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1. INTRODUCTION AND MAIN RESULT

We call “the vortex filament” the slender vortex tube. In the present pa-
per, we consider the initial value problem for the equation which describes three-
dimensional motion of an isolated vortex filament embedded in an inviscid incom-
pressible fluid fulfilled in infinite region. Especially, we are concerned with the
initial value problem for the fourth order nonlinear Schrédiger type equation:

(L.1) {z‘@tu + 82u + v8iu = F(u,T, 8,u, 057, d2u,027), z,t € R,

u(z,0) = up(x), z € R,

where u(z,t) : R x R — C is unknown function, nonlinear term F is given by

1
F(u, T, 8zu, 0%, 02u, 62T) = — §|ulzu + Alul*u + A9 (8:u)°T + A3|0zul’u
+ Au202T + Ns|u|?82u,

with Ay = —3p/4,Ag = =24 +v/2,A3 = —4pu — v, Ay = —p, As = —2p + v and real
constants v, (.

To motivate our problem, let us review the history of the model equation of
vortex motion. In [5], Da Rios introduced the following model of the motion of the
vortex filament called “localized induction approximation” from Biot-Savart law:
We denote the centerline of the vortex filament by X = X(z,t), represented as
functions of arclength z and time t. Let (s, 7) be curcature and torsion, (t,n, b) be
the Frenet-serret frame of the centerline, respectively. Then X satisfies following

equation:
r L
6tX = :171’- log (;) ﬁb,

where T is the circulation of the vortex motion, o the core radius and remaining
parameter L is the length of the segment whose contribution to the induction
velocity is taken account of above. We see that a vortex goes in the direction of
the binomial vector and it’s velocity is in propotion to the curvature. By rescaling
the time variable, we have

(1.2) 8;X = Kb.

To describe the motion of actual vortex filament precisely, much more detaileded
models of equation have been introduced by several authors.
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Fukumoto-Miyazaki [7] derived the following equation for the motion of a vortex
filament with axial flow correct to the second order in time ratio of the core radius
to that of curvature:

1
(1.3) X =kb+v [5521: + Ozkn + KThb |,

where v is real constants.

In further, the local self-induced flow around the core comprises not only a
uniform flow but also a straining field which deforms the core into an ellipse. So,
Fukumoto-Moffatt [8] proposed the following model:

(1.4) 8,:X = kb + V[(2(02K)T + k(827))n + (k72 — B2K)b + K27t] + ux®b,

where v and u are real constants.
By introducing the “Hasimoto transform” (see [10]) defined by

(1.5) u(z,t) = ketd” rdz

equations (1.2) is transformed to the well-known cubic nonlinear Schrédinger equa-
tion:

(1.6) i + O%u + %Iu]zu + Aty =0.

Similarly, equation (1.3) is transformed to “Hirota equation” that is the third order
nonlinear Schrédinger type equation which is including both the cubic nonlinear
Schrodinger equaiton and the modified Korteweg-de Vries eqaution:

(1.7) iOu + O2u + %Iulzu + A(t)u —iv {62u + g|u]28xu} = 0.

Furthermore, equation (1.4) is transformed to the fourth order nonlinear Schrédinger
type equation:

iOpu+02u + %Iuﬁu + A(t)u — V{@iu + g(|u|26§u + (8zu)7)

- + (Bt + o we (e 5) {20uPw) + Futta} =0

Here A(t) is arbitrary function of t. We note that the localized induction equations
(1.2) and (1.3) are completely integrable equations equivalent to cubic nonlinear
Schrodinger equation and the Hirota equation, respectively. A brief summary above
is given by Fukumoto [6].

We are interested in the solvability and well-posedness of those problems. Here,
the well- posedness stands for the existence, uniqueness of the solutions and con-
tinuous dependence upon the initial data. The solvability and the well-posedness
of those problem are studied by several authors. Nishiyama-Tani [20] and Tani-
Nishiyama [26] showed the existence of weak solution for initial and initial-boundary
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value problems for the localized induction equation (1.2) and (1.3), respectively.
More precisely, in [20], they have considered the following four situations:

(a) the curvature |93X]| — 0, as |z| — oco.

(b) X(z,t) approaches an exact solution Y(z,t) with 02Y (£oo0,t) # 0, such as
a herix or an elastica, as |z| — oo.

(c) 82X(£1,t) = 0 is satisfied when the domain of z is restricted to (—1,1).

(d) the filament is closed, that is, X(z — 1,t) = X(z + 1,t), forz € R.

In [26], they showed the existence and uniqueness of solution to (1.3) with the
initial condition X(z,0) = Xo and 8;Xo = 1. They also have considered the
spatially periodic case 8;X(z,t) = 8- X(z + 1,t).

Tsutsumi [27] showed the global well-posedness of the initial value problem for
(1.6) in L? (see also Ginibre-Velo (9], Cazenave-Weissler [4] and references therein).
For initial value problem (1.7), Staffilani [22] proved the time local well-posedness
in Sobolev space H*(R) with s > 1/4 (see also Laurey [19] and Takaoka [25]). In
[25], Takaoka also showed the local well-posedness of (1.7) in H 1/2 for the spatially
periodic case. Here, Sobolev space is defined by H:R) = {f e SR); {£)*Ff €
L2(R)},where(z) = (1 + |2|?)'/? and F,f is Fourier Transform of f with respect
to z. The purpose of the paper is to show the local well-posedness for (1.1) for
larger class of the initial data in the Sobolev space H*(R) when v < 0 and As =
—2u+v=0.

Before we state our results, we introduce several notations and function spaces.
For a function u(z, t), we denote by Fru(§,t), Fru(z,T) the Fourier transforms with
respect to z,t variable and by F; u(§,t), Fi lu(z, ) the their inverse transforms
in z,t variables respectively. We denote by %1,:(5, ) = FeFru(€,T) the transform
in both z and t. Let LEL% and L%LE denote the Banach spaces LA(R; L9(0,T))
and L%(0,T; L2(R)), respectively. L{ denotes L% for T = co. We set {x) = 1+
|2|2)1/2. The operators Dj and (D,)® stand for the fractional order derivative of the
Riesz and Bessel potential in the space variable, respectively; i.e, Dy = F¢ LSy
and (Dy)* = F; '(€)*F,. For bs € R, we define the following Hilbert space
HY(R; HE(R)) = {f € 8'(R);(D,)°f € H(R)}. For v € R, we denote by W, (t)
the unitary group generated by linear part of (1.1) i.e.

W, (t)o(z) = C /R (i€ —t(E~VEY) Ty (£)dE.

Let 9(t) be a smooth cut-off function to the interval [—1,1] i.é.’lb € C¢(R) and
P(t)=1for |t| £ 1, =0 for |t| > 2. For § >0, we donote 15(t) = ¥(t/6).
Equation (1.1) can be rewritten in the following integral equation:

(1.9) u(t) = W, (t)ug — 1 /0 t W, (t —t')F(t"dt'.

for t € [-T,T). Hereafter, we define the solution to initial value problem (1.1) as
the solution to the integral equation (1.9). ,
Our well-posedness result is as follows:
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Theorem 1.1. Let v < 0, As = —2u+v =0, s>1/2and b€ (1/2,5/8). Then
for ug € H(R), there exist T' = T(||uo||rs) > 0 and a unique solution u(t) of the
initial value problem (1.1) in t € [T, T] satisfying

ue C([-T.T); H*(R)),
YrW, (~tju eHY(R; Hz(R)),
YrW, (—t)F eH{(R; Hz(R))-

Moreover, for given T’ € (0, T’), two maps up — u from H* (R)to C([-T",T";; H*(R))

and ug — YW, (—t)u from H*(R) to HP(R; Hi(R)) are Lipschitz continuous,
respectively.

Remarks. Here, we summarize several remarks.

() Here the restriction v < 0 with p — v/2 = 0 is only required because of mathe-
matical point of view. So far, it is not clear whether this restriction is meaningful
in physical phenomena. However as is mentioned in Remark (d) below, the case
p — v/2 = 0 corresponds the non-completely integrable case of the equation,
which is covered our theorem.

(b) Because of technical reason the case v > 0 or A\s = —2u + v # 0 is not covered
by our theorem. If we allow the regilarity of initial data more smooth, then
the general theory of semilinear equation (see, e.g., [11]) show the time local
well-posedness.

(c) By employ analogous method in Tzvetkov [28], we are able to show the optimality
of our method to show the well-posedness, that is, we are not able to guarantee
the time local well-posedness via our method below. For this detail, see section
6 in [21].

(d) When g+ v/2 = 0 in (1.8), it is known that (1.8) is the completely integrable
equation (see Fukumoto [6]) and have infinity many conserved quantities (see
Langer-Perline [17]); namely,

B4 (u) =% / uffds,  Ba(u) = —% / (B,u)uds,

P3(u) = —% /(c’)gu)'ﬁdm - %/lul“dm,

Nevertheless, in Theorem 1.1, we assume As = 0 in (1.1), i.e. p— v/2 =0 and
v # 0 in (1.8). Therefore, we are not able to extend the local results to global
one via the above conservation laws.

To prove the well-posedness, we will use the Fourier Restriction method. To
explain the method of Fourier restriction norm, let us consider the following initial
value ploblem for semilinear dispersive equation:

{ iBu+ P(i710:)u = F(u,0,u), 2,t€R,

(1.10) u(z,0) = uo(z), -z €eR,

where P(i716;) = fg‘lp(g')f,; with real polynomial p and F is a nonlinear term.
The many methods are known to prove the time local well-posedness for the ini-
tial value problem (1.10) (see [1-4,9,11,13-16,19,22,24-27]). In [2,3], Bourgain in-
troduced new method to guarantee the well-posedness for (1.10) in lower order
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Sobolev space. He introduced the following norm called “Fourier restriction norm”:
for s,be R

lullx, , =7 = pE)(E)E L2 22

. —1
=[P % u| oy,

where eitP(™"82) ig the unitary group generated by the linearized equation of (1.10).
Here we note that T — p(£) represents above norm is a symbol of the linear part
of (1.10). By using this norm, he guaranteed the time local well-posedness for the
nonlinear Schrédinger equation with power type nonlinearity i.e. P(i~18,) = 82
and F(u,8;u) = |ulP~'u and the Korteweg-de Vries eqaution i.e. P(i718,) =
102 and F(u,0,u) = —iudu. Later on, Kenig-Ponce-Vega [14,15,16] refined this
method in one spacial dimension case by making use of the algebraic structure of
the symbol associated with the linearlized equation and Kato type smoothing effect.
They applied this method to the quadratic Schrodinger equaiton and the Korteweg-
de Vries eqaution. Therefore, this norm is heavily depend on the algebraic structure
of the symbol and nonlinearity. Indeed, in section 3 below, we have some crucial
tri-linear estimate concerning to the Fourier restriction norm for the nonlinear term
u28,17. However, we don’t know the same estimate for the term |u|282u. Fourier
restriction method has recently been applied to various nonlinear equations by many
authors (see, e,g., [1,22,24,25]). .

Concerning to the equation (1.1), let us define the corresponding Fourier restric-
tion norm: For s,b,v € R define the Hilbert space X, as follows

vy = {u € 8'R?); |lullxz, < o},

lullxz, = 47 + €2 — v (€)*R(E, ll2zs
= [Wa (—t)u(®)ll e g

Our plan in this paper is the following. In section 2 and 3, we prove the pre-
liminary estimates to Theorem 1.1. Especially in section 2 and 3, we prove the
linear estimates and the nonlinear estimates, respectively. In section 4 we reduce
Theorem1.1.

2. LINEAR ESTIMATES

In this section we prove the linear estimates needed for the proof of Theorem
1.1. Through sections 2-4, we prove only the case when v = —1. We denote
W_i(t) = W (t) and X;bl = Xg b

First, we state some known linear estimates that is used for proof.

Proposition 2.1. (Kenig-Ponce-Vega [14,15]) For s € R, 1 /2<b<lt <1,8€
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(0,1). Then we have

(2.1) 05 W (t)uol x, , < CET™20 2 |ug||gs,
(2.2) [sFllx,0_s < C&UIIF|x, s
t
(2.3) s /0 Wt - )F@)dt| < CoBAF|,,
Xs,b

(2.4)

i
p / W(t—t')F(t)dt' < C6O-2/2||F|x, ,_,.
0

Lge((0,T); Hy)

Next, we give the estimates for the unitary group generated by linearized equa-
tion of (1.1).

Proposition 2.2. (Kenig-Ponce-Vega [12]) Let uo € LZ(R). Then

(2.5) IDS™/2W (t)uollzszz < Clluollzs,
(2.6) W (t)uoll sz < ClIDZ *uollzs,
(2.7) | D3/*W (t)uoll g1z < Clluollzs-

where (¢,7,6) € [0,1] x [0,1] x [0, 1] and (g,p) = (8/{(n + 1), 2/(1 - {))-

Remark 2.3. The time decay estimate for the linear fourth order Schodinger type
equation is as follows (see Kenig-Ponce-Vega [12]):

IDEW (t)uoll j2/a-0) < CJt1™?|Juol] a/arer,

for any § € [0,1]. In particular, by taking # = 1 in above inequality, we have
L>® — L' estimate and || Dy W (t)uo||ze decays in time as [t|=%/2.

The inequalities (2.5), (2.6) and (2.7) are called Strichartz [23] type estimate,
Kenig-Ruiz [17] type estmate and Kato [11] type smoothing effect, respectively. For
the proof of those estimates (2.5)-(2.7), see Thoerem 2.1, Theorem 2.5 and Thorem
4.1 in [15], respectevely. In Theorem 1.1, we stated the results in the case v < 0 for
the initial value problem (1.1). The one of reasons on this restriction is that those
estimates (2.5)-(2.7) hold for the case v < 0 and, however, we don’t know same one
for the case v > 0.

Define Fy, F} and Gy via the Fourier transform

ﬁ;(f, T) = <’T _f_fég’;)€4>b’ FE(E,T) = (T%’
(2.8) = g(§,7)
Gl =gy ey

By Proposition 2.2, we have immediately following Lemma.
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Lemma 2.4. Let b > 1/2, f € LZL2. Then

(2.9) | Follzere < Clifliczee,
(2.10) | FbllLiorie < Cllfllrzees
(2.11) | D74 Fy|lage < Cllfllzzre,
(2.12) IDS/2Fy| peo 12 < Cllf llzzza-

Similar estimates hold for F;* and G} replacing Fj and f and g replacing f respec-
tively.

For the proof of Lemma. 2.4, See e.q., [1,21].

3. NONLINEAR ESTIMATES

By using the linear estimates in Lemma 2.4, we derive the crusial nonlinear
estimates.

Proposition 3.1. Let s > —1/2, a € (—=1/2,—1/4] and b > 1/2. Then for any
u € X4, we have

(3.1) lulPullx,, < Cllulik,,-

Let s >0, a <0, b>1/2. Then for any u € Xsp,

(3.2) lul*ullx, . < Cllullk,,-

Let s > 1/2, a € (—1/2,~1/4], b> 1/2. Then for any u € X,p, we have

(3.3) 1(8)2Tl1x,.. < Cllulk,..

(3-4) 16ulfullx, . < Cllullk,,-
Let s > 1/2, a € (—1/2,—3/8}, b > 1/2. Then for any u € X, we have

(3.5) 1?8281, . < Cllullk,,-

Remark 3.2. The case As # 0, we do not have the results. Because we do not
know the ”Tri-linear Estimates”:

(3.6) lluf*8Zullx, . < Clullk,,,

where s,a and b satisfies same condition as in (3.5).



Proof of Proposition 3.1. By density, we have only prove (3.1)-(3.5) foru € § (R?).

~(
Let R B ~
Fe,7) = (@0E0al,  FE ) =@l

where
c=r+E+¢, T=r-&-¢
By duality argument, (3.1) is reduced to showing that for any 0 < g € LZL2,

/ g6, 7) (E—-&)eIf(€—&,7—7)

R® (0)lal(g)le! (01)®

(€1 — E)P1 (61 — &2, 11 — 72) (€)1 f* (€2, o)
(2)® (@3)°

< CHgHLngHf”ing ||7“L§L?,,

where o and o; are given by (3.8) below. Similary, (3.2)-(3.5) are reduced to showing
that for any 0 < g € L%LE,

/ g(&,7) f(€ =&, 7 —71) f(& — &o, 11 — )

(3.7) y

(p)lel (p1)? (P2)®
g Fléa — €3,72 — 73) f(€s — €4, 73 — 74) f(€4rTa)
(p3)® (Pa)® (ps)®
(€)°g(&,7) € — &1l F(E —&1,7 —71) |61 — &alf (61 — &o,m1 — T2) F(b2, 7o)
R® (o)l (01)%(€ — &1)° (02)2(€1 — £2)° (@3)°(&2)°’

/ (€)5g(€,7) F(€— &1, 7 — 1) |61 — &lf (61 — &,11 — 1) [6a]f (€20 T2)
s (o)l (01)%(€ —&1)* (02)°(&1 — &2)° (@3)(&a)s

/ €)*g(€,7) (€ =&, 7 = 1) f(61 — &2, 11 — ) |6a*F (&2, T2)
o (ol (on)PE—&)*  {oa)b(G—a)* (B3)%{&)

are bounded by

Cllalszza (1712522 + £ 132 Flzzza,

respectively. Here,

/ . =/R6 dédrdédmdérdTa, a,nd/R10 = /Rm dedrdedr - - déadrs,

(3.8) {J=T+52+54, U1=7'*7’1+(§‘§1)2+(§—§1)4:
‘ oo =71 — o+ (&1 — &2)% + (61 — &)%, Ta =T — €% — &3,
and
p=T+§2+§4, p1=7--1'1+(§—§1)2+(§—§1)4,
(39) Py=11—Ta— (€1 — &) — (61— &)

ps =Ty —Ta+ (€2 — &3)% + (&2 — &3)%,
54=7'3"7'4—(§3*‘§4)2—(53—54)4, Ps=’f4+f&2+§2-
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Above estimates are obtained by section 4 in [21]. As we stated in introduction
in the present paper, Fourier restriction method is very semsitive to the connec-
tion between the symbol and a shape of nonlinear term. Indeed, in the proof of
Proposition 3.1, we use the following inequality:

Ir+ &+ &4+ T -+ (€ - &)+ (E- &)
+in—mn+ (& - 52)2 + (&1 — 52)4| + |12 -fg ‘fgl
St (-2 - (E-&) - -&) -G -&) + &+ &
=2&1||€ — &1 + &2|26% + €7 + 265 — €61 — &16o — 266 + 1
=2{&1/l€ — & + &

1 1 1 1
R s CEI T SICET
We reduce the Proposition 3.1 by combining the above inequality with Strichartz,

Kenig-Ruiz and Kato type smoothing effect (2.9)-(2.12) in Lemma 2.4.

4. Proor OoF WELL-POSEDNESS

The integral equation associated with (1.1) is expressed by (1.9). First, we
proved the existence of a solution u to integral equation (1.9).
Let = ||uo||gs. For € (0,1), define

B(r)={ue Xsp: llullx,, < 2Cor},

B(u) = pOW (H)uo — % (2) / Wt — s () F(¢)dt.

According to Proposition 2.1.(2.1)-(2.3) and Proposition 3.1. (3.1)-(3.5). ,we have
for b, b’ with 1/2 < b < b’ < 5/8 and for u € B(r),

1®(w)lx,, < Cor + C18°¥ ~2(1 +r?)rs.
Similarly, we have for u,% € B(r),
1B(w) — @(@)||x, , < Co8” ~2(1 +r?)r?|lu — dllx,,-

By choosing J > 0 such that

/ ) Co 1
b —b
J < min { (14+7r2)r2Cy° 2(1+ 7'2)7*202} ’

d is a contraction map on B(r). Therefore there exists a unique solution v € B(r)
satisfying

ult) = YW (thuo — 900) [ "Wt — s (¢ F ()
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We choose T < 6, then u(t) satisfies (1.9) in ¢t € [-T,T].
Concerning the proof of the uniqueness of the solution, we define the following
auxiliary norms introduced by Bekiranov-Ogawa-Ponce [1]. For T > 0, we let

lullxr = igf {lwllx,,: w€ Xsp such that u(t) = w(t), t € [-T,T] in H*(R)}.

If ||u — 4|jx, = 0, we have u(t) = 4(t) in H*(R) for t € [-T,T]. By similar
argument as in [1], we reduce the uniqueness.

The persistence property follows the Sobolev’s embedding H?(R; H:(R)) C
C(R;H*(R)). The continuous dependence upon data also follows from a similar
argument,.
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