I)azfpaa(s) + Nss(s)J(Aw(S)’ cp(s)) v

+2ﬂs(s)J(A‘p(5), ‘p(s))s + N(S)J(A‘p(s)’ ‘P(s))ss;
Ps (5) = @Y1t ¢,\(M(3), 3)/-‘3(3) + 95 (;L(S), 8).

Putting s = 0, we have

+

205(0
(42) Tou(®) = 2 siny (& + Dosgra + 20T Bns, on)
If we take the L? inner-product with &, ; € ker T*, (4.2) becomes
0= 2#9(0)
——— (siny(A + I)0zpk,1, Pr,1) 12 + 22k (J(A@k1, Pr,1)s Prt) 2

1+¢

and from Ty ; = 0, we obtain

2u,(0
0= —M/\%((A2 = CA) k1, ra) 2 + 22 (T (A1, 0k,1)s Br1) 2

Since the Fourier coefficients of J(Awpx 1, x,1) consist of a linear combination of cos ny
and cos(2kaz +ny), we have (J(Ag,1, Yx,1), ®r,1)z2 = 0. Also, from the proof of (3.7),
we have

(4.3) ((A? = ¢A) g1, ®r1) .2 < 0.
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Therefore, we obtain y,(0) = 0.
Differentiating (4.1) once more and putting s = 0, we have

T‘P.sss(o) = 3/1'38(0)(1 + C)_l sin y(A + I)a::(Pk,l
+3Ak {J(Apes(0), k1) + J(Apk 1, 04s(0)) }
= 3utss(0)A; (A% — CA)epr1
+3Ak {J(Apss(0), 0r,1) + J(Ar,1, es(0))}

and taking the L? inner-product with &, € ker T*,

0 = (T(P,,,(O), (Dk,l)Lﬁ
= 3pss(0) A (A% = CA) k1, Pr1) 1
+3Mk (T (Apss(0), 0r,1) + J(Apk,1, 055(0)), Br,1) 12
holds. Then we have

—)\2
ss(0) = k (JA 885 + J(A , ss,q> ) .
15 (0) ((A? _CA)‘Pk,I:Qk,l)Lz (Apss, Pk,1) (Apk,1, Pss) k1 L

Let us determine the sign of u,,(0). From (4.3), this sign is equal to that of

(4.4) [ {(A0u, 011) + T(A11, 00r)} B rddy.
Here ¢35 = 44(0) = th45(Ak, 0) is obtained by

(4.5) Tpss = 20 (A1, Pr,1)-

The right-hand side of (4.5) consists of two terms extended respectively by cos £y and
cos(2kaz + fy).
We have the following proposition:

Proposition 2 The solution of (4.5) takes the following form:

(4.6) Pss = WO Ac(0) + w3 DEc(2ka) = Z, + Z,,

Zy ='wO®Ac(0), 2Z,='wDEc(2ka).
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Here c(0), c(2ka), w©® and w?*) are column vectors with the following £-th compo-
nents:

(e(0))e = cos by, (c(2ka))e = cos(2kaz + fy),

(w®), = Akat B K Stp®),

(w3, = \ka t%®) K (2N — (I)RS o™
where @®) is a column vector corresponding té the Fourier coefficients of i1 with
n-th component @, = (k%02 + n? — 1)71by,, (b is defined by (2.6)), K and N are

diagonal matrices with n-th elements —k, = —(k?a? + n?) and n respectively. S* and
R are matrices with (i,7) elements as follows:

o _ 1 forj—i={ 1 fori+j=0,
(S )h] - { 0 otherwise, (R)L’J I ) otherwise.

A and E are diagonal matrices with n-th elements

A — (n*+(n?)t  forn#0, E - 14+¢
" 0 forn=0, " Mka(4k2a? +n2 - 1)’

and D = (---d™ ...) is a matriz where d™ are column vectors with n-th component
d™ as follows:

-1
(H?=m+1nz+) m+1 for n > m,

dg(-;,m) = 17—1-10-1 fOT n=m,

— —1 —
(M) Naby  forn<m,

where

W= e

n+1
o= —a
n—2
Npy = 77;;+1 = N1 '
o = (1 + ¢)(4k?a? + n?)(4k%a? + n? + C)-

Mka(dk2o? + n? — 1)
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We can prove Proposition 2 in the same way to Section 3.2 of [7].
Substituting (4.6) into (4.4), we have

/‘/D{J(ACPN (0), ‘Pk,l) + J(A(Pk,la cp,,(O))}@k,ldzdy = Dl + DZ:

Dl = /.L{J(AZI, (pk,1) + J(A‘pk,la Zl)}Qkyldzdy’

D= [[ {J(AZs, 01s) + J(Aprs, 7))} ududy.
As for D; and D,, we obtain the following proposition.
Proposition 3 For each fized { > 0, D, > |D,| holds if ka close to one.

The proof is given in my current preprint {12], which is based on the previous paper
(Section 4 and 5 of [7]). This proposition means that p,,(0) > 0 holds if ko € (0,1) is
sufficiently close to one. Thus, Theorem 1 is proved.
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