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We consider large time behavior of solutions of the compressible Navier-
Stokes equation in the half space R3 = {z = (¢',3); =’ € R?, z3 > 0}:

atp + divm = O,
(1) gm+div (282) + VP(p) = vA (2) + (v + ) Vdiv (2),
M|z=0 =0, p(0,2) = po(z), m(0,z) = mo(z).

Here p = p(t,z) and m = (my(t, z), ma(t, z),m3(t, z)) denote the unknown
density and momentum at time ¢ > 0 and position z € R}, respectively;
P = P(p) is the pressure; v and ¥ are the viscosity coefficients that satisfy
v > 0,2y + 7 > 0; divm denotes the usual divergence in z of m; and
Vf denotes the usual gradient in z of a scalar function f. The notation
div (@) means that its j-th component is given by div (ﬂ#’&) In this
article we are interested in large time behavior of solutions to (1) for initial
data (po, mo) near a constant equilibrium (p, m) = (p*,0), where p* is a given
positive number.

Large time behavior of solutions to the compressible Navier-Stokes equa-
tion has been widely studied. Concerning the Cauchy problem on the whole
space, Matsumura and Nishida proved in [13] the existence of solutions glob-
ally in time for all (po, mo) With ue = (po—p*, mo) sufficiently small in H*NL*
and the decay rate of the perturbation ||U(t)||rz = ||(p(¢) — p*,m()||z> =
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O(t™3/) as t — oo. Also, they proved in [14] the global existence of solu-
tions for all (po, mo) with uo sufficiently small in H® and the decay property
|U@)||L= — 0 as t — co. Kawashima, Matsumura and Nishida [7] proved
that

[U(8) - Tt)uollis = O(E4),

where U(t)uy denotes the solution of the linearized problem at (p*,0) with the
initial value uo, namely, they proved that the solution of problem (1) is time
asymptotic to the one of the linearized problem. These results were extended
by Kawashima [6] to a general class of quasilinear hyperbolic-parabolic sys-
tems. Hoff and Zumbrun [3, 4] studied large time behavior in L? spaces. They
showed that ||m(t)||L~ = O(t~?) and ||p(t) — p*||lL= = O(¢~?), namely, the
perturbation of the density decays faster than the momentum in the L*
norm. This is due to some interaction of hyperbolic and parabolic aspects
of the problem. They also showed that due to some hyperbolic aspect of the
problem the solution may grow in L? norm for p near 1. These properties
were also proved by Kobayashi and Shibata [10] in a different manner.

Concerning the problem on unbounded domains with the presence of
boundary, Matsumura and Nishida [15] proved the global existence of solu-
tions for all (po,mo) with ug sufficiently small in H 3 and the decay property
U (#)]|z~ — 0 as t — oo for the half space and exterior domains. Decay rate
of the perturbation U(t) was obtained by Deckelnick [1, 2] for the half space
and exterior problems; it was shown in [1, 2] that

18U ()]l = O 2), |8:U(#)llz2 = O(~1*),
(@)l = OG4),  |lp(t) = ol = O(t7)

as t = oo for (pg,mo) with ug sufficiently small in H3. Furthermore, in
the case of the exterior problem, Kobayashi and Shibata [9] proved that
1U(@®)lz = O(t~3/*) and ||U(t)]|z= = O(¢~*?) under the additional assump-
tion ug € H*NL'. We have recently obtained the corresponding decay results
for the half space problem.

Theorem 1. (i) Let uo = (po — p*,mo) € (H}(R3) x H3(R})) N (L'(RY) X
LY(R3)) and satisfy the compatibility condition:

mlea:O = 07

= (.

z3=0

—div (ma2ma) _ VP(py) + v (20) + (v + #)Veiv (22)

Assume that 8,P(p*) > 0 and that uo is sufficiently small in H® x H3.
Then there ezists a unique global solution (p(t),m(t)) of problem (1) with
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U(t) = (p(t) — p*,m(t)) € C([0,00), H* x H?) ; and U(t) satisfies
IUOz2xzz = O@™*) and [[U(#)]|zxr= = O(t7*/)

ast — oco. Also,
10U ()22 x22 = O(¢~**)

ast — oo.

(ii) For ug = (po, o) with o € H' and Mg = (Mg 1, Mo, Mos) € L? let
U(t)uo(z) = (p(t, x),m(t,z)) denote the solution of the linearized problem at
(p%,0):

a{ﬁ-{— divim=0
(2) 8,7 — bAm — (U + 0)Vdivim 4 p,Va = 0,
Mles=0 = 0, (p(0,2),(0,z)) = uo(<),

where U = v/p*,b = 0/ p*,p, = 8,P(p*). Then, under the same assumptions
on (po — p*,mo) in (i), we have

|U(#) — U(t)uol|2xr> = O(t™")

as t — oo, where ug = (po — p*,mq).
(i) In addition to the same assumption on ug = (po — p*,mo), if we
assume that /s (po(z) — p*)dzx # 0, then
R

+

|U(#)uo||z2x 12 > Ct3/*
ast — oo.

Decay rates for ||U(t)||Lrxzs (p = 2,00) in Theorem 1 are the same as
in the case of the Cauchy and exterior problems ([3, 9, 13]). As for the
decay rate for ||,U(t)||2xz2 we have obtained the rate t=%/8 which is slower
than the rate t~5/4 for the Cauchy and exterior problems ([3, 9, 13]). This
difference of decay rate is due to the analysis for the linearized problem (2),
where we have obtained only ||0,U(t)uol|zxz2 = O(t~%/®), see Theorem 2
below.

The property ||U(t) — U(t)uo||r2xzz = O(t™!) in Theorem 1 is also dif-
ferent from the one in the case of the Cauchy problem, where |[U(t) —
U(t)uo||z2xzz = O(t75/%) holds ([3, 6, 7]). To prove this in the case of the
Cauchy problem, the property ||U(t)0zuol|r2xz2 = O(t~%/%) for the linearized
problem is used; while in the case of the problem (1) on the half space we
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have only ||U(t)8,uol|z2xz2 = O(t~*), which is, however, optimal (see Theo-
rem 3 below). This difference is due to some interaction of hyperbolic and
parabolic aspects of the problem not appearing in the Cauchy problem.

Theorem 1 is proved by combining the global H*-energy bounds obtained
by Matsumura and Nishida ([15]) and the following decay estimates for so-
lutions to the linearized problem (2).

We write the solution (7, 77) of the linearized problem (2) as

TU(tyuo = (T(t)uo, V(t)uo), T(t)uo = p(t,-), V(t)uo =mlt,"),
V(t)uo = (Vi(t)uo, Va(t)uo, Va(t)uo)
Theorem 2. There exists a positive constant C such that the following
estimates hold for all t > 1:

(i) _
”U(t)UOHL’xB < C’t_a/‘i(”uO||L‘xLl + HUO|IL2><L2)’

1T (ol zoxre < Ct~3*(|luollzxzr + lluollmzxa),

(i)

102V (#)uol|L2xre < Ct=34(Y|uollixrr + ||uoll2xz2),
18T (¢)uoll z2xr2 < Ct*(Jluollzixzs + lluollmxz2),
(iii)
11025 Vi (t)uol|Laxzz < Ct¥3(Jluollrxrr + lluollzexzs) (G =1,2),
11025 Va(t)uol| 2 xzz < Ct**(Jluollzixer + Ilvollaxre),

(iv)
[T (#)8zuoll 2222 < CE>*(|luollzxzr + lluollarxz2)-

(v) If ug = (0,myg), then
T (£)8z, 0]l z2x 22 < Ct'(|lmollzs + [Imol|£2)-
(vi) Also, for ug = (po, mo),

18:T (t)uoll2xz2 < Ct~>/*(Jjuollzrxt + lluollzexz2)-

The estimates in Theorem 2 (i) and (v) are optimal. In fact, we have the
following lower bounds.
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Theorem 3. Let uy = (po,™mo) € (H' x L*) N (L' x LY).
(i) If/Ra+ po(z)dzx # 0, then

”U(t)UOIILZXLz 2 Ct_3/4
ast — oo.
(i1) Assume that ug = (0, mg) with mg = (mo1,Mo2,Mo3) € HX N L and
/113 mg;(z)dz #0 for j =1 or2. Then
+

U (t)8z; 0| p2x 12 > Ct™*
ast — oo.

Although the optimal decay rate of ||0,U(t)uo||r2xz> for general uy =
(po,mo) € (H* x L) N (L* x L) is unclear, we have the following decay rate
under some additional assumption on uy.

Theorem 4. (i) Assume that up = (po,mo) € (H* x LN (L' x L'). Assume
also that z3ug € L' x L'. Then

10:T (t)uollaxzz < Ct*4(l|(1 + za)uollzrxre + lluollarxz2).

(i) Furthermore, in addition to the assumption of (i), z'f/RS po(z) dz # 0,
then . '
”azU(t)uoanxLz > Ct5/4

ast — oo.

The proof of L? decay estimates in the above Theorems is given in [5].
The L* decay estimates are obtained in a similar manner by using the fact
that the Fourier transform is bounded from L! to L*°.

References

(1] K. Deckelnick, Decay estimates for the compressible Navier-Stokes equations in un-
bounded domain, Math. Z. 209 pp. 115-130 (1992)

[2] K. Deckelnick, L?-decay for the compressible Navier-Stokes equations in unbounded
domains, Commun. in partial Differential Equations. 18 pp. 1445-1476 (1993)

(3] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes
equations of compressible flow, Indiana Univ. Math. J. 44 No.2 pp. 604-676 (1995)

44



[4]
(5]

(8]

(9]

(13]

[14]

(15]

(16]

[17]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-
Stokes diffusion waves, Z. angew. Math. Phys. 48 pp. 597-614 (1997)

Y. Kagei and T. Kobayashi, On large time behavior of solutions to the Compressible
Navier-Stokes Equations in the half space in R3, to appear in Arch. Rational Mech.
Anal.

S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to
the equations of magnethydrodynamics, Ph. D. Thesis, Kyoto University (1983)

S. Kawashima, A. Matsumura and T. Nishida, On the fluid-dynamical approrimation
to the Boltzmann equation at the level of the Navier-Stokes equation, Commun. Math.
Phys. 70, pp. 97-124 (1979)

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible
viscous fluid in an ezterior domain in R3, to appear in the J. Differential Equations.

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of
motion of compressible viscous and heat-conductive gases in an ezterior domain in
R3, Commun. Math. Phys. 200, pp. 621-659 (1999)

T. Kobayashi and Y. Shibata, Remarks on the rate of decay of solutions to linearized
compressible Navier-Stokes equations, to appear in the Pacific J. Math.

Tai-P. Liu and W. Wang, The pointwise estimates of diffusion wave for the Navier-
Stokes Systems in odd multi-dimensions, Commun. Math. Phys. 196, pp. 145-173
(1998)

A. Matsumura, An energy method for the equations of motion of compressible vis-
cous and heat-conductive fluids, University of Wisconsin-Madison, MRC Technical
Summary Report # 2194 pp. 1-16 (1981)

A. Matsumura and T. Nishida, The initial value problem for the equations of motion
of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser. A 55 pp.
337-342 (1979)

A. Matsumura and T. Nishida, The initial value problems for the equations of motion
of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20-1 pp.67-104 (1980)

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of
motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys. 89.
pp. 445-464 (1983)

G. Ponce, Global ezistence of small solutions to a class of nonlinear evolution equa-
tions, Nonlinear. Anal. TM. 9 pp. 399-418 (1985)

W. Wang, Large time behavior of solutions for general Navier-Stokes Systems in
Multi-dimension, Wuhan Univ. J. Nat. Sci., 2 pp. 385-393 (1997)

45



