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1 Introduction

Let Q c R? (d = 1,2, 3) be a bounded domain with the smooth boundary 9Q. We consider
a parabolic-elliptic system for unknowns # = u(x,¢) and v = v(x,?) of (x,t) € Q2 % [0,T);

%‘;-:V-(Vu—qu) mQX(O,T)7
(1.1) 0=Av—av+u in Q x (0,T),

du Jv dv

.a_v—uw_o,'év—o OnaQX(O,T))

where v denotes the outer unit normal vector to dQ2; d/dv the differentiation along v on

dRQ; and a a positive constant. We treat (1.1) with the initial condition
(1.2) u)t=0 = uo(x) on Q,

and assume that u(x) is smooth, non-negative, and not identically zero on Q.

In the context of statistical mechanics, the system (1.1) is interpreted as the adia-
batic limit of the Fokker-Plank equation, which is associated with the mean field of self-
interacting particles subject to a frictional, velocity-dependent force with a random fluc-
tuation. There u denotes the distribution of mass and v the potential. See, for example,

Wolansky [11], [12].
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Other model leading to (1.1) comes from mathematical biology as a simplified Keller-
Segel system of chemotaxis which was introduced by Nagai [6]. That is, the system (1.1)
describes the aggregation of slime molds caused by their chemotactic features, where
u(x,t) denotes the density of the cellular slime molds and v(x,?) the concentration of the
chemical substance. If taking

ao%=Av—av+u inQx(0,T) ap>0: const

instead of the second equation of (1.1), we obtain the original system proposed by Keller
and Segel [5].

As was studied by Yagi [10] and Biler [2], the unique classical solution («,v) of (1.1)
exists locally in time if JQ is smooth enough. The supremum of the existence time of
the solution is denoted by Tpyax and in what follows we shall take T € (0, Tiax) otherwise
stated. Moreover we have

@ u(x,t) >0 (x,2) € Qx (0,T] (conservation of the positively),
1 /g u(x,t) dx = /‘; uo(x) dx t € [0,T] (conservation of the total mass).

In fact, (I) is a consequence of the maximum principle and (II) immediately follows from

d du ov
E/ﬂu(x,t) dx-/aa<a—v—u$) ds=0.

Another important feature of (1.1) is
(1) %W (u(-,),v(-,#)) <0 t€[0,T] (existence of the Lyapunov functional)

where :
W (u,v) =/£;(ulogu—u) dx—i/(;uv dx.

In the one dimensional case (d = 1), the dynamics of (1.1) is completely determined
by (III). On the other hand, in the two or three dimensional cases (d = 2, 3), (IIT) brings
us various information on the behaviour of a solution to (1.1). See, for more detail, the
monograph by one of the author ([9]).

From the view point of numerical analysis, it is quite natural to try to make a discrete
scheme to (1.1) which inherits analytical properties of the original equation, in particular
the discrete analogues of (I), (I) and (I1II).

We already know several schemes which satisfy some of (I), (II) and (III). For linear
convection-diffusion equations

du

du .
(1.3) Frin Au—V . (bu), (57 —(b- v)u) i =0, (b: given flow),

R. Gorenflo ([3]) considered the case d = 1 and gave a finite difference scheme satisfying
(1) and (II) by a carefully treatment of the flux at the boundary. K. Baba and M. Tabata
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([1]) made a finite element scheme to (1.3) which satisfies (I) and (II). The latter work
applied an upwind technique, and therefore (I) was guaranteed without any restriction on
h, the spatial discretization parameter. It is an important difference between these two
works; (I) was guaranteed for a sufficiently small 4 in [3].

On the other hand, several authors proposed energy conservative or energy dissipative
schemes. Here we only refer to D. Furihata’s work. He (and his co-workers) derived
finite difference schemes which inherited energy conservation or dissipation property of
the original equation. They derived discrete equations directly from the variational prin-
ciple and their method is called the discrete variational method (See, for example, [4]).
However, our problem seems to be out of scope from their theory.

The purpose of the present note is to give some considerations to make a finite dif-
ference scheme satisfying the discrete analogues of (I), (II) and (III). Roughly speaking,
our strategy is as follows. In order to treat (I) and (II), we combine the idea of Gorenflo
with that of Baba-Tabata. Then we take a certain time discretization which preserves the
discrete analogue of (III). Specifically, we shall propose

u"— un—l
1.9 —— =V (VW —u"Vv" ) inQ

Tn
with a suitable boundary condition, where »" and v" denote approximations of ¥ and v
at the nth time step and 7, > 0 the nth time mesh size. Equality (1.4) is a linear elliptic
equation for ¥” so that its numerical implementation is rather easy. Furthermore, as will
be verified below, it holds

(1.5) '1!; [ ") — w1 <o.

Time discretization (1.4) is often applied in actual computations, however, to our knowl-
edge, no emphasis on (1.5) is made.

The organisation of this paper is as follows: In §2, we consider time discrete scheme
(1.4) and verify (1.5). §3 is devoted to a finite difference scheme where the time discretiza-
tion is based on (1.4) and the spatial one is on a combination of [3] with [1]. Because of
the limitation of the page number, concerning the spatial discretization, we shall restrict
our consideration to the one dimensional case. Finite difference scheme in the two di-
mensional case and some numerical examples will be reported in a forthcoming paper

a7D.

2 Time discretization

Before preceding to a time discretization, we recall the derivation of (III). We ﬁrs/tly in-
troduce

(G = [ G dy,
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where G(x,y) denotes the Green function associated with —A + a under the homogeneous
Neumann boundary condition. Then (1.1) is written as

2.1) {%?=V'(Vu—uV(Gu)) in Q x (0,T),
(Vu—uV(Gu))-v=0 on 9Q x (0,T),

and (III) is equivalent to
@ Liu.0) <0 repT)
where |
J(u) = W(u,Gu) = /ﬂ(ulogu—u) dx — E/Q(Gu)u dx.

We introduce _
X ={we L}(Q)| wix) >0 (xeQ)},
and deal with J as a functional over X. We decompose J into J = I — K, where

I(w) =/ﬂ(wlpgw—w) dx, Kw)= -21-./‘;(Gw)wdx (we X).

Fréchet derivatives DI(w) and DK (w) of I and K at w € X are given as
(DI(w), ) = lims™ I(w +s9) — ()] = (logw, ®) (Vp €.X),
(DK (w), @) = (Gw, ) (Vo € X),
where
(v,w) = /Q sWwk) dx  (v,we L2(Q)).
Based on these identities, we shall employ identification
DI(w) ~logw and DK(w)~ Gw

in the way of the L? inner product.
As aresult, noting V- (Vu —uV(Gu)) = V- uV (logu — Gu), we can rewrite (2.1) as

dt
uV(DI(u) —DK(u))-v=0 on Q2 x (0,7T).

Hence, by the chain rule,
@) Trun) = [ w(D1) ~ D)

= fn V- [uV (DI(u) — DK (w))] - [(DI(4) — DK ()] dx

2.2) {-‘?-li =V.uV(DI(¥)—DK(u)) inQx(0,T),

= - [ uv(D1(w) - DK@W)P dx <.

Now we proceed to a time discretization scheme. The following lemma plays a crucial
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Lemma 2.1. We have

(2.4) J(w) —J(®) < (DI(w) - DK(®),w—b), (w,d€X).

Proof. Letw € X and @ € X. Since s(> 0) — slogs — s is convex, we have
(2.5) I(w) —1(d) < (DI(w),w — ).
By Taylar’s formula (for example Theorem 4.A of Zeidler [14]), we obtain

K(@+9) =K(w)+(DK(w),fp)+%/ol(1 ~ 0)D’K(i+c9)[e, 9] do

for any @ € X, where D?F (i) denotes the second Fréchet derivative of F at i € X;

i . (d\?
DK(@)lg,9) = liy () Klu+s01=(Gp.0), (9 )

The function G is a solution of —Av+ av = ¢ in Q with dv/dv = 0 on JQ so that
(G, 9) = ||V(Go)||2; + al|Gp||?, > 0. Therefore, by choosing ¢ = w— i, we have

K(w)—K(w) > (DK (@), w — ).
This, together with (2.5), implies (2.4). O
Based on the observation above, we propose a time discretization to (1.1). Let {7, }7_;

be a set of positive numbers and suppose that the nthe time step #, is determined by

n
(2-6) t0=0, tn=tn_1+Tn=z1k (n=].,.--,m), thT.
k=1

Let «” € C2(Q) be an approximation of u(-,t,) at the nth time step #, (n = 0,1,2,...). We
set

2.7 u® = up(x) on Q

and obtain {#"}™_, by successively solving

W — un—l
{ WU vV (DI -DK@Y) g,

(2.8) Ty
u"V(DI(w") — DK(u""1))-v =0 on 9Q
or equivalently
' —u! _ n n—1 :
29) {r—,. — V- (Vi —V(GY)) g,
(Vu* —u"V(Gu" 1)) -v=0 on JQ.
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Theorem 2.1. Lern € {1,2,...,m}. Assume that ",u"~ € C?(Q) NX satisfy (2.8). Then
we have

(I11%) Ti [V -J@ ] <o.

Proof By Lemma 2.1,
T —J ()
< 1 /g (DI(W") — DK (")) [V-u"V (DI(u") - DK(u""1))] dx
= 1, /Q u" |V (DI(") —~ DK (u"~1))[* dx <0,

which implies (IIT%). O
Remark 2.1. The first equation of (2.9) is written as
1
(;1- +aGu"! - u""l) u" — A + (V(Gu"™ 1)) - (V™) = ;n—u"'l,
n

where the relation —A(Gu"!) +aGu"~! = u"~! is used. Hence, if 7, is sufficiently small,
there is a unique solution «” € C?(Q) and it satisfies

@ «w>0inQ (n=1,...,m).
On the other hand, integrating both sides of (2.7) over €2, we have

l(f " dx—/u"-l dx) =/ (V" — 'V (Gu"1)) dS =0,
™ \JQ Q Q

which yields
%) /Qu”(x) dx=/ﬂuo(x) dx (n=1,...,m).

3 Finite difference scheme

In this section, we treat

ur = (Uy — U )x (0<x<1,0<t<T),
ux(o,t) = ux(l,t) = 0,
3.1 0=uvx—avtu (0<x<1,0<t<T),

ve(0,8) = ve(1,¢) =0,
u(x,t) = up(x).

Take a positive integer N and let & = 1/N. We introduce two kinds of mesh points over Q
as

.1 o .
x;:(.]--z—)h, £i=jr (j=1,...,N).
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Moreover, for the sake of convenience, virtual mesh points xo = —h/2, xy+1 = (N +
1/2)h, 31 = —h, and Zy41 = (N + 1)k are often treated. Time discretization makes
use of (2.8). We find approximations of u(-,#,) and vx(-,2,) over the main mesh points

{xj }?;1 ;

u; -~ u(xj,tn) and b"; ~ Ux(xj)tN)‘

On the other hand, we compute approximations of v(-,#,) and (u; — uvy)(-,;) over the
dual mesh points {x j}ﬁo;.

v} (i t,)  and  FJ R (ue— uvg) (%))

Firstly, we suppose that {«}~'}}' and {v;?’l}ﬂio have been obtained. Then we approxi-
mate Ux(-,4,—~1) by

-1 —-u'?:l
gL (=12,..0),
and set 1,4+ 1 n—1 1
n—1, - -4 -
b =max{0,677'}, b =max{0,-b]"}.

Following a technique of upwind approximation, we may suppose that u;? and u; 41 are
carried into a point £; on flows b;f"]’+ and —b;;}", respectively. That is, the approxima-
tion Fj" of the flux u, — uv, at (£;,1,) is calculated by

u -
F:;':—j—-ﬂ}:—— b; 1,+ n bn l'u}'.,_] (j=1,2,,_,,N)

Based on the observation above, our present scheme is as follows

ut— un—l Fn— Fn
i~ % J i1
2 =
(32) - =L,
or equivalently
Wt —ut!
(33) Lt = a0 (875) +3 (875,
n
where
Wy—w;-1 . .
Dpwj = 5 (backward difference quotient),
Djw; = _"il_‘f'_l_h_—ﬂ (forward difference quotient),

Apwj = DpDjwj = DyDpw;.
The boundary condition is approximated by

u -
= h“° BN bt =0,

(3.4 Fn Uy — Uy
N h

— by iy By Mg =0
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and the initial condition by

(3.5) W=uolx;) (j=1,...,N)
Now we describe two ways to determine {v =0 from {u . The one is the finite
difference method as
(3.6) A} +av} =} (j=0,1,...,N)
] (j=0)
it; = { (W) +u})/2 (i=12,...,N-1)
W (=M.

The other is described in terms of the explicit formula of the Green function and we
compute as

G(#x)uf  (j=0,1,...,N).

Mz

(3.7) =

J

-
I

1

Theorem 3.1. Let n € {1,2,...,m}. Suppose that {uj_l}N , and {u"} ) satisfy (3.2)
with (3.4). Then

an; z ih = 2 «"~1h. (conservation of the discrete total mass).
J=1 J=1

Proof Taking the summation of both sides of (3.2) from 1 to N, we obtain by (3.4)

o

1 N N N
(0 £ - oy - B
T\j=1 =1 j=1

Theorem 3.2. Let n € {1,...,m}. Suppose that {u};~ -1 N "_, are given and assume

M u';.-l >0 G=1...,N).
If 1, is small such that

' -1 -1_ -1
(3.8) 27,00 < h (bgm = 112;3'ng |b% |) ,

then (3.2) with (3.4) admits a unique solution {u "_, and ()} is valid for {u”} =1



Proof. Introducing the N X N matrix H" = [Hy| by

(—1— ™t (k=1=1)
1+ hby~ (k=1,1=2)

HH:J 1+ hb}™, Q<k<N-1,1=k—-1)
—2—h(Byt+b77) (2<k<N-1,1=k+1)
1+hb%7, (k=N,I=N-1)

| —1—-hby™ (k=1=N).

Then we can write (3.2) with (3.4) as
(3.9 (I-2H Hu"=u"1 (n=1,2,...,m),
where A, = To/h? and w" = T(u2,u8,...,uly). Set A = [Ay] =1 —AH", Then 4y, > 0,
and 4y < 0 for k # I. Moreover under (3.8) we have
N
ZAH > 0.
=1

These imply that 4 is of M-type (c.f. Varga [13]). Hence 4~! exists and 4~! > 0 (each
element is positive). O

Now we are able to state our numerical algorithm as follows:
Step 0. Take N € Nand € € (0,1). Set u® =T (ug(x1), ..., uo(xy)), h = 1/Nandn=1.

Step 1. Compute {v}~ 1} in accordance with (3.6) or (3.7). Then compute {b"’l} {b" —hhy
and {b"_ "} Set T, = €h/ (2505 )-

Step 2. Solve (3.9) to obtain u”.
Step 3. If n = m, then finish the computation. If n < m, then go to the next step.
Step 4. Renew n by n+ 1 and return to Step 1.

Before concluding this paper, we describe a few remarks.

Remark 3.1. By virtue of (I)} and (II), we have a priori estimate

N
.1
e 1
0<.Z24 < 28Y ; S 7 22 Ho®),

which means that u” never blows up in finite time. Hence (0 <)%, < = is guaranteed for
any n and our algorithm always works.



Remark 3.2. The discrete analogue of J is, for example,

N N
1 X+
B = Y, (Wilogu} — ) h—5 3 Tu,
j=1 J

and it is natural to expect that

1

(3.10) =

[Ja(u™) = Jp(u" 1] <0.

However, the argument of §2 fails in this case. Furthermore numerical results indicate

that (3.10) is valid for a small . See, for more detail, Saito and Suzuki [7].
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