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Abstract

This paper presents a proof of the associativity of demonic composition of relations in
Dedekind categories and shows that the demonic composition is monotonic with respect to
two demonic orderings on relations, which are defined by quasi-total relations, respectively.

1 Introduction

Relation algebras [8] are suitable for describing semantics of relational programming {4]. In particular
demonic composition [2, 9, 1, 5, 10] and demonic orderings will be useful for designing nondetermin-
istic programs [3, 10, 11}. For concrete relations R and S, the demonic composition R ® S relates
elements = with elements y exactly if z is related with y by the usual relational composition RS and
the image of z under R may not lie outside the domain of S (which should never be confused with
the categorical concept of source of morphism):

(z,y) e RO S & [Vz: (z,2) € R= 2z € dom(S)] A (z,y) € RS.

In this paper the demonic composition in Dedekind categories [6, 7] will be defined (without using
complement operator). The proofs of associative law of demonic compositions are given earlier in
[2, 9, 1, 5], here we give a proof using properties of Dedekind compositions. Moreover we study two
demonic orderings of relations originally introduced by Desharnais et al. [5] and Xu et al. [10] and
show several fundamental properties of them in Dedekind categories. In Section 2, we first review
the definition of Dedekind categories. Then we introduce the demonic composition in a Dedekind
category, and show some of its properties. In Section 3, we define quasi-totality of relations and
give the definition of two refinement orderings, and provide existence conditions of the supremum
and values of supremum and infimum of a set of relations with respect to both refinement orderings,
respectively. Finally we prove the monotonicity of the demonic composition on these orderings.

2 Demonic Compositions

We will generalize demonic compositions into Dedekind categories and give a proof of associativity
of the demonic compositions using properties of Dedekind compositions.

We first review the definition of a Dedekind category, a kind of relation category (following Olivier
and Serrato, 1980) which is our general framework.

Throughout this paper, a morphism a from an object A into an object B in a Dedekind category
(which will be defined below) will be called a relation, and denoted by a half arrow a: A — B. The




composite of a relation o : A — B followed by a relation 8 : B — C will be written as af: 4 — C.
We denote the identity relation on an object A by id4. The composition operator will bind stronger
than all other binary operators.

Definition 2.1 A Dedekind category D is a category satisfying the following:

D1. [Complete Heyting Algebra] For all pairs of objects X and Y the hom-set D(X,Y") cousisting of
all relations of X into Y is a complete Heyting algebra with the least relation Oxy and the greatest
relation Vxy. Its algebraic structure will be denoted by

D(-X) Y) = (D(Xy Y)7 ;a U, r, 0XY: V‘XY)-

That is, (a) C is a partial order on D(X,Y), (b) Va € D(X,Y) :: Oxy E o & Vxy, (c) Urerar CE
iffay Caforalld € A, (d) a C Maeaan iff C ay forall A € A, and (e) aN(Uxean) = Urea(alay).
D2. [Converse] There is given a converse operation ! : D(X,Y) — D(Y, X). That is, for all relations
a,0: X —=Y,B:Y — Z, the following laws hold:

(a) (@B)! = Blat, (b) () = a, (c) If a C &, then of C of.

D3. [Dedekind Formula] For all relations o : X — Y, 8:Y — Z and v : X — Z the Dedekind
formula a8 N~ = a8 M aty) holds.

D4. [Residue] For all relations 8 : ¥ — Z and v : X — Z the residue (or division, weakest
precondition) v + 8 : X — Y is a relation such that @3 C v if and only if @ E v + 3 for all
morphisms a: X — Y. O

If all relations in a Dedekind category have complements, then the Dedekind category is called a
Schroder category. It is well known that in a Schréder category the Dedekind formula is equivalent
to an equivalence

afCy & o'y B & v B Ca”
which is called Schréder rule. A relation f : X — Y such that fif C idy (unsvalent) and idx C ff*
(total) is called a function and may be introduced as f : X — Y. A Dedekind category D is called
uniform if VxyVyz = Vxz holds for all objects X, Y and Z in D.

Before we define the demonic composition of relations in a Dedekind category, we consider the
Dedekind composition a & 8 defined by oty C 3 iff v C a © B for relations 7 : X — Z. It is easy to
see that a © 8 = (8! + a)!.

The demonic composition in a Dedekind category D is defined by
a®f=aBMN(a®pVzz)

for relations @ : X — Y and 8 : Y — Z. In Schroder categories it is clear that the demonic
composition a ® G can be rewritten to

a®pf=afN(a(fVzz)7)".

The proofs of associativity of demonic composition using properties relate to complement were given
in [2, 5]. Desharnais et al. [5] also give a proof of associativity by embedding a demonic semilattice
in a relation algebra.

Proposition 2.2 Leta: X — Y and 8:Y — Z be relations in a Dedekind category D. If a is
univalent or B is total, then ¢ ® 8 = afB. In particular, idx Ca =a®idx = o.

Proof. First note that c ® 3 = a8 iff a8 C a © 8V zz iff a!af T fVzz. When a is univalent,
ofaf C B T BVzz. Next assume 8 is total. Then Vyz C 88'Vyz C 8V 2z, and so afaf C BV zz.
Consequently the last claim is clear from the fact that idx is univalent and total. 0

The domain relation dom o : X — X and the range (codomain) relation rana : ¥ — Y of
a: X — Y are defined by dom a = aaf Midx and ran a = ol MNidy, respectively.

We have the following properties relate to the domain and range relations.
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Proposition 2.3 Leta: X — Y, 8:Y — Z and v : X — Z be relations in a Dedekind category
D. Then the following hold:

(a) afran a) = a end (dom oo = .
(b) ranyC ran B v C VxyB and dom y C dom a < v C aVyz.
(c) a® B = (dom v)apB where vy = a © (8Vzz).

(d) If u € idx and VxzVzx = Vxx, then u C dom~ iff ran (ua) C dom 8 where v = a ©
(BVzz).

Proof. (a) It is clear from

a(rana) C « {ran a Cidy }
= alNaidy
C a(efanidy) { Dedekind formula }
= ofran o).

(b) Assume that ran ¥ C ran 3. Then

7 = Arany) {(a)}
C ~v(ran 8) { assumption }
C 188  {ranp=ppNidz C '8}
C VxyB {8'CVxy}

Conversely assume that v C Vxy 8. Then

rany = ~lynNidz { definition of range }
C +VxyBnidz { assumption }
= (y"Vxy NidzA")BMidz { Dedekind Formula }
C pBnidg
= ranf. { definition of range }

(c) Set ¥y = a © BV zz. First we show that v = (dom 7)Vxz. We have

v = (dom )y {(a)}
C (dom~)Vxz {YEVxz}
= (1*Nidx)Vxz { definition of domain }
E Vzz {"VxzEVzz}
= 7. { Proposition A.3(e) }

Hence vy = (dom 4)Vxz. Thus a ® 8 = af Ny = off N (dom ¥)Vxz = (dom 7)af by Proposition
A.1(a). : .
(d) Assume u C idx and VxzVzx = Vxx, and set Y =a © 8Vzz. Then

uCdomy & domuC dom~«y {u=domu} _
& uCA4Vzx =a68Vzx { (b) and Proposition A.3(e):VxzVzx =Vxx }
< odluC BVzx .
& ua T VxzQ { conversion }
< ran(ua) Cran B =dom 8 { (b) }

0O

Backhouse and van der Woude [1] and Xu et al. [10] also gave the definition of demonic composi-

tion. The device used by them to restrict the domain of a relational composition is not intersection,

but, instead, composition with a so-called ‘monotype’, that is, a relation below identity relation.

The equivalence of their definition to our definition of demonic composition is clear from (c) and

(d) of the last proposition. In [1] there is a proof of associative law for demonic composition using
properties of monotype.

Before we see associativity of the demonic compositions we have to show the following lemma.
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Lemma 24 Leta: X - Y, 3:Y — Z and v : Z — W be relations in a uniform De
category D. Then the following hold:

(a) ao (B07)Vww = (26 fyVww) (a8 6 7Vww).

(b) a(BoY)N(afeVww) = afyN (B ©7Vww).

(c) a@(for)=afyN (a6 (ByVww N (B8O 7Vww)))-

(d) (@@B)y=afyN (a0 fVzw).

(© (@©B) 61Vww = (26 AVzw) = (@B 6 Vww).

() (eop)or=apfyN (@ (BVzw N (S 7Vww)))-
Proof. (a) It follows from

a® (B07)Vww
= a0 By (Be7Vww))Vww
= a0 @BYVww N (BvVww)) { Propositions A.3(e) and A.1(b) }
= (@a©fyVww)(ae (86vVww)) { Proposition A.3(c) }
= (a8 B8yVww)MN(af S vVww). { Proposition A.3(d) }
(b) It follows from
a(8oy)N(eferVww)

= a(@ynBevVww))N(ao (88 vVww)) { Proposition A.3(d) }

= afyN(ao(BO7Vww)) { Proposition A.3(f) }

= afyn(aBerYVww). { Proposition A.3(d) }

(c) It is a direct corollary of (a) and (b):

a®@Boy) = alfo7)N(ae(BO7)Vww)
= a(f07) (e Vww)(aB07Vww) {(a)}
= aofyN (a8 fVww)N (af81Vww) {(b) }
= afyN(eefyVww)N (a0 (86vVww)) { Proposition A.3(d) }
= afyN (a6 (ByVww N(BSYVww))). { Proposition A.3(c) }
(d) 1t follows from
(@ B)y (B {a© BV z2))Y

(BN {(a©pBVzz)Vzz)y { Proposition A.3(e) }
oy (a©BVzz)Vzw  { Proposition A.1(b) }
afy M (a6 BVzw). { Proposition A.3(e) }

1 T

(e) It is immediate from

(@ B)evVww

(BN (a©pVzz)) ©YVww

(@BN (a6 BVzz)Vzz) ©7YVww  { Proposition A.3(e) }
(@6 BY22)Vzw = (af©7Vww) { Proposition A.3(h) }
(a8 fVzw) = (afSYVww). { Proposition A.3(e) }

(f) It is a corollary of (d) and (e):

(a@B) oY

(@@ Py ((c@B)©1Vww)

afyN(a© fVzw)N((@© BVzw) = (afO1Vww)) {(d), ()}
afyM(a© BVzw)N(af ©vVww) { Proposition A.2(c) }

afyN(ae (BVzw N{BOYVww))). { Propositions A.3(d) and A.3(c) }

e

Now we show the associative law of the demonic compositions.
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Theorem 2.5 Leta: X — Y, 8:Y — Z and v : Z — W be relations in a uniform Dedekind
category D. Then the associative law o ® (80 7) = (a ® 8) © v of the demonic compositions holds.

Proof. By Lemmas 2.4(c) and (f) it suffices to see an equality 8Vzw 0 (8 ©vVww) = 8yVww N
(8 ©~vVww). Applying Proposition A.3(f) one can see that

BVzw N (BO7YVww)
B(Vzw NYVww) N (B YVww) { Proposition A.3(f) }
BYVww N (B YVww).

i

O

Example 2.6 Take the following homogeneous relations a, a’ and § on a set X = {1, 2} represented

by Boolean matrices:
{10 (11 ({10
a—(O 0),a—(00)and,@—(00).

Thena T o/, but a® B Z o' © B since

3 Demonic Orderings

As we see in Example 2.6 the demonic composition is not monotonic with respect to the ordering C
on relations. For ensuring the existence of the fixed points of a recursively defined program, we need
other orderings among relations on which the demonic composition is monotonic. There are two
refinement orderings which are introduced by Xu et al. {10] and Desharnais et al. [5], respectively.
In this section we define these refinement orderings in Dedekind categories, and show some of their
properties, and finally prove the monotonicity of the demonic composition on these two refinement
orderings.

We first recall that each hom-set D(X,Y’) has relative pseudo-complement, that is, for any two
relations a and 8 in D there is a relation o = (3 such that a My C §iff vy © o = 3 for all relations

Y.

Define at = aVyy = o for every relation o : X — Y in a Dedekind category D. A relation
is called quasi-total if ot = a. We can easily see that all total relations are quasi-total as follows: If
a is total, then Vyy = idxVxy C aalVxy C aVyy. Hence ot = aVyy = a=Vxy = a=a.
All quasi-total relations are total in uniform Schroder categories. To prove this claim it is enough
to show that aVyx = Vxx for each quasi-total relation «, because of the fact that idx T aaf
if aVyx = Vxx. If a is quasi-total then aVyy = Oxy T aVyy = o = a C aVyy and so
aVyy = Oxy = (aVyy = Oxy) MaVyy = Oxy. In boolean lattices (or equivalently, in Schréder
categories) § = Oxy = § for each relation § : X — Y, and so aVyy = (aVyy) ™ = (aVyy =
Oxy) = 0xy = 0xy = Oxy = Vxy. Therefore aVy x = aVyyVyx = VxyVyx = Vxx by the
uniformity.

Proposition 3.1 Let a: X — Y be a relation in a Dedekind category D.
(a) e Cat and o™t = at. (Bvery ot is quasi-total.)

(b) aVyy = a iff at = Vxy. In particular O}Y = Vxy and (aVyy)+ = Vxy.
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Proof. (a) It is trivial that o C at. Also at* = atVyy = (aVyy = ) = (a*Vyy MaVyy) =
a = aVyy = a = at by Proposition A.2(d).

(b) Assume aVyy = a. Then ot = a = a = Vxy. Conversely assume aVyy = o = Vxy. Then
aVyy = aVyy MVxy = aVyy Mat = « by Proposition A.2(c). Hence a = aVyy. O

In a Dedekind category D two demonic refinement orderings < and =< of relations a,¢’ : X — Y
are respectively defined in [10] and (5] as follows:

a<o Y acoCat {Xu et al. [10] }
& o' MNaVyy =«
=4 a+=OtVyy=>a'

a=xd %f aVyy & o'Vyy A o Cat { Desharnais et al. [5] }
We can obtain straightforwardly from the above definitions that a < o/ implies a < &',

Proposition 3.2 Leta: X — Y and o' : X — Y be relations in a Dedekind category D. Then the
following hold:

(a) IfaVyy = a, thena < o' iff a T o'. In particular Oxy < a and Oxy =2 a.
(b) If aVyy = a, then a < o' iff a € o/Vyy. In particular aVyy =< a.

(c) a<at anda=<at.

(@) acta < a.

(e) If oVyy J &/Vyy and a 2 &, then o' C a.

Proof. (a) Assume aVyy = a. Then the assertion is trivial since a* = Vxy by Proposition 3.1(b).
(b) It is trivial from the definition.

(c) By Proposition 3.1(a) we have o C ot C ot which means o < a¥, and so a < a't.

(d) It follows from aafaVyy C aVyy and a C acfa C (aafa)* by Proposition 3.1(a).

(e) Assume that aVyy J a’'Vyy and o < o’. Then we have ¢/ = o/Vyy MNa’' C aVyy Nat =a
by Proposition A.2(c). O

Next we see the demonic refinement orderings are orderings on the hom-set D(X,Y).
Proposition 3.3 Relations < and = on the hom-set D(X,Y) are orderings.

Proof. (Reflexive law) a < @ and a < a follows from a fact & C o C at by Proposition 3.1(a).
(Transitive law) Assume that o < o and o’ < o”, that is, a E o’ C ot and o/ C o' C o't. Hence
aC o C o' and

" Q,VYY = al { a/l E al+ }

a'Vyy = (aVyy = a) { o C ot }

(@'Vyy MaVyy) =a { Proposition A.2(d) }
aVyy = a. {ald}

at

nhinin

Similarly o < o’ and o < o/ imply o X o".
(Anti-symmetric law) Assume that @ < o’ and @’ < a. First note that aVyy = o/Vyy. Then using
Proposition 3.2(e) we have a C o’ and o/ C «. Hence o = o’. Anti-symmetry of < is trivial. O

Example 3.4 Consider the following relations on a set X = {1,2} represented by matrices:

1 1 10 .
a:(o 0)=anxanda'=(o 1)=1dx.

Then o < o/ (aVxx EVxx =a'Vxx and o C Vxx =at), but a £ o because o Z o'.



Lemma 3.5 Leta,o : X — Y be relations in a Dedekind category D. If o is univalent and o C o/,
then o' C at and consequently a < o and a < o'

Proof. Assume o/fo/ C idy and o  o/. Then

a'MaVyy C aafe’ { Dedekind Formula }
C ado {aCda'}
C a { oo/ Cidy }
Hence o’ C at. |

By the above lemma if « is quasi-total and o/ is univalent, then o C o’ implies o = o'.

The following proposition characterizes maximal elements in the demonic orderings:

Proposition 3.6 (a) A relation a: X — Y is mazimal in (D(X,Y), <) iff it is quasi-total (@ =

at).
(b) Suppose a relational aziom of choice. Then a relation o : X — Y is mazimal in (D(X,Y), X)

iff « = at and ofa Cidy.

Proof. (a) Assume that @ = a* and a < o’. Thena E o’ and o/ C ot = a. Hence o = o/ and so o

is maximal. Conversely assume that « is maximal in (D(X,Y), <). Then a = a* follows from the

maximality of a since a < at by Proposition 3.2(c).

(b) Let a = ot and ofa C idy. Assume o < o’. Then o’ C ot = a and so &/ < o by Lemma

3.5. Hence a = o/ by the anti-symmetric law of <, which proves the maximality of a. Conversely

assume that a is maximal in (D(X,Y), X). Since @ X ot by Proposition 3.2(c) the maximality of

o leads a = at. Now by the relational axiom* of choice there exists a univalent relation f : X — Y

such that f C o« and fVyy = aVyy. Then a < f since aVyy = fVyy and fCa = at. Again

by the maximality of @ we have a = f, which proves that o is univalent. 4

Theorem 3.7 Let A be a nonempty subset of D(X,Y).

(a) The supremum of the set A in (D(X,Y), <) exists if and inly if

Uaeae C MNacaat.

When this condition is satisfied, the supremum is

supsA = lgecaQ.

(b) The infimum of A in (D(X,Y), <) always ezists, that is,
inf<A = U{ao | ap E Macaa and Uacaa T aa*'}.
In particular, inf<A = Macaa when Ugepaa T (Macao)t.

Proof. (a) Set ap = Uacac. We prove the existence condition and the value of the supremum. Let
o' be any relation. Then

Vo€eA:a<ad
<  { definition }
YVac A: o/ NaVyy = aAag C Neeaat
& {=: &/ MNapVyy = Usea(e’ NaVyy) = ag
«: Because a C g C o' and o’ MaVyy = o' MagVyy N
oVyy =agMaVyy CatMNaVyy =a. }
o NagVyy = ag A op C Macaa
< { definition }
ag <o Aag C MNyeaat.
1A relational axiom of choice: for every relation a : X — Y there exists a univalent relation f : X — Y such that
FEaand fVyy =aVyy.
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(b) Denote by Ag the set of all lower bounds ag of A, that is Ag = {ao|ap C MacaAlaeaa T af },
and set . = La,ea,00. Obviously Ap is a honempty set, since a zero relation Oxy is a lower bound
of A. Let o be any relation, then we obtain

VaeAd: o/ <a
< { definition }
Vo€ A:aMa'Vyy =a’
N {=: a.N&Vyy CaNaVyy = Ma'Vyy C a,.Ma'Vyy
since o’ € 4g. }
a,Na'Vyy = o
<  { definition }
a, S. a*:

where the second < follows from o’ C a, C o and the next computation

a E MNage Aoag—
= Mapedo(@Vyy = ap)
E Magedo(@Vyy = o) { Proposition A.2(g): ap C o, }
= (Uapesar®Vyy) = a. { Proposition A.2(e) }
= a.Vyy = a.
C o'Vyy =a't { Proposition A.2(g): &/ Ca. Ca't }
= o't { Proposition A.2(d) }

We next see the supremum and the infimum of a chain with respect to < found in [10].

Proposition 3.8 Every chain A in (D(X,Y), <) has the supremum sup<A = Uacaa and the infi-
mum inf<A = Myeac.

Proof. (i) By the virtue of the last theorem it suffices to see that every chain A in (D(X,Y), <)
satisfies Lge g T Macaat. The inequality is equivalent to a fact that o/ T at for all o’,a € A.
But A is a chain, so a < @’ or @' € . In the case of @ < ¢ it is trivial that o’ C at. Also in the
case of o/ < o we have ¢/ C a C at.

(ii) It suffices to show that Myeac is a lower bound of A, that is, Uacac T (Maca)t, which is
equivalent to o/ M (Macaa)Vyy T a for all &’,a € A. But A is a chain in (D(X,Y),<),s0a < o’
or @’ < a. In the case of o < &' we have o’ M (Maeaa)Vyy C & MaVyy = a. Also in the case of
¢/ < a it is trivial that o' N (Maesa)Vyy C o' Ca. O

We now see the supremum and the infimum with respect to < found in [5].
Proposition 3.9 Let A be a nonempty subset of D(X,Y).
(a) The supremum of the set A in (D(X,Y), <) exists if and only if
UaeaaVyy C (Macact)Vyy.
When this condition is satisfied, the supremum is
sup< A = (UacaaVyy) M (Macac™).
(b) The infimum of A in (D(X,Y), %) always exists, that is,

inf<A = (Uaeaa) N (MacaaVyy),
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Proof. (a) Set ap = (Uaeaa@Vyy) M {Taecac™). Noting that when the condition UsesaVyy C
(ﬂaeAa+)Vyy holds

aoVyy = (Uaea@Vyy) N (Macaa™)Vyy = UseaaVyy

and so ¢ can be rewritten to
ag = agVyy D (ﬂaeAa+),

we prove the existence condition and the value of supremum of A. Let o' be any relation. We have

VaoeA:a=<d
{ definition }
UacacVyy Co'Vyy Ad/ C Macaat AlgeaaVyy C (Macaat)Vyy
= { =: o NogVyy CE (ﬂaeAa+) MagVyy = ag }
aoVyy C a'Vyy Ad' T of AUseaaVyy E (Nacact)Vyy
e { definition }
o = &' AlgeaaVyy C (Macaa™)Vyy,

where the second <« follows from

o MaVyy

af NaVyy {o'Cat}

(Vyy = ag) NaVyy

apMNaVyy { Proposition A.2(f): aVyy C aoVyy }
[e71])

at,

nin

nin

which implies o/ C aVyy = at = a* for each a € A by Proposition A.2(d).
(b) Set ag = (Uaca@) M (MacaaVyy). Then 0gVyy =MacaaVyy and s0 ap = (Uacaa) MaoVyy.
So we have the following equivalences for any given relation o’

VaoeA: o <a

& Va€A:dVyy CaVyy AaC o't { definition }
& 'Vyy T agVyy Algeaa C o't { definition }
& oVyy CogVyy AagEa't {=:0a0ClUqsesa o't }
& o <a, { definition }

where the third < is shown as follows. Consider the following computation
(Uaeaa) Na'Vyy C (Uaca@) MaoVyy = ao C o't

which implies Lioc s C 't by Proposition A.2(d). O

Lemma 3.10 Let o : X — Y and B8: X — Z be relations. Thena ® B =afN(at &GV zz).

Proof.
a®p af(a©pVzz)
afMN(aVyyNat)opfVzz {a=aVyynNat}
afMN(aVyz = (at ©8Vzz)) { Proposition A.3(h) }
(

= ofN(at©lVzz) { Proposition A.2(f) }

O

In the following discussion, a map which is monotonic with respect to < or < is called <-

monotonic or <-monotonic, respectively. The next proposition shows that the demonic composition
® is <-monotonic and <-monotonic.

Proposition 3.11 Let o,€: X — Y and §:Y — Z be relations. Then the following hold:




(@) fa<d and <G, thena @B <o ©F.
(b) Ifa<a and 8 <G, thena®f o' 0.
Proof. (a) Assume that o C o/ Cat and 8 C 8 C 8+. Then

afN{at©pBVzz) {Lemma 3.10}
BN (6P Vzz) {aCdCet, pCp'}
dog.

a®f

i

and

(@ef)N(aep)Vzz

E B NaVyzN(at6pBVz2z)
{ (Ol © ﬂ)sz = aﬂsz M (a+ e ﬁVZZ) CaVyzN (a"' S) ,BVZZ) }
E otfN(atepVzz)NaVyz {a' Cat}
C ot NBVzz)MNaVyz { Dedekind formula and Proposition A.3(a) }
C afffaVyz {8 NpBYzz CHAby B/CAT}
= (atNaVyy)s { Proposition A.1(b) }
= af.

Hence (¢’ ©8)N(c®©pP)VzzTaGPandsod ©F C (a®f)*t.

(b) Assume that aVyy C o'Vyy, fVzz T B'Vzz, o/ C ot and g/ C Bt. First note that
at ©8Vzz C o ©8'Vzz by the assumptions o’ T at, 8V zz C 3'Vzz and Proposition A.3(i).
Then

(@©p)Vzz

afVzzMN(at ©PVzz) { Lemma 3.10, Proposition A.1(b) and A.3(e) }
afVzz N (o' ©6'Vzz)

o'VyzN{a/© 3 Vzz) { assumption }

a'B'VzzM (! ©6'Vzz) { Dedekind formula and Proposition A.3(a) }
(' @B)Vzz.

Frrm

‘We have to see o/ ® 8’ € (¢ ® 8), but this claim can be shown by the same argument of the second
part in the proof for (a). a
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A Basic Properties of Relations

In this section we list a few basic properties of relations.

Proposition A.1 Leta: X — Y, 8:Y - Z,n: X — W and u : X — X be relations in a
Dedekind category D. Then the following hold:

(a) IfuCidx then uVxy Na = ua.
(b) (aﬂ'l]VWy),B =afBNnVwz.
0

Proposition A.2 Let a,3,7: X — Y be relations in a Dedekind category D. Then the following
hold:

(a) BEa=g.
(b) a=>a=Vxy and Vxy = a=o.
(c) aN(a= B) =anp. In particular aVyy MNat = a.
(d) a= (8=7) = (anB) = . In particular aVyy = o = a™.
(©) (aLa’) = B=(a= BN ( = f).
) faCB, thenanN(B=>7)=aly.
(8) fada and BE B, thena=BE o = F.
|

Proposition A.3 Leto,o/ : X =Y, 3,8 :Y = 2,6:Z W and §: X — W be relations in a
Dedekind category D. Then the following hold:

(a) e B) C B

(b) (@© )6 C ao(B9).

() a0 (8N8) = (@eh)N(ep).

d) (ef)od=a0(B869).

(e) If VwzVzw = Vww, then (@ © 8V z22)Vzw = a6 fVzw.
(f) a(Bnp)naef =apnasf.

(8) (Vwx Nidx)oa=§(Vwy = a.

(h) (VwyNa)eB=E(Vwz = (a0 f).

() fada and BT B, thena o’ S 4.
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