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Calculation of Selmer groups of elliptic curves

with a rational 2-torsion

TAKESHI GOTO  (Faculty of Mathematics, Kyushu University)
HEELE (UM KRZEEIRERT)

ABSTRACT

In this article, we give explicit formulae for the Selmer groups associated to the
2-isogenies, for any elliptic curves with a rational 2-torsion. Furthermore, we give a
formula for the 2-Selmer group, in some special cases. Using this formula, we can
obtain some results about 7 /3-congruent number problem.

1 Introduction
Let E be an elliptic curve with a rational 2-torsion, that is a curve defined by
y? =23 + Az® + Bz,

where A, B are integers, and the discriminant 16B2%(A? — 4B) is not zero. The point (0,0) on
this curve is the rational 2-torsion. It is difficult to compute the rank of this elliptic curve, but
Selmer groups are computable, and give an upper bounds of the rank by

rank E(Q) < log, |SY)(E/Q)| - [S¥(E'/Q)| - 2, (1)
where E’ is the curve defined by
y? = z® — 2Ax? 4 (A? — 4B)z,

and ¢, ¢’ are isogenies of degree 2 such that ¢/ op = [2]g, po¢’ = [2]p'. If E has three rational
2-torsions, then the Selmer group S (E/Q) gives a better upper bound of the rank.

Many mathematicians have studied the Selmer groups. For example, Monsky (Appendix in
[5]) and Aoki [1] calculated the group for y? = 23 — n2z (n is an integer), Yoshida [12] did for
y? = 23 + pgz (p,q are primes), Schmitt [9] did for y? = 2° — 2nz? + 2n%z (n is an integer),
Fujiwara [3], Kan [6], and Yoshida [13] did for y? = 23 + 2nz? — 3n%z (n = p, 2p, 3p,6p for a
prime p). Though there is an algorithm to calculate the Selmer group of a given elliptic curve
(cf. [10], [2]), no general formula seems to have been discovered.

Theorem 1 The Selmer groups S)(E/Q), S (E'/Q) are given by

SYNE/Q) = [ Im(5), S¥I(E/Q) = [ Im(s),

PEMy PEMy

where Mg = {primes} U {oc}. The groups Im(4,), Im(d;,) are given in §4.



This theorem is a generalized result of some earlier studies. The method owes its origin to Aoki
[1]. In [4], an explicit procedure to calculate the Selmer group is described.
Let En, and E,, ,/3 be elliptic curves defined by

E, :1? =:z:3—n2:v,
E.x3: y? =23 + 2nz? — 3nc.

Note that these curves have three rational 2-torsions. The curve E, is connected to congruent
number problem ([7]), and the curve E,, , /3 is connected to 7/3-congruent number problem ([3]).

Theorem 2 Let E = E,, or E, r/3. The Selmer group S®®(E/Q) is given by

SA(E/Q) = (] Im(3,).

pEMy

The groups Im(d,) are given in §2.

2 Definition of the Selmer group

In this section, we recall the definition of the Selmer group. For details, see [11, chap.3] and
[10, chap.10]. The Selmer group is usually defined by Galois cohomology:

S©(E/Q) = Ker {H'(Q Ble]) - [] H(@p B}l 0]} -

But we will give simpler definition.
Let &' : E(Q) — QX /QX? be the following map:

z, if P=(z,y) # (0,0),0,
§(Py=4q¢ B, if P=(0,0),
1, fP=0

This is called the connecting homomorphism. We define another homomorphism § : E'(Q) —
Q5 /QX similarly. Then the rank is given by the formula:

rank E(Q) = log, |Im(8)] - | Im(¢")| ~ 2. (2)

Let p be a prime or infinity, then 4, : E(Qp) — Q;/ Q;,‘z and &y : E'(Qp) — Q) /Q;Z are defined
similarly. These are also called connecting homomorphism.

When we regard the images Im(d,) as subgroups of Q5 /QX2, we have Im(d) C N, Im(d,),
From (2), we have the inequality:

rank E(Q) < logy | NIm(d)} - | N Im(dy)| — 2.
The Selmer groups are given by

SOE/Q) =(\Im(%), S¥)(E'/Q)=[)Im(4}),
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hence we have the inequality (1). Note that we can calculate the Selmer group easily when the
images are given. In §4, we will give the images for all cases.

Next, we consider the group S (E/Q). Here, we restrict our elliptic curve to one with three
rational 2-torsions, and let £ be a curve defined by

y* = z(z - a)(z - B),
where a, 3 are integers. Let &, : E(Q) — QX /Q%* x Q5 /QX? be the following map:

(z,7 — @), if P # (e,0),(0,0),0,
(a,a(a - B)), if P=(c,0),

(aB, —a), if P =(0,0),

(1,1), if P=0.

5(P) =

Then the Selmer group is given by

SO(E/Q) = [)Im(é),
and this gives a better upper bound, that is,

rank E(Q) < log, |S®(E/Q)| — 2 (3)
< log, |S®N(E/Q)| - |8 (E'/Q)| — 2.

If the images Im(d,) are given, we can calculate the Selmer group S (E/Q). If p is a prime
not dividing the discriminant, then Im(d,) = ZX QX /Qx? x Z; Qy /Q?.

Theorem 2’ For the curve En, the images Im(8,) are given as follows.

1. Im(3s) = {(1,1), (-1,1)}.

2. If p is an odd prime dividing n, then Im(3,) = {(1,1), (n,2n), (—n,2), (-1,n)}.
(1,1), (1,5), (n,2n), (n,10n),

(-n,2), (—n,10), (=1,n), (-1,5n)

4. If n =2 (mod8), then Im(ds) = { E;’nl’)" ZE:’), (12’5::"_2;)),’ ((_;’3;)’ (—1,m) }
(1,1), (5, -5), (n,2n), (—n,2),

(5n, —10n), (—5n, —10), (=5, -5n), (~1,n,) |

3. If n is odd, then Im(J;) = {

5. If n = 6 (mod8), then Im(d;) = {

For the curve Ey, /2, the images Im(d,) are given as follows.

1. If n > 0, then Im(600) = {(1,1),(-1,1)}.

2. If n < 0, then Im(J) = {(1,1),(-1,-1)}.

3. If p is a prime greater than 3, then Im(5,) = {(1,1), (n,n), (—3n,3), (-3,3n)}.
4. If n =1 (mod3), then Im(33) = {(1,1),(-1,-1),(3,-3),(-3,3)}.

5. If n = 2 (mod 3), then Im(83) = {(1,1),(~1,-1),(3,3), (-3, -3)}.

6. If 3| n, then Im(83) = {(1,1), (n,n),(—3n,3),(-3,3n)}.
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— m(d) = (1’1)’ (1a5)’ ("1’2)a (“1, 10),
7. If n =1 (mod8), then Im(d2) = { (=5.-10), (5, ~2), (5, —5), (5, ~1) }
_ =\ _ ) (L,1),(1,8), (n,5n), (n,n),
8. If n = —1,+5 (mod 8), then Im(d2) = { (5. —1), (5, —5), (5, ~5n), (5, —n) }

(577', 5)a (5'"', "'5), (5a 5”)7 (51 "5"‘)

10. If n = —2 (mod 8), then Im(ds) = { E;;}l)ié;, (-si)al()'n,(;f):))s ((:’_7:‘;’”) }

9. If n = 2 (mod8), then Im(d;) = { (1,1), 4, 1), (m,), (n, =), }

3 Congruent number problem

If the rank of the curve E, /3 is positive, the integer n is called a m/3-congruent number. If
|53 (En,x/3/Q)| = 4, then the rank is 0, by (3).

Theorem 3 ([3],[6],{13),[4]) Let p be a prime.

1. If p=5,7 or 19 (mod 24), then p is not 7/3-congruent.
2. If p="7 or 13 (mod 24), then 2p is not w/3-congruent.
3. Ifp=5,11,17 or 19 (mod 24), then 3p is not 7/3-congruent.

Using Theorem 2, we can obtain more analogous facts.

TABLE 1.
(Types of n = pg, 2pg, 3pg and 6pq with rank E,, ,,3(Q) = 0)

pxq mod24 (p/q) ex. pxg mod24 (p/q) ex.
1x5 -1 365 2x11x23 -1 506
1x7 -1 511 2x13x13 962
1x19 -1 1843 2x13x 19 -1 494
5x5 145 2x 17 x 23 -1 782
5x 11 -1 319 3x1x5 -1 1095

5 x 23 -1 115 3x1x11 -1 2409
TxT7 217 3x1x17 -1 3723
7x11 -1 7 3x1x19 -1 5529

7 x 13 -1 91 Ix5x5 435
11 x 11 649 IxHxXT 1 465
11 x 17 -1 187 3x5x13 -1 195
13 x 17 -1 533 3x5x17 255
13 x 19 -1 247 3x5x23 -1 345
17 x 23 -1 391 3x 7Tx11 -1 231
19x 19 817 IxT7Tx17 -1 273
19 x 23 -1 437 3x7x23 -1 483
2x1x7 -1 1022 Ix11x17 1 2937
2x1x13 -1 1898 3x11x19 1 627
2x56x5 290 3x13 x17 -1 1599
2x5x11 -1 110 I x13x23 -1 1833
2x5x17 -1 170 3x17Tx 17 2091
2x7x13 182 I x17x 19 1 969
2x7x19 -1 602 3 x19x 23 1311




Serf (8] construct such a table for the curve E,. Using Theorem 2, we can complement Serf’s
table.

4 Flowchart

In this section, we describe the flowchart giving the groups Im(d}), Im(d,), without proof (see
[4] for some special cases). Recall that our elliptic curve is

y? =12°+ Az’ + Bz

with a discriminant 16B%(A? — 4B).

In the rest of this article, we denote by (c1,-- ,¢n) the subgroup of Q} /Q;‘2, generated by
€1, ,cn, and by u a non-square element modulo p. In view of the following well-known fact, if
one of the groups Im(é,), Im(4},) is given, the other group is automatically given.

Theorem 4 Let p € Mg and ( , ), be the Hilbert symbol. For a subgroup V C Qg /Q ,
define V4 = {z € Q) /Q"2 |(@,y)p =1 for ally € V}. Then

Im(d,) = Im(d))*.
From the locus E(R), the images Im(4.,), Im(do,) are clearly given as follows.

1.If B> 0 and (4 < 0 or A2 — 4B < 0), then Im(d’,)) = {1}, Im(do) = RX/R*%.
2. In the other case, Im(d..) = R*/R*2, Im(6x) = {1}.

If p is & prime not dividing the discriminant, then Im(6}) = ZyQy /Q5?, Im(Jp) = Z3 Q) /Qx2.
For the groups I, = Im(é},), J, = Im(d,) with an odd prime p dividing the discriminant, go to
Question Al. For the groups Ir = Im(d3), Jo = Im(d2), go to Question B1.

A1 Does the prime p divide B?
e Yes — Go to A3.
e No — Go to A2.

2 (p /B) Let a = ordp(A? —4B). Then
e ais even and (—24/p) = —1 — I, = ZXQX*/Qx2.
e the other case — I, = {1}.

A3 Does the prime p divide A?
e Yes — Go to A5.
e No — Go to A4.

A4 (p [A, p|B) Let b = ordy(B). Then
e bis even and (A/p) = —1 — I, = ZXQ}?/Qx>.
o the other case — I, = QX /Qx2.
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A5 (p| A, p| B) Let a = ordp(A), b = ordp(B). Which is your case?
e b=1— Go to A6.
e b=2,a=1-— Go to A8.
e b=2a>2— Goto Al4d.
e b>3,a=1-— GotoAT.
e b=3,a>2— Go to A6.

A6 (b=1orb=3,a>2)In your case, I = (B).
A7 (b>3,a=1) In your case, I, = (—A, B).

A8 (b =2, a=1) Which is your case?
o (A2~ 4B'/p) =1 — Go to All.
e (A2 —4B'/p) = -1 — Go to Al0.
» (A2-4B'/p) =0— Go to A9.

A9 In your case, J, = (24, A% — 4B).
A10 In your case, I, = (B).

A1l Is B a square in Q,?
® Yes — Go to A13.
e No — Go to Al2.

A12 In your case, I, = Q) /Q;,‘z.

A13 Let A = pA', B = p?B’. Since B is a square in Q,, the congruence z?> = B’ (modp) has
solutions. We denote by v B’ one of such solutions. Then the image is given as follows.

o (A +2VB /p)=1— J, = (p).
o (A +2VB'/p)=—1— Jp = (pu).

Al4 (b=2,a2>2)Is —B asquare in Qp?
® Yes — Go to A16.
e No — Go to Al5.

A15 In your case, I, = (B).

A16 Which is the value p mod 4?
¢ p=1 (mod4) — Go to Al8.
* p=3 (mod4) — Go to Al7.

A17 In your case, I, = QX /QX2.
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A18 In your case, the image is given as follows.
e (—B)P-1/4 =1 (modp) — I, = (p).
o (—B)P-1)/4 = _1 (modp) — I, = (pu).

B1 Let a = orda(A), b = orda(B). Which is your case?
e a=0,b=0— Go to B2.
ea=0,b>1— Go to BS.
e a=1, b=0 - Go to B10.
ea>1b=1— Go to B3.
ea=1,b=2—- Go to B3.
ea=1,50>3—- GotoB9.
e a>2,b=0— Goto B6.
e a=2,b=2— Go to Bl4d.
e a=2,b=3— GotoB4
e a>3 b=2— GotoBT.
e 0>3,b=3— Go to B5.

B2 (a =0, b = 0) In your case, the image is given as follows.
e B=3(mod4) or A= B+ 2 (mod8) — I = ZYQF?/QX2.
o the other case — I = (5).

B3 (a>1,b=1ora=1,b=2)In your case, I = (B, (B+1)(-A+1)).

B4 (a =2, b = 3) In your case, I = (5, B).
B5 (a > 3, b= 3) In your case, Iy = (B).

B6 (a > 2, b =0) In your case, the image is given as follows.
e B=3 (mod4) and A+ B =7 or 11 (mod16) — I, = Z3Q5?/Q3>.
e the other case — I, = (B).

B7 (a>3,b=2) Let B =22B’. Then the image is given as follows.
e a=3and B’ #5,9 (mod16) — Jp = (—B’' +4).
e a=4and B’ =1,13 (mod 16) — J» = Z3 Q¥%/Q¥>.
e a#4and B’ =5,9 (mod 16) — J; = ZFQ3%/Q52.
e the other case — Jo = (—B').
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B8 (o =0, b>1) In your case, the image is given as the following table.

| Amods | b | I | Amods | b | I
1 1 (5, B) 5 1 (5, B)
2,3 > /Q3* 2 5/Q5?
4 Z;Q3%/Q3? >3:0dd | QF/Q*
>5 Qy/Q3* >4: even | Z;Q5%/Q5?
3 1 Q3/Q5* 7 1 5/Q5”
2 (5, B) 2 (5, B)
3 (2,5, B) 3 (-2,5,B)
>4 (2,5, B) >4 (2,5, B)
B9 (a =1, b > 3) In your case, the image is given as the following table.
| A mod16 | B mod32 I | A mod16 | B mod32 | I
2 0 (1,2, B) 10 0 (-1,10, B)
8 Q3 /Q5? 8 (-1,2)
16 (-1,10, B) 16 (1,2, B)
24 X Q)2 24 (-1, 10)
6 (—2,-5,B) 14 (2,5, B)
Q7/Q5* (2,-5)
16 (2,5, B) 16 (—2,-5, B)
24 (2,-5) 24 Q5 /Q3?

B10 (a =1, b = 0) Which is the value B mod 8?

e B =1 (mod8) — Go to B13.
e B=5 (mod8) — Go to B12.
® B=3or7 (mod8) — Go to Bil.

B11 In your case, I = (B).

B12 In your case, the image is given as follows.
o If (Amod 32, Bmod 32) is one of the following, then I = ZXQ¥2/Q}2.
(2,29), (6,5), (6,21), (10, 5), (14, 13), (14, 29),
(18,13), (22,5), (22, 21), (26, 21), (30, 13), (30, 29).
o In the other case, I = (5).



B13 Let A =24’ and C = A’® — B, then the image is given as the following table.

’7’m0d8 ] ordz(C) L J2

] D’ mod 8 I ord2(C) | J2
1 3 Q;/Q3? 5 3 ¥/Q5*
1 (5,C) 4 (5,C)
5 (—2,5,0) 5 2,5,C)
>6 (2,5,C) >6 {(~2,5,C)
3 3 (5,C) 7 3 (5,C)

4 Q3/Q3* 4,5 Q3/Q3?
>5: odd X/Q%2 6 Z3Q3*/Qx?
>6: even | ZXQX?/QX? >7 QX/QF?

B14 (a =b=2) Let A =44', B = 4B’. Which is the value B’ mod 87
e B’=1 (mod8) — Go to B16.
e B'=3,50r 7 (mod 8) — Go to B15.
B15 In your case, J, = (A — B', (A’ = B' + 1)(24’ + 1)).
B16 Let C = A'® — B, then the image is given as the following table.
A mod32 | C mod32 2, | [ Amod32|C mod32 Ja
4 0 (2,—5,0) 20 0 (—2,-5,C)
8 (2,-5) 8 Q3/Qz*
16 {—2,-5,C) 16 (2,-5,C)
2 Q3 /Q3? 24 (2, —5)
12 0 (-1,10,C) 28 (-1,2,C)
8 (—1,2) Q5 /Q3*
16 (-1,2,0) 16 {(-1,10,C)
24 (~1,10) 24 Q5 /Q3*
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