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A NEW SCHEME FOR SINGULAR PERTURBATION PROBLEMS IN
CONSERVATION LAWS WITH PRESENCE OF SHOCK WAVES

SHIH-HSIEN YU

ABSTRACT. In this paper we systematically use a new scheme to study a singular perturbation of
an n X n strictly hyperbolic conservation laws so that one could clearly reveal the basic structure
of the new scheme without too much technical complication.

1. INTRODUCTION

A new scheme is introduced in [15] to study both the hydrodynamic limit for Boltzmann equation
and the zero dissipation limit for compressible Navier-Stokes equation. These problems are closely
related to singular perturbations of genuinely nonlinear hyperbolic conservation laws

(1.1) at + F(a); =0, a € R".

The singular perturbation problems are also related to the problems like, relaxation system with
stiff source term, the convergence of finite difference scheme, etc..

When the solution o is smooth, one can use the Hilbert expansion, [6], to study the singular
perturbation problem. The condition that & is smooth is a technical assumption in the consider-
ation so that the Hilbert expansion works. However, the condition is too strong to exclude shock
wave which is a generic nonlinear wave pattern of (1.1). When shock wave shows up in the solution
@, the singular perturbation problems becomes more interesting compared to the case that « is
smooth. It is because that the hyperbolic system (1.1) itself is not well-posed when a contains
shock waves.

The new scheme introduced in [15] imposes an initial-boundary value problem for a linearized
Euler equation around a shock wave to generalize the Hilbert expansion so that one still can
obtain a formal expansion series. It also integrates the local nonlinear internal layers and the
formal expansion series so that conservation laws are still valid for the approximate solutions
obtained by the new scheme.

Though the problem (1.2) had been extensively studied by [5], {14], [1], the main purpose of
this paper is to abstract the essence of the new scheme and to illustrate how it works. The viscous
conservation laws with an artificial viscosity are suitable for these purposes. So, we consider

(1.2) af + Fla®), =kaf, k>0, a*€R"

with assumptions on the invscid solution o
(1) o is periodic in space with a period T.
(2) « is piecewise smooth for ¢ € [0, £y].
(3) o contains only one shock wave in the domain [0, T} x [0, to).
(4) The total variation of « is sufficiently small in [0, T} for any ¢ € [0, #y).

Theorem 1.1 (Main Theorem). Under the above assumptions on «, there exist ko > 0 and 75 > 0
such that for any k € (0, ko) there is solution o* of (1.2) so that

w-lime,0+0"(2,t) = a(z,t) for any t € (0, 7).
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In Section 5, we will give a precise pointwise estimate of @ — a. The estimates of o* — a will
yield the convergence to a weak solution; and the Main theorem follows. Here, the estimate is
based on the following components

e A formal asymptotic expansion (Hilbert Expansion).

e An initial-boundary value problem of a linearized Euler equation.
e Existence of shock layers.

e Stability of shock layers.

e Energy estimates.

The first three components are for the new scheme to construct an approximate solution; and the
last two components are for estimating o — a*. Note that the last component, energy estimates,
is not absolutely necessary. It could be replaced by other type time-asymptotic analysis such as
the pointwise estimates in [8], [14]. Here, the energy estimates essentially originated from [4].

When the solution a is smooth, the Hilbert expansion is applied to obtain the convergence of a
finite difference scheme for hyperbolic conservation in {10], the hydrodynamic limit of Boltzmann
equation in [2], [12], [13], the hydrodynamic limit of Broadwell model in [3].

When the solution o contains shock waves under the condition that a is piecewise smooth, a
matching inner and outer expansion method is used to study the singular perturbation problem
n (11], [4]. The approach in [14] is a prototype of the new scheme for studying (1.2). Recently,
by using center manifold one can obtain the zero dissipation limit of o* with a general setting on
a by [1].

2. PRELIMINARY

A Formal Asymptotic Expansion.
One can formally expand the solution a* as follows

(2.1) o =a+ ka, + Klag+ Koz + 0.
The equations for a, o, oy, -+ are given as follows

oo+ 0, F(a) =0,

Oiay + 0. F'(a)a; = 8;8;, 1 = 0,a,

B0z + B F'(@)ag = 8,8y, Sz = By, — %F"(a) (n, ),

1
O3 + 8, F'(a)az = 8,83, S3= 8,00 — F'(a)(ag, 1) — EF’"(OZ)(al, ay, o),

Notions for Strictly Hyperbolic Conservation Laws.
The matrix F'(c) is an n X n matrix with n distinct real eigenvalues Ai(a), 1 <i < n,

F'(a)ri(a) = Ai(a) ri(a),
li(@)F'(a) = N(a) li(e),
M) < Ag(a) < -+ < An(a),

and
Vii(a) r(a) #0 fora e R*,i=1,2,---,n
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for the genuinely nonlinearity of F(a).

Notions for Shock Waves.
A shock wave is a discontinuity (@—, o) in « satisfying the Rankine-Hugoniot condition

o(o- —oy) = F(a-) - F(ay), 0 €R
and the Lax’s entropy condition, (7],

Mp(ay) < o < Aplas),
/\p_l(a-) <o< /\p+1(04+).

Such a shock wave is called a p-shock wave; and o is the speed of shock wave (a_,a,).

Notions for Shock Layers.
A shock layer connecting a p-shock wave (a_, o) is a travelling wave solution of (1.2) satisfying

a*(z,t) = U(=2),

K

lim U(€) = as.

§—-to00
When |a_ — a4 is sufficiently small, the function A,(U(£)) is strictly monotone decreasing, [9)],
sz\p(U(E)) < 0.

Notions for Shock Locations, Shock Waves, Shock Layers for (1.2).
Denote z = s(t) the location of shock wave of (a(s(t)—,t), a(s(t)+,t)), and denote U(&,t) a shock
layer connecting the shock wave (a(s(t)—, ), a(s(t)+,t)) with a normalized condition

U 0,2) = %(1,0, .,0) - (a(s(t)=, 0) + a(s(t)+, 0)).

The strength of the shock in the time domain [0, o] is assumed to satisfy

(e = min |a(s(t)—,t) — a(s(t)+,t)] < 1,
te(0,to]

N

max la(s(®)-, 1) - a(s(t)+, )

| min Ja(s(0)=,7) — a(s(0)+, )]

0(1).

Assumption. The shock wave (a(s(t)—,t), a(s(t)+,t)) is assumed to be a p-shock wave for
te [0, ta].

A Microscopic Coordinates

Kkt = t.

{nm’ =z — s(t),
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We still use the same notations to denote the conjugate functions as follows

( a(r',t) = ofz,t)
o', t") = a"(z,t)
! =0} = {z=s)
U,t) = U1
sty = s(t)/k
( (@(0=,1),a(0+,t)) = (als(t)—,1), a(s(t)+,1)).

The system for o in the microscopic system is
Opa® + Oy {—5'(t') " + F(a™)} — 2a" =0;
and the system for U(&,t') is
—§'(t') 8U + 0, F(U) = 83U,
{ Jm U t) = Jim a(n,t).
The Asymptotic Expansion in the Microscopic Coordinate System
We rewrite the expansion in (2.1) as follows
(2.2) o™, t) = a(@,t) + oy (7', t) + ag(a’, ') + -+ -,
Opa — 8'0pa + Op F(a) = 0,
[Oy — 80w + O F'(a)]on = 0xSy, 81 = Ora,

[Op — §'8p + Op F'()]ag = 0pSy, 82 = Oy — %F"(a)(al, o),

1
[By — 80y + O F'(a)]as = 05S3, S3 = 0pon — F' ()0, 1) - EF’”(a)(al, ay, o),

3. LINEARIZED CONSERVATION LAWS

From the notions in (2.2), we need to consider inhomogeneous linearized Euler equation. We
consider the linear homogeneous problem first
(3.1) OV —§'(t") 0pV + O F'(a)V =0.

Since o contains shock waves, the linear problem (3.1) is not well-posed. We will treat this problem
as an initial-boundary value problem in order to properly impose conservation laws.
First we decompose the solution V(z',t') as

V(z,t') = iV‘(w’,t’)ri(a(x’,t')) at ' # 0.

The flux enters the shock at (0,t') is given by

n

> (ile) = & ENVirie) =Y _(le) = §'E)VIr;la)

i=p z'=0— Jj=1 z'=0+
The flux created at the shock is of the form
- Z Viri(a) + Z (Aj(@) = 8")Virj(a) - S &(t),
z'=0-  j=ptl z'=0+




130

where §(t') = (a(0+,t) — a(0~,t')). From the consideration of conservation laws, we impose the
boundary condition for V at '’ = 0— and z' = 0+:

(3.2) i(Ai(a) W) = ) (M) = s)WVria)|  +SE()
i=1 z'=0— Jj=p+1 o' =0+
= — Z(A1(C¥) - s')V'r,(oz) + Z -$ )VJ ( )
i=p o' =0— .7—'.1 /' =0+

This initial boundary value problem is well-posed.

Remark 3.1. The determination of the flux entering and creating at the shock is simply a con-
sequence of Lax’s entropy condition. ]

Let e; € C[0,to/k], i # p, | € C*(R/XZ), and & € C*((R/IZ ~ {0}) x [0,%y/k]) be n + 1
given functions. We consider the following initial-boundary value problem

(8,V — §'(t') 8,V + 8y F'(a)V = B,

S[(/\i(a) - W +elri(e) - Zn: [(Ai(a) = ' )V* + eilri(a)
(P) ) :; §(t’) z'=0—  i=p+l

= 3 -(l@) - $)Viri(a)

i=p

|V(z',0) = I(z).

' =0+

]

P
+Z ) = & )Viri(a)
J=1

/=0~ z' =04

Denote the solution operator =
V= E[l, {8,;},'#,,, 6]

The function S depends on the values V' (0+,¢') and {e;};xp. Due to the dependency on V (0,1,
we denote S as follows to relate its dependency on |, {e;}izp, and S,

S= \I‘[l, {ei}i;ep, 6]

The solution V will satisfy that
d 21— ’ / / ! AS-7#1)
@ | V(2,t) dx’ —/ S(z',t")dz’ — Z:e,rz a(0—,t')) Ze,r, (0+,t")) — S(tha(t).

i<p i>p

In the construction of an approximate solution, there is no particular condition imposed on the
initial data. However, we will need to select initial data properly so that there is no singularity
due the inconsistency of the initial data and the boundary data.

We denote B is such a scheme to choose a suitable initial data consistent with the boundary data
and the external source term so that the resulted solution does not contain singularities.

| = Bl{ei}ixzp, G].
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4. THE SCHEME

Denote Ag(z',t') as follows

Ao(z', t) = ch_(z)|a(z',t') — a(0—,t')] + chy(2)]a(z’,t') — a(0+,t)] + U(z', t'),

where
(chy € C*(R),
ch! <0,
ch!, >0,
{ch (') =0if ' >0,
ch,(z')=0if 2’ <0,
ch_(z)=1if 2 £ -1,
kCh.}.(IL'I =1 lfl' 2 1.
Denote

Zel cari tl + Z 61 corl 0+ t’)) + 61 co

i=p+1
XL

= / " (B Ao — 58 Ao -+ By F(Ao) — 82A0) da’,
T

2k

p—1
i ! z'=0+
E ezl,e;pcri(a(o'_ t § : 61 ewtrt(a(0+ t)) + €1 exts = 1[1:’-0—-
=1 i=p+1
i — 1 1 ; —
€] = €len telgfori=1,-,n

The updated A, is given as follows

Iy = B({el }izp, 0S1],

J1 = E[ly, {€ }igp, 0S1],

S1 = ¥l {ei}#pa 3,,,-:81]

* st = fi e )dr

A = A +U(§ 51,t') ~U(, 1) +fIR y)cho(z' — y)dy,
(R = 0yA; — &' OwAL + 0 F (A1) — T a2 A,

where chy satisfies

cho € CX(R),
cho(z') = cho(—7),
chg 20,

Jrcho(z') dz' = 1.
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The updated function A; for j > 2 is given by the following

¢ p—1 n
Ze ri(a(0—,t) + Y eiria(0+,t)) + €85 = 5,120,
i=p+1
'J = [{ej}#maz’sj],
; J; = E[ly, {€} }izp, 'S},

S:, \I’[lj, {el},;ﬁp, ,,IS ]
61“(5]_1+f0 —S +6pd7'
Aj=A 1+ U —5J,t’) Uz = 6j-1,t) + [o J;
LRJ' = 6thj -4 6,;1Aj + ale(Aj) - 63:A
This scheme was made to assure that A; are smooth all # > 0 and that for i > 1
T
d‘i, / " A, #) da’ = O(mod)e~OWTI/x,

2%

(y)cho(z' — y)dy,

This yields

/2“ Ri(z',t') dz’ = 0(mod)e CVTl/" for 4 > 1.
T
~

When 2’ is away from the shock wave, the sequence {A;}i>o essentially is a partial sum of an
asymptotic expansion thus the truncation error R; is of the order x**2. Thus, one can easily
conclude that

(&) = O() [ + 5 oW forof € [ X, L),

5. ERROR ESTIMATES OF A;

The scheme constructs approximate solutions to (1.2). Next, we need assure that there is a solution
of (1.2) close to A, for t' < O(1)1/k.

Consider an initial value problem
6t'a'c -4 ax'an + az,F(an) - (93/01" =0,
a*(z',0) = A(z',0).

Take
(V=oaof - A1,

n
Y Vir(A) =V
i=1 ,
T
W(e, ¢) = / Viy,t) dy,

Z W"T,(A]_

\ =1

The systems for V, W, and W' are
(5.1) 9V — $8uV + 0 F'(A)V + 3uN[V] — B2V = —Ry,
W — §'0,W + F'(A))W, + N[V] = F(A;) - 2W = —R,,




(5.2) Wi + (M(A) — 80y Wi — B2W* = O(1) [(Ai(A1) — 8")| - [W] - (|0z71| + |Oma])
+ OM)|W| - |2 A;] + |82 W] - |8xA1] + O(1)IN[V]| + |8xA1] + IR,
where

N[V] = F(A; +V) — F(A) = F'(A)V = O(1)|VP,

) T
Ry =0(1)x {nz + g0l I} for |z'| < 5

R, = 0(1)x [n + le’o(l)d"'] for |2/] < .
€ 2K
I
We consider Y1, [ [*% Wt (5.2)dz'dt’ to yield that
2Kk

1

T =1 'r T n
63 / " wrde| / / i) (—%(a,,,x,-(Al))iqu.Jr|w;,|z) do'dt
T2 t'=0 0 T2 i=1

50(1)f07/_i

dr'dt

Z(’\i(Ai) — &)W W||3z Ay
i=1

+0(1) [ [ WP+ 0oA) + IWIVI + Wi ds'd.
0 V-5

Since the shock is a p-shock wave, from the monotonicity of A,(U) we have

(5.4) |02 Ap(A1)] < —0p Ap(A1) + O(1)k.
From the construction of the approximate solution A; we have that
(55) “at'AIHOO = 0(1) K

102A1] < O(1) € |82 Ap(A1)] + O(1) K?

for any 7 < O(1)to/k, where t; is a given small number which is independent of «.
Now we impose a smallness assumption for 7 < #p /K

(5.6) sup |0LW|(z',7) < O(1) e.
z'€R
0<in

From (5.4), (5.5), and (5.6), the estimate (5.3) becomes

T t'=7 T n
1 [ T 1 ;
67) 5 / “WRdr| + /0 f " Hoe M (AW + Y WL de'de
~ % =0 - i=1

T [ . ,
<0 [ [T S 10:AIWIE+ VI + eWE + [WIhldsa.

T j#p
Transversal Wave Estimates
When j # p,

T [ .
(58) / ‘/‘: "(/\p(Al) - 8’)1,' 'Wledzldt’
0 -3

133
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= T %w — S"YWIS. Widz' dt’
_A ‘/;% ()\j(Al)_Sl) (’\1(A1) )W O W/ dz'dt

TR 20(A) - 8 . ) | . .
/o /_ OuA) =5 W 120+ 0)W -+ OQ1) (18 A W]+ [0 Al VI V] +|%y)] da'dt

e

T

= 0(1) 6/2: |W7|2dz’

2c

=t/

S ‘
1)/ /2T |631A1”W~7‘2 + Iaz,AIHW]”W.;"dedtl
0 J-g

T R
+O(1)e / /: W/ [|8§,A1||W| + |8 Ar]IV] + |V|2 + |, I] d'dt'.
0 J-q5

Note that we have used the condition ||A,(A;) — sl = O(1) € in the above transervsal wave
estimates.

Lemma 5.1. For any given functions h; and hy, it follows

(5.9) // hihg da'dt’ < // (2, ) dz'dt’

4
+3 o Dz g [ / (B ol )Pt

7€[0,7)

Combine (5.7), (5.8), and Lemma 5.1 together with the smallness assumption, then there exist
C>1

(5.10) i /_ : W[ do! / / Ha, AW +C 3 W) Z| 2 dg'dd’

i#p 2=

-
<oQ) / / " VI + 9% P
0 J-g5;

when 7k L 1.
Consider [; [?% (85V)(8%(5.1))dz'dt'. It results in
25

+/ /2_ |85, V|? dz'dt’ < 0(1)6/ / Z\&J,VP dz'dt’
o J-g

2:: 3=0

T 2
+0(1) / / IRy do'dt’.
o J-L €

From (5.10), (5.11), and: Sobolev’s interpolation theorem it follows

T [
(5.12) ! / f " WP + |85 V|2de
8 0 _%

(5.11) %/1 |95 V|2 dz’
x ,

t'=7

.k .
1 [ 10 AW +C S W) + VI + iV P
0 J-35 i#p
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8 2
TKE TK
§0(1)< T +———2).
€5 €

This justifies the smallness assumption (5.6) when 7« is sufficiently small. Thus, by Sobolev’s
embedding theorem, one has that for t' < 7px™! with 75 <« 1

Ve E)lloo < O (i‘—} +5).

€5 €

Thus,
w- lim o® = w- lim (A; +V) = w- lim Ay +w- lim V=a+0=o0.
Kk—0+ k—0+ x>0+ k—0+
The main theorem follows.

Here, we can have a stronger version of convergence estimate as follows
for £ € [-T/2,T/2] and for ¢t € (0, 7o)

lan - al(m, t) < 0(1)[7.0&1/5/611/5 + e—O(l)clz—a(t)[/n].
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