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1 Imntroduction

In ecological and chemical problems, we encounter nonlinear equations of the form

(1) wy = V(d(w)Vw) + h(w) ze, t>0,
(2) %%)=0 red, t>0,
(3) w(0, z) = wo(z) € L() z €9,

where d(s) is a step function:

_Jd (s20)
® dle) = {d2 (s <0).

The function w = w(t, z) is a real-valued function, d; and d, are positive constants, Q
is a bounded region in R¥ with a smooth boundary 952, and v is the unit outer normal
to 8. The aim of this article is to present a time-discrete scheme for (1)—(3), which
is based on the operator-splitting methodology.
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The problem (1)—(3) is obtained as a singular limit of the following system:

(5) up = diAu + f(u)u — kuv z€N, t>0,
(6) ve = daAv + g(v)v — akuv e, t>0,
ou ov
o = = = o, t
(7) 5 0, 5 0 z €090, t>0,
(8) u(0,z) = uo(z), v(0,z) = vo(z) z €.

Here a and k are positive constants. The functions f and g are written as f(s) =
au(Ry — 8) and g(s) = a,(Ry, — s), where ay, ay,, R, and R, are positive constants.
Let (u®, v*)) be a solution to (5)—(8). Dancer et al. have shown that as k — oo the
function w® = u® —y® /a converges to a weak solution w to (1)~(3) with a function
h such that

| _[r@s 620
®) is) {g(-as)s (s <0).

Furthermore they proved that u*) — [w]* and v®) — ofw]~ respectively, where [a]*
is max{+a, 0}; see Proposition 2.1 in [1] for the detail. Thus (1)—(3) describes the
asymptotic behavior of (5)—(8).

The system (5)—(8) models behavior of competing biological species. On the other
hand, when f = g = 0, (5)—(8) is a model of chemical reactions. In this case the singular
limit also leads to (1)—(3). Evans (2] has given convergence proof for restrictive initial
data. Tonegawa [6] proved regularity properties of solutions to the limiting problem.

2 A Time-Discrete Scheme

We present a time-discrete scheme to integrate (1)~(3) numerically.
Put

(10) F(s) := f(s)s, G(s):= g(s)s.
Then the scheme that we propose is written as follows.

Threshold Competition Dynamics (TCD)

Let M be a positive integer. The approximate solution (uy,(t, =), vy (¢, z)) by TCD to
the limiting problem of (5)—(8) as k — oo is defined by

(11) up (0, ) = up(z), vp(0,2) = vo(z) for z € Q,
(12) Up (8, 2) =Ty (2, 7), vpe(t, 3) = Ty(t,z), fort € (t,t41), T €,



(13) T:=T/M, t;=jr (j=0,1,...,M).

The functions @, (¢, z) and T,(t, 7) are constructed by the following steps:
Step 1. Put u},(z) = uo(z), vg,!'(a:) = vo(z) (z € Q).
Step 2. For given u),(z) and v},(z),

(i) Find @,,(t, =) and T,(t, z) such that

( O . .

gg—é‘l— = dlAﬁ‘gw + F(ﬁ]M) z €, t; <t<tj,
J

(14) j 6_33_4:0 z €0, t;j<t<tj,

\ @, (t, 1) = w(2) z €,

4 WM
Y
(15) T Ty
ov

\ T, (L5, T) = vig(2) z €.

= AT, +G@,) z€Q t;<t<tin,

=0 z € 01}, tj<t<tj+1,

(ii) Define ui*(z) and v3/*(z) by
(16) uht' (@) = lim %, (6;2), v’ (z) = lim %,(6;2),
where @, and %}, solve

( ~7
da},

= =-w,5, z€Q 0<8<Ekr
: .y
an %=_a%ﬁM zef, 0<0<kr

We note that an operator-splitting method is used in Step 2, that is, (5) and (6)
are splitted into

(18) us = diAu+ F(u), v = daAv+ G(v),



du dv
i —kuv, i —kauv.

The main idea of TCD is Step 2 (ii). Let 6 = kt; then (19) are rewritten to (17).
Instead of passing to the limit & — oo in (19), we use the asymptotic limit § — oo
in a solution to (17). The limit is easily obtained. In fact, by using the fact that
d(u—v/a)/df = 0, it follows that

(19)

(20) Jim @,(6;7) = [, (£, ) — Ty (tie1,2) /),
(21) 01111010514(0;1:) = o [T, (tj+1,2) — Tos(tis, 2)/a] .
3 Results

To state our results we need to define a weak solution to (1)—(3).
Definition . We call w a weak solution if it satisfies:

(22) w € L®(Q x (0,T)) N L*(0,T; H*(Q)) N C([0, T); L*(%)),

@ [omen)- [[ {we-dw)vuvs+hws) = [ wopl)

for all ¢ € C*(Qr), where Qr = x (0,T).

Remark 1. There ezists a unique solution to (22)—(23) if wo € L=(Q) [1].

We are ready to state our results.

Theorem A. Suppose wy € L®(Q). Set up = [wo]* and vo = afwo]~. Let w be a weak
solution for the initial data wo and (uy,vy) an approzimate solution by Threshold
Competition Dynamics for the initial data (ug, vo). Then uy, vy andwy = Uy —vy/
conwerge to [w]t, ofw]™ and w in L*(0,T; L*(Y)) respectively as M tends to co.

Moreover, if d; = d we have information about the convergence rate. Let Qint be
a Lipschitz domain such that Q™ cC Q. Denote Q \ st by Qe
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Theorem B. Functions wy, o, vo, Wy, and w are the same as those in Theorem A.
Assume that

(24) up € H2(Q™), v € HH(Q™), wuo=1v =0 on 8Q™,
and that there ezists a sequence of functions {an}32, such that

an, € C2(Qt), (n=1,2,...),
0<a, <Ry (n=12,...) for some constant Ry,

25
(25) dan =0 (n=1,2,...), >
o |pq

an — vy as m— oo in H(Q™).

In addition if dy = d,, then

(26) 1 (4elT) = 30(T)/ @) = w(T) |2y < C(L/M)Y2,
(27) [ (T) — vy (T)/ @) = w(T)| 20y < C'(1/M),

where C and C' are positive constants independent of M.

4 OQutline of the Proof

4.1 Theorem A

We work within the framework of the evolution triple H'(Q) — L?(2) — (H*())*
(see chapter 23 in [7] or chapter 3 in [5]).
The next lemmas play an important role in the proof.

Lemma 4.1. Functions u,, and vy, are uniformly bounded in L?(0,T; H'(2)) with
respect to M.

Lemma 4.2.
(28) /f UpUp — 0 as M — oo.
Qr

In view of Lemma 4.1 we observe w,, is uniformly bounded in L(0, T'; H'(2)) with
respect to M and so is Qyw,, in L2(0,7; H'(Q?)*). Hence thanks to the compactness
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property (Theorem 2.1, chapter 3 in [5]) we obtain a subsequence from {w,,}, which
is denoted by {w,,} again, converging in L?(0,T; L*(Q)). We write the limit as we:
(29) Wy — Weo in L2(0,T;L*)) as M — oo.
With the aid of Lemma 4.2 we obtain, passing to a subsequence if necessary,
uy — W]t in L2(0,T; LA()),
vy/a — [we]™  in L23(0,T; L3(Q2)).

Then wo, turns out to be the weak solution to (1)—(3).

4.2 Theorem B

Throughout this subsection we assume that the conditions for Theorem B are satisfied.
Set

(30) €§~p) = “wM(tjv ) - w(tj’ ')”L’(ﬂ) (p =1, 2)'

®

Our strategy is to deduce a recursive inequality for e;

To prove the theorem we use the following lemmas.
Lemma 4.3. For any positive €, there ezist k = k(e) > 0 and non-negative functions

u(z), vE(x) such that solutions u®E), v*E) to (5)~(7) with the initial conditions
u®(0,-) = ul and v*E) = o) satisfy the following:

(31) [w®) — wllcqorLe@) <€
(32) [u®E) ~ [w]H|ogorLemy < €
(33) lv® ) fa — [w]™ |leorize@) < €

where wkE) = y*E) _ y*E) /o and p = 1,2.

Lemma 4.4. Consider the following equations in each interval [t;,t;+1):
owc

a_zu = dlAﬁJA’; + F(ﬁjﬂ’;), tj<t<tjy, TE Q,
o
p = d2 AT + G(U77), t; <t<tju, z€Q,
owe e
—(,)—I’/‘i=—6—u"4~=0, t; <t <tjy1, T €N,

ﬁ’ﬁ(tjy -T) = y*) (tja IC),

Fir(ts, z) = v*EN(t;, 7).
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=} __ =]E =4,
(34) Wy =y — U/

If dy = dy, the following inequality holds:
(35)  lwn(tirs, ) = Bystjen, Mlerie < (& +) 1+ E7), (p=1,2),
j

where E is independent of M, 7 and €.

Lemma 4.5. Suppose 171’; is given by (34). If di = dy, ﬁ‘)’; satisfies

(36) “ﬁ)ﬁ(tj +,7) = w(k(a))(tj +1 M@ < C, 2,
(37) ”"T’J;(tﬂl, ) — wkED (tirn, Moo < Cyr?,

where Cy and Cy are independent of M, j and €.

Now we are in a position to prove Theorem B.

Proof of Theorem B. From (31), (35) and (36) we observe

2
e, = llwp (b4, -) — wltjan, )l 2o

< Nlwag (B41,+) — T (E41, )l 22ce)
+ [ (t41, ) — w5 2
+ [Jw* N (541, ) — wltin, e
< (P +e)(1+Br)+ Cir*l? te.

Since ¢ is arbitrary, we have
353-)1 <1+ ET)6_§-2) + Oy 32,

Consequently we are led to eﬁ) < C(1/M)Y2. In a similar way we arrive at e%}) <
C'(1/M), thereby completing the proof. ]

5 Concluding Remarks

In (4] we have applied TCD to three-component competition-diffusion systems.

Some numerical experiments show that TCD converges in practical computations
for the singular limit of the two-component system. For the completeness, further
experiments are under way.
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It is interesting to investigate whether the idea of TCD is applicable or not to other
problems that are characterized as singular limits of reaction-diffusion systems. In fact,
numerical experiments suggest that it is applicable to certain problems.

To integrate (1)—(3) numerically, we can also use the Finite Volume Method (FVM).
Eymard et al. have given a convergence proof of FVM for the following:

w(t, ) — AD(u(t, z)) = v(t,z), z€Q, t>0,
80(u) _

Ov
u(0,7) = uo(z), = €9,

0, z€9Q, t>0,

where & € C(R) is a non decreasing locally Lipschitz continuous function and uo €
L*(Q), v e L=( x (0,T)). See [3] for the detail.

To prove Lemma 4.5, we resort to the Duhamel formula. We write u(¥©) and v(*()
with the formula. Then the terms related to k(e) disappear from the expression of
w*®) when dy = ds.
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