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The nonstationary Stokes and Navier-Stokes flows
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1 Introduction

We study the global existence and asymptotic behavior of a strong solution to the Navier-Stokes
initial value problem in an aperture domain  C R® with smooth boundary 92

Ou+u-Vu =Au—-Vp (z€Q, t>0),

V.-u =0 (e, t>0),
ulog =0 (> 0), (-
u|t=o =a (.’L'GQ),

where u(z,t) and p(z,t) denote the unknown velocity and pressure of a fluid, respectively,
while a(z) is a prescribed initial velocity. The aperture domain § is a compact perturbation
of two separated half spaces H, U H_, where Hy = {z € R* £z, > 1}; to be precise, we
call a connected open set Q C R™ an aperture domain if there is a ball B C R" such that
Q\ B = (HyUH_)\ B. Thus the upper and lower half spaces H.. are connected by an aperture
(hole) M C QN B, which is a smooth (n — 1)-dimensional manifold so that §2 consists of upper
and lower disjoint subdomains Q4 and M: Q=Q, UM UQ_.

The aperture domain is a particularly interesting class of domains with noncompact bound-
aries because of the following remarkable feature, which was in 1976 pointed out by Heywood
[11]: the solution is not uniquely determined by usual boundary conditions even for the sta-
tionary Stokes system in this domain and therefore, in order to single out a unique solution, we
have to prescribe either the flux through the aperture M

#w) = [ N-ud,
M
or the pressure drop at infinity (in a sense) between the upper and lower subdomains Q4

o=, Jm  p@)- tm . P
as an additional boundary condition. Here, N denotes the unit normal vector on M directed
to Q_ and the flux ¢(u) is independent of the choice of M since V- u = 0 in Q.

The results of Farwig and Sohr [6] are the first step to discuss the nonstationary problem
(1.1) in the L7 space. They, as well as Miyakawa [22], showed the Helmholtz decomposition of
the L4 space of vector fields LI() = LE(S2) & LI(Q) for n > 2 and 1 < ¢ < 0o, where LE(Q) is
the completion in L9(§2) of the class of all smooth, solenoidal and compactly supported vector
fields, and LI(Q) = {Vp € LI(Q);p € LE,(Q)}. The space LE(Q) is characterized as

LL(Q) = {u € LYQ); V- u = 0,v - ulan = 0, $(v) = 0}, (1.2)



where v is the unit outer normal vector on 8. Here, the condition ¢(u) = 0 follows from the
other ones and may be omitted if ¢ < n/(n — 1), but otherwise, the element of LZ({2) must
possess this additional property. Using the projection P, from LI(Q) onto LZ(§) associated
with the Helmholtz decomposition, we can define the Stokes operator A = A, = —F,A, which
generates a bounded analytic semigroup e~*4 in each LL(€),1 < ¢ < o0, forn > 2 ([6, Theorem
2.5)).

We are interested in strong solutions to (1.1). However, there are no results on the global
existence of such solutions in the LY framework unless ¢ = 2, while a few local existence theorems
are known. In the 3-dimensional case, Heywood [11], [12] first constructed a local solution to
(1.1) with a prescribed either ¢(u(t)) or [p(t)] when a € H?(Q) fulfills some compatibility
conditions. Franzke [7] has recently developed the L? theory of local solutions via the approach
of [10] with use of fractional powers of the Stokes operator. When a suitable &(u(t)) is prescribed,
his assumption on initial data is for instance that a € L9(Q),q > n, together with some
compatibility conditions.

It is possible to discuss the L? theory of global strong solutions for an arbitrary unbounded
domain (with smooth boundary) in a unified way since the Stokes operator is a nonnegative
selfadjoint one in L2; see Heywood [13] (n = 3), Kozono and Ogawa [18] (» = 3) and Kozono
and Sohr [19] (n = 4,5). Especially, from the viewpoint of the class of initial data, optimal
results were given by [18] and [19]. In fact, they constructed a global solution with various

decay properties for small a € D(Ag/ -1/ 2). For the aperture domain (2 their solutions wu(t)
should satisfy the hidden flux condition ¢(u(t)) = 0 on account of u(t) € LZ(Q) together with

(1.2).

Our purpose is to provide the global existence theorem for a unique strong solution u(t) of
(1.1), which satisfies the flux condition ¢(u(t)) = 0 and some sharp decay properties as ¢ — oo,
when the initial velocity a is small enough in L%(Q2),n > 3. Up to now we have the same global
existence result for the whole space (Kato [16]), the half space (Ukai [25]), bounded domains
(Giga and Miyakawa [10]) and exterior domains (Iwashita [15]). For the proof, as is well known,
it is crucial to establish the LI-L" estimates of the Stokes semigroup

e F i@ < O fllzacay (13)

Ve~ flir@y < C* 2| fllLaga)s | (14)

forall t > 0 and f € LI(Q), where @ = (n/g —~ n/r)/2 > 0. Recently for n > 3 Abels [1] has
proved some partial results: (1.3) for 1 < ¢ < 7 < oo and (1.4) for 1 < ¢ < r < n. However,
because of the lack of (1.4) for the most important case ¢ = = n, his results are not satisfactory
for the construction of the global strong solution possessing various time-asymptotic behaviors
as long as one follows the straightforward method of Kato [16]. In this article we consider the
casen > 3and prove (1.3)for 1< g<r< oo (g# 00,7 # 1) and (14)for1<g<r<n(r#£1)
or1<g<mn<r< oo here, when ¢ = 1, f should be taken from L!(Q) N L5(S2) for some
s € (1,00). The result on (1.4) is better than that for exterior Stokes flows [15]; in fact,
Maremonti and Solonnikov [20} clarified that one cannot remove the restriction » < n for the
exterior problem.

In the proof of the L9-L" estimates, it seems to be heuristically reasonable to combine some
local decay properties near the aperture with the L9-L" estimates of the Stokes semigroup for the
half space by means of a localization procedure. Indeed, Abels 1] used this idea that had been
well developed by Iwashita [15] and, later, Kobayashi and Shibata [17] in the case of exterior
domains. We should however note that the boundary 8 is noncompact; thus, a difficulty is to
deduce the sharp local energy decay estimate

le~t fllwiag) < C™4 fllpa@y, t2 1, (1.5)



for f € Li(R),1 < g < oo, where Qr = {z € Q;|z] < R}, but this is the essential part of
our proof. Estimate (1.5) improves the local energy decay given by Abels [1], in which a little
slower rate t~™/247¢ was shown. In (1), similarly to Iwashita [15], a resolvent expansion around
the origin A = 0 was derived in some weighted function spaces. To this end, Abels made use
of the Ukai formula of the Stokes semigroup for the half space ([25]) and, in order to estimate
the Riesz operator appearing in this formula, he had to introduce Muckenhoupt weights, which
caused some restrictions. On the other hand, Kobayashi and Shibata [17] refined the proof
of Iwashita in some sense and obtained the LI-L" estimates of the Oseen semigroup for the
3-dimensional exterior domain. In this article we employ in principle the strategy developed by
[17] and extend the method to general n > 3 to prove (1.3) and (1.4) for the Stokes flow (we
omit the proof of the global existence and decay properties of the Navier-Stokes flow [14]).

After stating our main theorems in the next section, section 3 is devoted to the investigation
of the Stokes resolvent for the half space H = H, or H_. We derive some regularity estimates
near the origin A = 0 of (A + Ag)~'Pyf when f € L(H) has a bounded support, where
Ag = —PyA is the Stokes operator for the half space H. Although the obtained estimates
do not seem to be optimal compared with those shown by [17] for the whole space, the results
are sufficient for our aim and the proof is rather elementary; in fact, we represent the resolvent
(A + Ag)~! in terms of the semigroup e~*4# and, with the aid of local energy decay properties
of this semigroup, we have only to perform several integrations by parts and to estimate the
resulting formulae.

In section 4, based on the results for the half space, we proceed to the analysis of the Stokes
resolvent for the aperture domain €. To do so, in an analogous way to [15], [17] and (1], we
first construct the resolvent (A + A)~!Pf near the origin A = 0 for f € LI(2) with bounded
support by use of the operator (A + Ag)~1Py, the Stokes flow in a bounded domain and a
cut-off function together with the result of Bogovskil [2] on the boundary value problem for
the equation of continuity. And then, for the same f as above, we deduce essentially the same
regularity estimates near the origin A = 0 of (A + A)~1Pf as shown in section 3.

In the final section we prove (1.5) and thereby (1.4) for ¢ = r € (1,n] as well as (1.3) for
7 = o0, from which the other cases follow. Some of the estimates obtained in section 4 enable
us to justify a representation formula of the semigroup e *APf in W19(Qg) in terms of the
Fourier inverse transform of 8™ (is + A)~'Pf when f € L%(f) has a bounded support, where
n=2m+ 1 or n=2m+ 2. We then appeal to the lemma due to Shibata [23], which tells us a
relation between the regularity of a function at the origin and the decay property of its Fourier
inverse image, so that we obtain another local energy decay estimate

le™* AP fllwra@r) < Ct2 | flle), t21, (1.6)

for f € LI(Q),1 < g < 0o, with bounded support, where € > 0 is arbitrary. Estimate (1.6) was
shown in [1] only for solencidal data f € LI(f) with bounded support, from which (1.5) with
the rate replaced by t~™/29¢ follows through an interpolation argument. But it is crucial for
the proof of (1.5) to use (1.6) even for data which are not solenoidal. In order to deduce (1.5)
from (1.6), we develop the method in [15] and [17] based on a localization argument. In fact,
we regard the Stokes flow for the aperture domain Q as the sum of the Stokes flows for the
half spaces Hy and a certain perturbed flow. Since the Stokes flow for the half space enjoys
the LI-L™ decay estimate with the rate t~"/2¢ ([3]), our main task is to show (1.5) for the
perturbation part. In contrast to the case of exterior domains, the support of the derivative
of the cut-off function touches the boundary 8 and thus we have to carry out a localization
procedure carefully. Furthermore, the remainder term arising from such a procedure involves
the pressure of the nonstationary Stokes system in the half space and, therefore, does not
belong to any solenoidal function space. Hence, in order to treat this term, (1.6) is necessary
for non-solenoidal data, while that is not the case for the exterior problem.



2 Results

We denote upper and lower half spaces by Hy = {z € R™ *z, > 1}, and sometimes write
H = H, or H_ to state some assertions for the half space. Set Bg = {z € R";|z| < R} for
R > 0. Let Q C R™ be a given aperture domain with smooth boundary 652, namely, there is
Ro > 1so that Q\ Br, = (Hy U H_) \ Bgy; in what follows we fix such Rp. Since {2 should
be connected, there are some apertures and one can take two disjoint subdomains (21 and a
smooth (n — 1)-dimensional manifold M such that @ = Q. UM UQ_,Q+ \ Br, = Hi \ Bg,
and M UM = 8Q, NOQ_ C Br,. We set Qg = QN Bg and Hg = H N Bg, which is one of
Hi r = Hi N Bpg, for R> 1.

For a domain G C R™, integer j > 0 and 1 < ¢ < 0o, we denote by W79(G) the standard
L3-Sobolev space with norm || - ||;4,¢ so that LI(G) = W%4(G) with norm || - ||gc. The space
W34(G) is the completion of C§°(G), the class of C™ functions having compact support in
G, in the norm || ||, and W~34(G) stands for the dual space of Wg’q/ @-1(@) with norm
- l-jqq- For simplicity, we use the abbreviations || - || for || - ||go and |- ||jq for || - |l,q,0 When
G = ). We often use the same symbols for denoting the vector and scalar function spaces if
there is no confusion. It is convenient to introduce a Banach space

L%(G) = {u € LG);supp u C Gr}, G=Qor H,

for R > 1, where supp u denotes the support of the function u. For a Banach space X we
denote by B(X) the Banach space which consists of all bounded linear operators from X into
itself.

Given R > Ry, we take (and fix) two cut-off functions 11 g satisfying

Yir € C®(R%[0,1]), vy r(z)= { 0o g; bg’:“ (2.1)
In some localization procedures with use of the cut-off functions above, the bounded domain
of the form Dy g = {z € Hy; R < |z| < R+ 1} appears, and for this we need the following
result of Bogovskil [2] which provides a certain solution having an optimal regularity of the
boundary value problem for V -u = f with © = 0 on the boundary (see also Borchers and Sohr
[4] and Galdi [9]): there is a linear operator Sy g from C§°(Dy,g) to C§°(D4, r)" such that for
1< g < 0o and integer j > 0

with C = C(R,q,j) > 0 independent of f € C{°(D4 r) (where V7 denotes all the j-th deriva-
tives); and V - Sy pf = f for all f € C§°(Dy,r) with [p, . f(z)dz = 0. By (2.2) the operator
S+ r extends uniquely to a bounded operator from Wg’q(Di,R) to Wg“'q(Di,R)“.

For G = Q, H and a smooth bounded domain (n > 2), let C§5,(G) be the set of all solenoidal
(divergence free) vector fields whose components belong to C§°(G), and LZ(G) the completion
of C§5(G) in the norm || - |lq.g. If, in particular, G = €2, then the space L () is characterized
as (1.2). The space LI(G) of vector fields admits the Helmholtz decomposition

LY(G) = Li(G) ® L1(G), 1< g< o0,

with LI(G) = {Vp € LYG);p € L] (G)}; see [8], [24] for bounded domains, 3], [21] for G = H
and [6], [22] for G = 2. Let P, be the projection operator from L4(G) onto LE(G) associated
with the decomposition above. Then the Stokes operator A, ¢ is defined by the solenoidal part
of the Laplace operator, that is,

D(Aqc) = WH(G) NWUG)NLA(G), Age = —Paeh,



for 1 < ¢ < oco. The dual operator A}, of Agg coincides with Ag/q-1,¢ on LL(G)* =

Ly (q—l)(G). We use, for simplicity, the abbreviations P, for P,q and Ay for Agq, and the
subscript g is also often omitted if there is no confusion. The Stokes operator enjoys the
parabolic resolvent estimate

A+ Ag) Hipraey < Ce/IAl (2.3)

for |arg\| < m — & (A # 0), where ¢ > 0 is arbitrarily small; [21], [3] for G = H and [6] for
G = Q. Estimate (2.3) implies that the operator —Ag generates a bounded analytic semigroup
{e~t4a;t > 0} of class (Cp) in each LI(G),1 < ¢ < co. We write E(t) = e~*4#, which is one of
Ey(t) = e *Hs, ,

The first theorem provides the LI-L" estimates of the Stokes semigroup e 4 for the aperture
domain §2.

Theorem 2.1 Letn > 3.

1. Let 1< g<r < oo (q# oco,r #1). There is a constant C = C(,n,q,7) > 0 such that
(1.8) holds for all t > 0 and f € L(2) unless ¢ = 1; when q = 1, the assertion remains
true if f is taken from LY(Q) N LE(S2) for some s € (1,00).

2 Let1<g<r<n(r#1)orl1<qg<n<r<oco. Thereisa constant C = C(Q,n,gq,r) >
0 such that (1.4) holds for allt > 0 and f € LZ(S2) unless ¢ = 1; when q = 1, the assertion
remains true if f is taken from L*(S2) N LE(SY) for some s € (1,00).

By use of the Stokes operator A, one can formulate the problem (1.1) subject to the vanishing
flux condition

su®)= [ N-uto =0, 20, (2.4
as the Cauchy problem |

w4+ Au+ P(u-Vu) =0, t>0;4(0)=a, (2.5)
in LI(Q). Given a € L?(f2) and 0 < T < oo, a measurable function u defined on 2 x (0,7)
is called a strong solution of (1.1) with (2.4) on (0,7) if u is of class u € C([0,T); Lz(€2)) N
C(0,T; D(As)) N CY(0,T; L*(SY)) together with lim lu(t) — alln = 0 and satisfies (2.5) for 0 <
t < T in L}(2).
The next theorem tells us the global existence of a strong solution with several decay properties
provided that ||a||, is small enough.

Theorem 2.2 Let n > 3. There is a constant § = §(Q,n) > 0 with the following property: if
a € L*(Q) satisfies ||al|n < 8, then the problem (1.1) with (2.4) admits a unique strong solution

u(t) on (0,00), which enjoys

llu(E)lir =0 (t‘” 24n/ 2') forn<r< oo,

IVu@)lla =0 (¢712), 1Beu(®)lln + llAu@®lla = 0 (7).

as t — 00.

The final theorem shows further decay properties of the global solution when we additionally
impose L!-summability on the initial data.



Theorem 2.3 Let n > 3. There is a constant n = n(§, n) € (0,6 with the following property:
ifa € LY(Q)NL2(Q) satisfies ||alln < 7, then the solution u(t) obtained in Theorem 2.2 and the
associated pressure p(t) enjoy

lu®)lle = O (£®=2)  for 1< 7 < oo,

IVu(t)|lr = O (t‘("""/")/z_l/z) for 1< r < oo,
18Ol + H4u(@ll = O (C—/21)  for 1< 7 < oo,

IV2 6@l + [Ve@)ll = 0 (/2) - for1<r<n,

ast — 0. Moreover, for eacht > 0 there erist two constants p+(t) € R such that p(t)—p+(t) €
L7(Q) with

l6(t) = P () lleg = O (¢7®=/271/2) forn/(n—1) < r < oo,

[P+ (8) = p-()] = O (¢77/271/+)

as t — 0o, where € > 0 is arbitrarily small.

83 The Stokes resolvent for the half space

The resolvent v = (A + Ag) Py f together with the associated pressure 7 solves the system
M —Av+Vr = f, V.-v =0 in the half space H = H; or H_ subject to v|gy = O for the
external force f € LI(H),1 < ¢ < 00, and A € C'\ (—0,0]. In this section we are concerned
with the analysis of v near A = 0. One needs the following local energy decay estimate of the
semigroup E(t) = e~*AH, which is a simple consequence of (1.3) for Q@ = H together with

IV9ullyzr < ClAY ullesr, ue D(AIE), (3.1)
for 1 < r < oo and j = 1,2 (Borchers and Miyakawa [3]).

Lemma 3.1 Letn > 2,1 < q < c0,d > 1 and R > 1. For any small € > 0 and integer k > 0
there is a constant C = C(n,q,d,R,e,k) > 0 such that

9505 B)Ps g < CEI2E( + 624 flom, (32)
fort>0,f€ L‘[Id](H) and j =0,1,2.

‘Lemma 3.1 is sufficient for our analysis of the resolvent in this section, but the local energy
decay estimate of the following form will be used in section 5.

Lemma 8.2 Letn > 2,1 < q < 0o and R > 1. Then there is a constant C = C(n,q,R) > 0
such that

IE®) fll2,q,55 + 10:E®) fllgrre < CA+1)""2|flp(4, n): S (33)
fort >0 and f € D(Aqn).

We next employ Lemma 3.1 to show some regularity estimates near A = 0 of the Stokes
resolvent in the localized space W29(HEg).



Lemma 8.3 Let n > 3,1 < ¢ < 00,d > 1 and R > 1. Given f € L{y(H), set v(\) =
(A + Ag)~1Pyf. For any small ¢ > 0 there is a constant C = C(n, q,d, R,&) > 0 such that

m—1

MPIOTv M lzq i + D, 1080 (Mll2g b1 < Cllfllg. 1 (3.4)
k=0

for Re A>0 (A #0) and f € Lfd](H), where

m = (n-1)/2  ifn is odd,
]l n/2-1 if n is even,

1/24+¢e  ifn is odd,
€ , if n is even.

ﬁ=ﬂ(s)=1+m—g+e={

Furthermore, we have

llv(A) — wll2,0.88 q -
Sup{ "f"q,H ’ f # O)f € L[d](H)} O’ (3'5)

as A — 0 with Re A\ > 0, where w = [j° E(t)Pgfdt.

Proof. We recall the formula

v\ = (A + Ag) " Puf = /0 * e ME(t)Py fdt, (3.6)

which is valid in LI(H) for Re A > 0 and f € LI(H). In the other region { € C\
(—00,0];Re A < 0} we usually utilize the analytic extension of the semigroup {E(t);Re t > 0}
to obtain the similar formula. For the case Re A = 0 (A # 0) which is important for us, however,
thanks to the local energy decay property (3.2), the formula (3.6) remains valid in the localized
space LI(Hg) for f € L‘[Id](H ) (the function w in (3.5) is well-defined in LY(Hg) by the same

reasoning). We thus obtain from (3.2)
IV8o()lgre < [ #IV/BE)PaSlgmadt < Ol o,

provided that

j=0,1 ifk=0, j=0,1,2 ifn>5 1<k<m-1,
j=2 ifk=mn=2m+1; j=12 ifk=mmn=2m+2.

For {k, j} = {0,2} we have only to use (3.1) together with (2.3) to see that
IV2u Mg t1e < Cll A+ An) P fllgn < Clifllgn-
The remaining case k = m is the most important part of (3.4). Since
1850\ ll2,q,1 < Cmt{IA™™ + A} fllgar,

we have the assertion for |A| > 1. For 0 < |A| < 1 and odd n (resp. even n), we have already
shown the estimate as above when j = 2 (resp. j = 1,2). Thus, let j=0or 1forn=2m+1
and j = 0 for n = 2m + 2. We divide the integral of (3.6) into two parts

m — YA ® —At m —
oTv(N) = {‘L + /l-/l)\l} e M(—t)™E(t) Py fdt = wi(A) + w2 (}).



Then (3.2) implies . ]
IV wr (W)l < CINTPH2 fllg,m,

for f € L?d](H ). On the other hand, by integration by parts we get
e—A/|A| (_]_)m (1) oo g—At
wo(A) = —— | — | El|=]P +f — 0 [(—t)™E(t)Pu f] dt
o= (5p) B () Pt + [, S dl-omB@Pdl
in L(Hg) since (3.2) implies tl_lglo t™|| E(t)Pu f|lqH, = 0. With the aid of (3.2) again we see

that _ )
IVwa(Mllg e < CINPH2) fllga,

for f € L?d}(H). Collecting the estimates above leads us to (3.4). We next show (3.5). Since
le=* — 1| < 21-9|A]P#? for Re A > 0 and 6 € (0, 1], we have

. 0 .
IV () — w)lge < 2PN [ OB Paf lqmnds

for j = 0,1,2. From (3.2) together with a suitable choice of 6 (for instance, § < 1/2 for n = 3),
we conclude (3.5). O
Finally, we derive further information on the regularity of the resolvent along the imaginary

Lemma 8.4 Letn>3,1<qg<o0,d>1and R> 1. Set
@g)(s) =%(is+ Ag)"Py (s€ R\ {0}, k=m orm—1),

where i = /—1. Then, for any small € > 0, there is a constant C = C(n,q,d, R,€) > 0 such
that

188 (s + ) f — B (8) fll2,g,11 < Clhllsl ™[ llg,z, (3.7)
188D (s + k) f — B (8) fllag,zm < ClRI8 ™ Fllq,z, (3.8)

forhe R,|s| > 2|h| and f € Lfd](H), where m and 3 = (3(¢) are the same as in Lemma 3.5.

Proof. Estimate (3.8) is a direct consequence of (3.4). In fact, we see that

_ _ s+-h
185006 + ) = 8T Dl < | [ 1957 g rndr),

which together with the relation |s + k| > |s| — |h| > |s|/2 implies (3.8). We next show (3.7).
By (3.6) with Re A = 0 in LY(HR) we have

& (s +h)f - @5 (s)f
1/is] 0o ; ,
= (=i)™ / + / . e~t5t(e=ht _ 1)fm E(t) Py fdt = (—i)™(wy + wp).
0 1/|s
For the convenience we introduce the function
Fi(t) = 6F[t™E(t)Py f], k0.

We then deduce from (3.2)



1k () ll2q, 11 < CEFF™1(L 4 )72 fllg m, (3.9)
fort>0and f e L?d}(H)‘ Taking |e~™"* — 1| < |h|t into account, we see from (3.9) that

1/}s|
[wilhanns 6l [ (O lagsndt < Clalls| >~ flasr,

for f € L'[’d] (H). By integration by parts we split ws = wo; + wag + wa3, where

wyy = e _e—Ha+h) el (i) _ %e—isllsl(e—ih/lsl )R (L) ,

~ s(s+h) |s| |s|
ih (o R N
Wog = —————r e iRt B (1)t = — e~ t(e—ht _ 1) P ()dt.
2= S5 R S 1(0)dt,  wes = ” ( YFi(t)

Since 1/|s(s + h)| < 2/|s|? for |s| > 2|h], it follows from (3.9) that

lwarllz.q 115 < 3lklls| =21 Fo(1/ls)ll2.q,m < Clhlls| ™~ I fllgm,

and that

o0
lwaalaqima< 2Aelll2 [ IFsOllqmads < Olrlel 1 laa

for f € L'[ld] (H). We perform integration by parts once more to obtain wgs = w231 + w232 + w233
with :

__h  iemslg [ 1 1 _is/jsl( ~ih/lsl 1
v = R A ()~ me e DA ()

P [7 eitermrep (t)dt was= 2 [ e ¥t (e — 1) Fy(t)dt
32(S+h) 1/}s| 2 ’ 233 2 .

w32 = 2
8% J1/l4|
By the same way as in wy1 + woy we find

o0
llwasy + waszllz,g e < 3lRIIsI™3 < IIF1(1/Is)ll2,g,m5 + ﬂ 1 IIFz(t)Ilz,q,Hadt}
-
< Clh|Is|P=2 |\ fllg,zrs

for f e L‘[Id] (H). Finally, we use (3.9) again to get
00
llweasllz,g me< Ihlls| A ) ltNFg(t)Hz,q,HRdt < C\hls1™2 1 f lla, s
8

for f e L‘[’d] (H). We gather all the estimates above to conclude (3.7). O

4 The Stokes resolvent

In this section, based on the results for the half space obtained in the previous section, we address
ourselves to analogous regularity estimates near A = 0 of the Stokes resolvent u = (A+A)"1Pf,
which together with the associated pressure p satisfies the system Mu—Au+Vp=f, V-u=0
in an aperture domain Q subject to u|sn = 0 and ¢(u) = 0, where f € L9(2),1 < q < 00 and
A € C\ (-00,0. To this end, as in [15], {17} and [1], we start with the construction of the
resolvent near A = 0 for f € L9(S2) with bounded support. We fix a smooth bounded subdomain



D so that Qpyy3 € D C Q. Given f € LI(Q), we set vp = A;’})P%Df and take a pressure mg
associated to vg; they solve the Stokes system —Avy + Vmg = f, V -19 = 0 in D subject to
vglep = 0, where f is understood as the restriction of f on D. We further set

vi(2,A) = (A + Agry ) Py n. [V, ro f,

where 14 g, are the cut-off functions given by (2.1). One needs also the case A = 0

vi(,0) = A % By (t) Py, s rofldt,

which is the solution written by the Green tensor for the Stokes problem in H.. We take the
pressures w4 in H, associated to vy so that

L. imaen) - m@)d <o, (41)
Dy ry+1

for each A. In this section, for simplicity, we use the abbreviations 1 for the cut-off functions
Y+ Ro+1 Given by (2.1) and Sy for the Bogovskil operators Sy gy.1 introduced in section 2.
With use of {vy, 71}, {vo, 7o} and 94 together with S, we set

v =TM)f
=t vy +Y_v_+ (1 =9y — ¥ ) (4.2)

—S¢[(vy —vo) - Voi] = S_[(v- — vo) - Vo],
m =tpry +om_ + (1 - ¢4 — _)mo.

We here note that [, Ro“(vi — )+ Viprdz = 0 since V.vy = V -9y = 0. An elementary
calculation shows that the pair {v, 7} satisfies

MW-Av+Vr=f+QNf, V-v=0, (4.3)
in © subject to v[an = 0 and ¢(v) = [, N - vodo = fan V - vpdz = 0, where

QNS = (A f + Q2(A)f (4.4)
with
Q1A =M1= 9y =¥ v~ 2V - V(vg — vp) ~ 2V - V(v_ ~ vp)
—(Av4)(v4 ~ vo) — (A9-) (v~ — o)
+(Vepy ) (g ~ mo) + (Vo) (7~ ~ mo)
—AS[(v4 — vo) - Vb ] = AS_[(v- — w) - Vo],
and

Q2(A\)f = ASy[(vy — vo) - V1| + AS_[(v— ~ wg) - Vip_].
By (2.2) we have S1[(v+ — w0) - V1] € W2 (D ros1). But one can obtain the regularity of
this term only up to Woz’q (while the Wg ‘“_regularity of the corresponding term is available for

the exterior problem). This is the reason why the remaining term Q(\) has been divided into
two parts. We first derive the regularity estimates near A = 0 of T'(A) and Q(\).

Lemma 4.1 Letn 2 3,1 < q < 00,d > Ry and R > Ry. For any small ¢ > 0 there are
constants C1 = C1(Q,n,q,d, R,e) > 0 and Cy = C2(2, n,q,d,e) > 0 such that

m-—1

MPIBTT (N Fllzg0z + D, 15T (N Fllze0s < Crllfllg, (4.5)
k=0

for Re A>0 (A #0) and f € L‘[’dl(ﬂ); and

10



m—1
PIOTQMN fllg + D 185QMN) Fllg < Callfllgs (4.6)
k=0

for Re A > 0 with0 < |\ £ 2 and f € L?d](Q), where m and B = () are the same as in
Lemma 3.3.

Proof. In view of (4.2), we deduce (4.5) immediately from (3.4) together with (2.2). One can
show (4.6) likewise, but it remains to estimate the pressures 7 contained in (4.4). By (4.1) we
have

f Ori(z, \dz =0, 1<k<m. (4.7)
D4, ry+1

On the other hand, from the Stokes resolvent system we obtain ,\vai + ka'j‘lvi - Aafvi +
Véiny = 0(1 < k < m) in Hy. This combined with (4.7) gives

||(v¢i)a§1ri(k)llq
< OV LMN)-1,4,D4 ro 41
< C[VOvWllg s, mgra + CINIBEL N s, sz + CRIFE 02 (N llg s, g2

for 1 < k < m. Similarly, for £ = 0, we use (4.1) to get

(VY1) (mL(A) = mo)llg < ClIV(mL(A) - WO)“—L‘I:D:t,Ro+1
< ClIVus(M)llg,He,rg2 + CIMvLWllg B2 5042 + Clifllg-

It thus follows from (3.4) that

m-1
IMNEH(VHL) 0P Wlg + 3 (V)85 (mx(A) = mo)llg < Clliflgs
k=0

forReA>0with0< |\ <2and f€ Lﬁi](ﬂ). This completes the proof. O

Let us consider the case A = 0 and simply write v+ = v+ (z,0). Since ||(v+ — v0) - Vb1 ll2,4 <
C||fllgs the operator [f — (v — wo) - Vo] : LIU(Q) — W3"(D4,ro+1) is compact, which
combined with (2.2) implies that so is the operator Q2(0) : L(2) — L‘[’d] (), where d > Rg +2.
The other part Q;(0)f fulfills |Q1(0)f|l1,q4 < C||fllg, from which the compactness of Q1(0) :
L) — L'[’d](Q) follows; as a consequence, Q(0) = Q1(0) + Q2(0) is a compact operator from
Lfd](Q), d > Ryp+2, into itself. We will show that 1+Q(0) is injective in L?d](Q). Let f € L‘[’d](Q)
satisfy (14 Q(0))f = 0. In view of (4.3), the pair {v, 7} given by (4.2) for such f should obey
—Av+ V7 =0, V.-v = 0in Q subject to vjagn = 0 and ¢(v) = 0. Since f € L{’d](Q) for
1 < r < min{n,q}, we have V20,V € L7(Q), Vv € Lrr/tn=)(Q), v,m € L}, (Q). It thus
follows from Theorem 1.4 (i) of Farwig [5] that v = V& = 0; here, it should be remarked that
the uniqueness holds without any radiation condition (unlike the exterior problem discussed in
[15] and [17]). We go back to (4.2) to see that vy = Vry = f = 0 in Hi \ Bry+2 and that
vo = Vmg = f = 0 in Qggy1. Set Ux = (DU Bgr,) N Hx. Both {v4,m+} and {vo,mo} then
belong to W24(Uy) x W14(Uy,) and are the solutions of the Stokes system in Us with zero
boundary condition for the external force f. They thus coincide with each other and, in view
of (4.2) again, we have vg = Vmg = f = 0 in D; after all, f =0 in Q. Owing to the Fredholm
theorem, 1+ Q(0) has a bounded inverse (1 + Q(0))~! on L'[’d}(Q).

Set £, = {\ € C;Re A > 0,0 < |A| < n} for n > 0. Since

IQf - QUO)fllg £ Cllvr(A) — v+ (0)llngHu,rgea + Cllv-(A) = v-O)lln0,1_ mo+2
+CIA o4 M llg,fry mgsa + 1= (N llgH_ g2 + llvolle.n}s
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we obtain from (3.5)
1RM) = QO)ipze, @) — 0

as A — 0 with Re A > 0, which implies the existence of a constant 7 > 0 such that 1+ @Q())
has also a bounded inverse (in terms of the Neumann series) on L‘[Id] (©) with uniform bounds

(1 + Q(’\))_IIIB(Lfd](Q)) <C, (4.8)

for A € £, U {0}. Since the resolvent is uniquely determined, one can represent it for A € L,
and f € L?d](Q),d > Rg+2, as

A+ A)IPF =T+ QM) f. (4.9)
We are in a position to show an analogous result for the resolvent to (3.4).

Lemma 4.2 Letn > 3,1 < ¢ < 00,d > Ry and R > Ry. Given f € Lfd](Q), set u(\) =
(A4 A)"'Pf. For any small € > 0 there is a constant C = C(Q,n,q,d, R,&) > 0 such that

m-—1

IMPloTuMN ll2.q0s + Y 105u(M)20.05 < Clifllg: (4.10)
k=0

for Re A >0 (A #0) and f € L'[’d](Q), where m and 3 = () are the same as in Eemma 3.8.

Proof. The problem is only near A = 0 because we have (2.3) for G = 2. We may also assume
d > Rp+ 2 since LE’RO](Q) C L?d](Q) for such d. It thus suffices to show (4.10) for A € Ly by use

of (4.9). For such X and 0 < k < m we see that 85(1 + Q(A))~" € B(L{;()); furthermore,

m—1
APIGT A+ QM) fllg + Y 1951+ QM) fllg < Clifllg, (4.11)

k=0
for f € L?d] (). In fact, we have the representation

B+ = -1+ QM) HAKQMI + Q)T F + LA+ Q)Y (4.12)

fork>1land f € L?d](Q), where Li(\) = 0 and Li()\) with £ > 2 consists of finite sums of

finite products of (1 + Q(A))~%, 0xQ(N), - ,Bf\“'lQ()\). Consequently, (4.6) together with (4.8)
implies (4.11). In view of
: k
k s .
Ru(r) =) ( i ) 8T\ (1 + Q) f,

J=0

we conclude (4.10) from (4.5) and (4.11). O
In the last part of this section we will complete the regularity estimate of the resolvent. To
this end, we employ Lemma 3.4 to show the following lemma.

Lemma 4.8 Letn > 3,1<¢g< 00,d> Ry and R> Ry. Set
T®(s) = 85T (is), QW(s) =8%Q(is) (s€ R\ {0}, 0< k< m)

For any small e > 0 there is a constant C = C(,n, q,d, R,€) > 0 such that

IT®) (s 4+ h)f — T® () fllo,gn + 1Q® (s + B)F = Q¥ (s) fq

12



Clhlls|#~Yiflly  if k=m,
< { ClhllsI?lfllq ifk=m-—1, (4.13)
Clrllfllq ifn>5 0<k<m-2,
for2lhl < |s| £ 1 and f € L‘{’d](ﬂ), where m and B = PB(g) are the same as in Lemma 3.3.
Concerning the first term of the left-hand side, (4.18) holds true for h € R and |s| > 2|h|.

Proof. Set vgc)(s) = vy (is), wf)(s) = 9 ryi(is) (s € R\ {0}, k=morm—1). It then
follows from (4.2) together with (2.2) that -

T (s + h)f — TC™(8) fll2,0.05 |
< OloS™ (s + h) = o™ (8)lla,q,H, . + CIWE™ (s + h) = ™ (8) 2,0, _ -

In order to estimate @™, let us investigate the pressures w(im). Similarly to the proof of Lemma
4.1 with the aid of (4.7), one can show

NV {r (s + B) = 1 (@)}Hlg < CIVAST (s + h) = VAT (8)l|-1,6,Ds s

< CIVoi™ (s + h) — Vo™ (8)llg,Hs pg 42
+C|(s + h)o™ (s + ) = 598 (8) llg, s, mg 42
+omfo{™ V(s + h) - vV (6)lg e mgsa-

This combined with estimates on the other terms by use of (2.2) yields

Q™ (s + h)f — Q™ (8)£ I

< Cllo§™ (s + ) = v™ (8) 1,0, Hs mora + Cllo™ (8 + B) = v (8)l1,6,5_ 42
+Clsll[v8™ (s + k) = 0™ (8)llg,t14.mesa + Clalln™ (s + k) = o™ (8)llg1_ my42
+CR|I[WS™ (s + h)llg, 4 mgsa + CIBIINE™ (8 + 1) g, mysa '
+omlul™ V(s + ) — o™V (8)lg.trmesa + Callo™ V(s + ) = v (8) g fi_ mysa-

Hence (3.7), (3.8) and (3.4) imply (4.13) for the case k = m. For 0 < k < m — 1 we have

s+h
“T(k)(s +h)f - T(k)(s)fHZ,q,ﬂn < f ¥ |‘T(k+1)(7')f”2,q,ﬂnd1'

?

s+h
[ 10® 0@ ladr

which together with (4.5) and (4.6) respectively lead us to (4.13). The proof is thus complete.
a :

The regularity of the resolvent along the imaginary axis given by the following lemma plays
a crucial role in the next section. ‘

1QW(s+ k) f — Q¥ (s)fllq <

b]

Lemma 4.4 Letn > 3,1 < q< 00,d> Ry and R> Rp. Set
M (s) = a™(is + A)"IP (s € R\ {0}).
For any small £ > O there is a constant C = C(Q,n,q,d, R,€) > 0 such that
[ 126 + by f - 8 @)l gapds < CIAL 21l (4.19)
—00

for |h| < ho = min{n/4,1/2} and f € L‘['dl(Q). Here, m and 8 = fB(¢) are the same as in Lemma
8.8, and 1 > 0 is the constant such that (4.9) is valid for A € Xy,

13
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Proof. We may assume d > R+ 2 (as in the proof of Lemma 4.2). Given k satisfying |h| < ho,
we divide the integral into three parts

[ 12 s 4 m)p = 8 flagapds = [+
—oo0 [si<2/h| J2

With the aid of (4.10), we find

+/ =5+ 1+ Is.
lh|<|s|<2ho |8{>2ho

L <2 l<alA 8™ (8) fll2,.05d8 < CIRI' 2| fllgs

for fe L?d] (Q). In order to estimate Iz, we use the representation

&M (s)f = fj ( ;" ) Tm=3)(s) VO)(s)f,

=0
where VU)(s) = 83(1 + Q(is)) ™ € B(L{;()) (0 < |s] <5, 0< j < m). Then,

3™ (s + h)f — ®™(s)f = fj ( ;” ) [T™=9) (5 + h) — T (s)] VU (s + h)f
3=0

3 ;n Tm=9) () [V (s + B) = VO (s)] .
s
We first show

_ , Clhlls|~fllq  if j=m,
WO(s+n)f - VO(s)fllg < Clhlls|liflly i j=m—1, (4.15)
Clhl|5llq fn>5 0<j<m-2,
for 2|h| < |8| < 2hp and f € Lfd](ﬂ). Similarly to the proof of (4.13) for 0 < &k < m — 1, (4.11)

implies (4.15) for 0 < j < m — 1. As in (4.12), we have V(™) (s) = VO (5)Qm (s)VO)(s) +
Wim(s)V (O (s), where Wi(s) = 0 and, for m > 2, Wy,(s) = i™Lm(is) consists of finite sums of
finite products of Vo(s), QM (s),-+-,Q™ V(s). Therefore, we collect (4.6), (4.8), (4.13) and
(4.15) for j = 0 to arrive at (4.15) for j = m. It thus follows from (4.5), (4.11), (4.13) and
(4.15) that

(s 4 h)f - 8™ (e) g < CUbllsl =1l

for 2|h| < |s| £ 2hg and f € L‘[’d](Q). As a consequence, we are led to
BECIIf, [ 1o 1ds < Gl £l
|s|>2h]

for f € Ll[ld] (Q). Finally, to estimate I3, one does not need any localization. In fact, since

s+h
B (5 4 h)f — ™ (8) = (=)™ (m + 1)! / (it + A)~ ™+ pfdr,

8

(2.3) gives

18 (s + h) f — 8™ (8) flla.g0x < ClhllsI ™™+ fllg,
for |s| > 2hg (> 2|h|) and f € LI(S2). Therefore, we obtain
R Clbllfle [ o™ Vds < ClAll £
|s|>2ho
for f € LI(Q). Collecting the estimates above on Iy, I; and I3, we conclude (4.14). O



5 LI-L" estimates of the Stokes semigroup

In this section we will prove Theorem 2.1. As explained in section 1, the first step is to derive
(1.6) for non-solenoidal data with bounded support.

Lemma 5.1 Letn > 3,1 < q < 00,d > Ry and R > Ry. For any small ¢ > 0 there is a
constant C = C(Q,n,q,d, R,€) > 0 such that

e * AP flhgnr < Ct~V2(1 4+ ) /212 g, (5.1)
fort>0 andfeL (2).

For the proof, the following lemma due to Shibata is crucial since we know the regularity of
the Stokes resolvent given by Lemmas 4.2 and 4.4.

Lemma 5.2 Let X be a Banach space with norm ||-|| and g € L}(R; X). If there are constants
6 € (0,1) and M > 0 such that .

[ Nstalds +sup g [ oG-+ 1) = g(s)lids <

then the Fourier inverse image G(t) = 2= [°o, e**tg(s)ds of g enjoys
Ic@)l < eM@+t)~°,
with some C > 0 independent of t € R.

Proof. Although this lemma was already proved by Shibata (23], we give our different proof
which seems to be simpler. Since ||G(t)|| < M/2m, it suffices to consider the case [t| > 1. It is

easily seen that if ht # 2jr (j = 0,£1,+£2,.--), then G(t) = 2”(‘13":, y % et(g(s+h)—g(s))ds,

from which the assumption leads us to |G(t)|| < M|h|®/2m|1—e). Takmg h = 1/t immediately
implies the desired estimate. O
Proof of Lemma 5.1. Since

le™4Pl1g < Clle 4P fllpia, e P11l < CE72) £l (5.2)

for 0 <t < 1 and f € LI(Q), we will concentrate ourselves on the proof of (5.1) for ¢ > 1,
namely (1.6). Given R > Ry, we set ) = 1 — 14 g — ¥ g, Where the cut-off functions ¥+ r
are given by (2.1). One can justify the following representation formula of the semigroup for

fe€ Ld](Q)

ve tAPSf = 2::’" /_ °:° 'ty ®(™ (s) fds, (5.3)

where &™) (s) = 8™ (is+ A)~1P and m is the same as in Lemma 3.3. In fact, starting from the
standard Dunford integral representation, we perform m-times integrations by parts and then
move the path of integration to the imaginary axis but avoid the origin A = 0, so that

{ / - / } o™ (5) fs + / Mpal(\ + A)"Pfd),

2mit™

ye AP =

21rtm

for any § > 0, where ['s = {6e*; —7/2 < 0 < w/2}. Owing to (4.10), the last integral vanishes

in LI(Q) as § — 0 for f € L%, (Q); thus, we arrive at (5.3). Now, it follows from (4.10) and
(d)

18 () fll1q < CHE™ ()1l 5¢a,) 1B™ (8)f 1l together with (2.3) that

* (m) |_|_.ﬂlg ”f“q .
[ wem@saasso [ Hgavo [ i<,
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Further, (4.14) and the estimate above respectively imply that

1% pem — 3m)
i i | e e+ 1) = 9] gds < Cl

and that

SUP TR |h,1 5 [ 1605+ h)f - p8™(5) 1 4ds < h2 5 [ 168 (5) 1 gds < Clfle

Hence, we can apply Lemma 5.2 with X = W19(Q) and g(s) = v&{™)(s)f to the formula (5.3);
as a comsequence, we obtain

le*4Pfllq0n < Ibe 4P fllq < CE™(1+8) | £l

for ¢t > 0, which implies (5.1) for £ > 1and f € L (Q) This completes the proof. O
The next step is to deduce the sharp local energy decay estimate (1.5) from Lemma 5.1.

Lemma 5.8 Letn > 3,1 < g < 0o and R > Ry. Then there is a constant C = C(Q,n,q,R) > 0
such that

le £ 100z < CE™2|| fllq, (5.4)
fort>2 and f € LL(Q); and

le*4F g0k + 0™ fllgan < C(1+ )72 f||n(a,), | (5.5)
fort>0 and f € D(Ay).

Proof. Given f € LI(Q), we set g = e~ f € D(A,) and intend to derive the decay estimate of
u(t) = e tg = e‘(H'UA f in W9(QpR) for t > 1. We denote by p the pressure associated to
u. We make use of the cut-off functions given by (2.1) and the Bogovskil operator introduced

in section 2. Set g1 = ¥4 ry+1 9 — St,Ro+119 - V¥4 mo+1] and vi(t) = Ei(t)g+. Note that

fDi Ro“g Vi1 ro+1dz = 0 and that g4 € D(Aqm,) with

9+ /lD(4gmy) S Cligxll2gms < Cllglzg < Cliglina,) < Cliflla, (5.6)
by (2.2). We take the pressures 74 in H. associated to vy in such a way that

/ (2, t)dz = 0, (5.7)
D:I:,Ro

for each ¢. In the course of the proof of this lemma, for simplicity, we abbreviate ¥+ r, to ¥+ and

S4,ry to Si. We now define {uy, ps} by us(t) = orve(t) — Sifve(t) - Vb, p£(t) = vams(t).
Then it follows from Lemma 3.2 together with (2.2) and (5.6) that

lus @) l1g0r < CllvsOllngbe, < CA+8)™2) 5|l - (5.8)

for t > 0, where L = max{R, Ry + 1}. Thus, in order to estimate u(t), let us consider v(t) =
u(t)=uq (t)—u_(t) and 7(t) = p(t)—p+(t)—p_(t), which should obey v—Av+Vr = K, Vv =
0 in Q subject to v|ag = 0, #(v) = ¢(u) =0and Vji=p =v9 =g—9g+—9- € L‘[’RO+2](Q)0D(A,,),
where
K = 2V1/J+ . V'U+ + 2V’l/)_ -Vu_ + (ATI)+)U+ + (A'l/)._.)’U__
~AS vy - Vipi| — AS_[v_ - Vep_]
+84 [0y - Vi + S_[Bpv- - VY_| = (Vipy )my — (V)7



we here note that V- K # 0 as well as K|sq # 0 and we can obtain the regularity of K only up
to L? (in contrast to the exterior problem discussed in [15] and [17]). By (5.7) and in view of
the Stokes system in Hy we have

[(Vips)ms (B)lg € CNVTLON-1,4,D,my S CNVVED)lg,Hs, mp41 + ClOV2 (Dl b o s

which together with (2.2) implies K (t) € L'[IR0 +1](Q) and

”K(t)”q < C!l”+(t)lll,q,H+,Ro+1 + C”U—(t)”]-;‘IyH—.Ro+l
+C“8t’v+(t)“q,H+,no+1 + C'“@{(L (t)“an—.Roﬂ'

Therefore, Lemma 3.2 and (5.6) yield

1K @®)llq < CA+ )" fllg, (5.9)

for t > 0. In order to estimate
v(t) = et + /0 t e~ t-"APK(1)dr,
we employ Lemma 5.1. By (5.1) with a suitable £ > 0 and (5.6) we find
le"*Avoli100x < CE™**|uolly < CE*1| fllg,

for t > 1. We next combine (5.1) with (5.9) to get

t t
/ le=¢APK (1) ||l1g0:d7 < ClIfllq / (t— )" V2(1 4t — 7)~MHH12He(1 4 7)™ *4dr
[4] 0
= C||fllq(11 + I2),

where I; = fg/ % and Iy = _[':/2. An elementary calculation gives

Ct—1/2(1 + t/z)—n/2—n/2q+3/2+e if g > n/2
n<{ ctV2(1 4+ t/2) /2124 log(1 4 £/2)  if q=n/2 ) < CEA,
Ct=V/2(1 4 t/2)~"/2+1/2+e if g < n/2

fort > 1and
(o o]
I < (1+t/2)~/% [ 7121 4 )R Gr < O(1+ £/2) 72,
0
for t > 0. We collect the estimates above to obtain

lo()ll1e0r < Ct™2 flla (5.10)
for t > 1. From (5.8) and (5.10) we deduce ‘

lu®)lg0r = Iv(E) +us (@) + u-(Blhg0e < C2 | fllgy

fort > 1 and f € L2(Q), which proves (5.4). Let f € D(Aq). Then we easily observe
et lh.an + 184 lgnn < Clle*4flniay < Clflipuag for t 2 0 and also we can
estimate 8,e~tAf for large t; in fact, by virtue of (5.4) just proved we get 8:e™* fllgan =
le~tAAf|lqan < Ct—™/%4||Af|lq for t > 2. This implies (5.5). O

We are interested in the L9 estimate of Ve~*4 for large ¢, in particular, the L™ estimate is
quite important for us.
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Lemma 5.4 Letn > 3 and 1 < ¢ < 0. Then there is a constant C = C(Q,n,q) > 0 such that

IVe*fllg < Ct=minl/2n2aY g, (5.11)
fort>2 and f € LI(R2).

Proof. We fix R > Rg+ 1. Since we have already known the decay rate t~"/24 of | Ve tAf ||, ap
by Lemma 5.3, it suffices to derive the estimate outside g, that is,

IVe 4 fllgas\ae S Ot~ =20/20/28 £, (5.12)

for t > 2 and f € L1(S2). In an analogous way to [15], [17] and [1], we make use of the decay
properties of the semigroup E(t) for the half space. Given f € L(2), weset g = e"4f € D(A,)
and then u(t) = e *4g = e~ (+DAf We choose two pressures p.. in Q associated to u in such a
way that

/ pi(z, t)dz = 0, (5.13)
Dt g

for each t (p+ and p_ will be used independently). With use of the cut-off functions given
by (2.1) and the Bogovskil operator introduced in section 2, we define {vy,m+} by vi(t) =
pru(t) — Stlu(t) - Vip1], 7+(t) = ¥+p+(t). Here and in what follows, we use the abbreviations
Y4 for ¥4 p_1 and Sy for S4 r_1. Since vy = u for z € Q4 \ Qg = Hy \ Bg, we will show

[Vos(t)llgmy < Ct~2i1/2n/ 28 g1 0, (5.14)

for t > 1, which combined with |lg|lp(a,) < C||fllq implies (5.12) for ¢ > 2. It is easily observed
that {vi, 7y} satisfies Qvy — Avy + Vrry = Z4, V-vy = 0 in Hy subject to vi|gy, = 0 and
Vilt=0 = a4 = Y19 — Si[g- V¢y], where

Zy = —=2Vipy - Vu— (A¢s)u+ AS:ifu- Vipi] = S [0 - Vpi| + (Vipi)ps.

Our task is now to estimate the gradient of

t
v+(t) = EL(t)as +/0 Ey(t — )Py Zy(T)dT. (5.15)
By virtue of (5.13) we have
1(VY£)p+@llg.ars < ClIVPL(E)l-1,0D4,2-1 < ClIVU(t)llgr + CllOeu(t)llggr,
from which together with (2.2) it follows that
12+ ®)llg,ms < Cllu®)lingnr + CllOcut)llgar:
Hence, (5.5) implies

1Pr Ze (D)l < ClZ2(B)llgme < C(L+ £)™2|g)Ip(a,)s (5.16)
for t > 0 and r € (1,q] since Z.(¢) € L{IR](H:;:) C Lip(Hy) for such r. In view of (5.15), we
deduce from (1.4) for @ = Hy together with (5.16)

Ves Ol ,
Ct™ 2|y lq,m. + C||gl|D(Aq)A (t— 7)1+t~ )~/ n/D2() 4 )24
Ct712|gllg + Cligllp(a,) (11 + I2),

IAN A
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for r € (1, q], where I = fgﬂ and I = _/;72 We take 7 so that 1 < r < min{n/2,q}. Then we
see that

Ct12(1 + t/2)~n/2r+1 if g > n/2
I <{ CtV2(1 4 t/2)~/2r+110g(1 4+ £/2)  ifg=n/2 § < Ct72
Ct=1/2(1 4 t/2)~(o/r—n/)/2 if g < n/2

for t > 0 and that

I, < C(1+t/2)~™%  ifg>n,
2=Y ca+¢/2)712  ifg<n,

for t > 0. Collecting the estimates above concludes (5.14). This completes the proof. O
The following lemma is concerned with the L™ estimate of the semigroup (the restriction
q > n will be removed later).

Lemma 5.5 Let 3 < n < g < 0. There is a constant C = C(Q,n,q) > 0 such that

lle™*4 flleo < G2 £, (5.17)
fort > 0 and f € LI(Q).

Proof. For fixed R > Ry + 1, estimate (5.4) together with the Sobolev embedding property
implies [l 4 flloop < Ct™/23||f||q for t > 2 and f € LE(2) on account of n < g < co. Along
the lines of the proof of Lemma 5.4, one can show

le 4 flloog\ar < CE™2flgs (5.18)

for t > 2. In fact, given f € LI(S2), we take the same g,{u,p+} and {vi,7+}, and apply the
L3-L*™ estimate (1.3) for Q = Hy to (5.15). Then, taking (5.16) into account, we get

t
[0+l s < O™ asllqm.+Clgllpeay [ (¢=) 2 (1t t=r) O/ (14 )=/,
0

for r € (1,4]; we now choose r € (1,n/2) to find ||vi(‘t)||<,o,1,—i < Ct™™4|g|pa,) for t > 1,

which proves (5.18) for ¢ > 2. We thus obtain (5.17) for ¢ > 2. For 0 < ¢ < 2, we recall (5.2) to
see |le 4 f|loo < C||e‘tAf||%qIle‘tAfHé—"/q < Ct~™?||f||q. The proof is complete. O
We are now in a position to prove Theorem 2.1.
Proof of Theorem 2.1, The proof is divided into three steps.
Step 1. First of all, we observe (1.4) for ¢ = r € (1, n]. Indeed, it follows from (5.2) for 0 < £ < 2

and (5.11) for ¢ > 2 that

IVe~t4fllg < CtY2 fllgs (5.19)

for t > 0 and f € LI(Q) provided 1 < g < n. In this step we accomplish the proof of (1.3)
for 1< q<r<oo(q#o0)and (14) for 1 < ¢ < r < n. We begin with the removal of the
restriction ¢ > n in Lemma 5.5. In view of (5.19) and the Sobolev embedding property we have

le A fllr < CtY2|| £ llas (5.20)

fort> 0 and f € L4(Q) when 1 < ¢ < n and 1/r = 1/g— 1/n. Let n/(k +1) < ¢ < n/k with
k=1,2,-.-,n—1. We put {qj}';-:o in such a way that 1/gj+1 =1/¢;—1/n (=0,1,---,k— 1)
with gg = ¢. Since n < g < co, we make use of (5.17) with ¢ = g, and (5.20) to obtain
et flloo < Ct—"/2k||le~t/DAf| < Ct—"/2ak=k/2||f||, for t > 0, which proves (5.17) except
for g = n,n/2,---,n/(n — 1). But the exceptional cases can be also deduced via interpolation.

19



Thus the L?-L™ estimate (5.17) has been established for all g € (1,00). This together with the
L9 boundedness immediately gives (1.3) for 1 < ¢ < r < 00, from which combined with (5.19)
we further obtain (1.4) for 1 < ¢ < r < n.

Step 2. In this step we prove (1.4) for 1 < ¢ < n < r < 00. Given r € (n,00), we take
s € (n/2,n) so that 1/s=1/r+1/n. When 1 < g < s, an embedding relation given by Lemma
3.1 of 6] together with ||V2u||; < C||Aul|s [6, Theorem 2.5] implies

(Ve A f|lr < O V2 f|s < CllAe~ A f||s < Ot~ e /D 4F,,

for t > 0, from which together with (1.3) we obtain (1.4). If s < ¢ < n, which implies 7 < g.
with 1/g, = 1/q — 1/n, then by the same reasoning as above

Ve tAf|lr < Vet AF|2 Ve 45118 < CllAe £ 2 Vet 5|5,

for t > 0, where 1/r = (1 — 0)/q. + 0/q = 1/q — (1 — 8)/n. Therefore, (5.19) yields (1.4).

Step 3. Let f € LY(Q) N L2(Y) for some s € (1,00). This step is devoted to the case ¢ = 1,
namely L-L" estimate. Let 1 < r < oo. We apply a simple duality argument; in fact, the
L3-L*™° estimate implies

(e, 9) = I(f,e9) < [Iflalle™glloo < Ot £|l1lIgllr /-1

for g € Ly (r-l)(Q), which gives (1.3) for ¢ = 1 < r < 00. Combining this with (5.17) and
(1.4), respectively, we obtain (1.3) for g =1 < r = 0o and (1.4) for ¢ =1 < r < co. We have
completed the proof. O
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