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1 Introduction

We consider the initial-boundary value problem for scalar viscous conservation laws in one-
dimensional half space R, := (0, c0):

U+ f)y = uy, x€eR,, t>0,
u@,=u_, t>0,

1
u(x,0) = up(x) = {

=u_, x=0,

= Uy, X 00,

where f is a smooth function and u, are constants. We consider this problem under the
following assumptions:

f23%>0, u, <u_ <u, (Fw)=0). )

Under these conditions, it was already shown in [5] that the solutions of (1) converge to the
corresponding rarefaction waves as t — oco. The main purpose of the present research is to
obtain the convergence rate.

The rarefaction wave r(x, t) is given as a weak solution of the Riemann problem for the
corresponding hyperbolic conservation laws on the whole space:

rn+f(r,=0, xeR, t>-1,
r(x,—1) = rR(x) == { u, x<0, (3)

u, x>0
Here note that r(x, f) is a continuous function for ¢ > 0. r(x,?) is expressed explicitly for
t>—-1by

u, x < fiu)(t+ 1),

=1 () FEXE+ ) <x< f@de+D),

U, flu)(t+1)<x.
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For the half space problem (1), it is shown by Liu, Matsumura and Nishihara [5] that the
asymptotic states of the solutions of (1) are classified into the following three cases according
to the signatures of f’(u.): (a) f/(u-) < f'(uy) <0, (b) f/(u-) <0 < f'(uy) and (¢) 0 <
f'(u) < f'(uy). In the case (a), the solutions of (1) converge to stationary solutions. In
the case (b), the asymptotic states are superpositions of stationary solutions and rarefaction
waves. And the case (c) yields rarefaction waves.

The main purpose of the present paper is to obtain the convergence rate for the case (c).
Here note that the convergence rate for the case (a) is also considered in [5] and that the case
(b) should be considered. The main theorem of the present paper is stated as follows.

Theorem 1.1 Suppose that (2) hold. Let up — u, € (H I'n LYHYR,) and up(0) = u_. Then
the initial-boundary value problem (1) has a unique global solution u(x,t). Moreover, u(x, )
satisfies the following estimates:

Nlu(® - r@)llz < CA + 1) log(2 + 1),

llu(®) — r@®)llz> < C(1 + £ 1og*(2 + 1),

where C is a positive constant depending only on ug.

2 Smooth appi'oximation and reformulation of the problem

First, we derive the smooth approximation of the rarefaction wave r(x, ) by employing the
idea of Hattori and Nishihara [1]. We define W(x, f) as a solution of the following Cauchy
problem:

C)

Wi+ WWy = Wy, XER, 1> -1,
w(x,-1) = wi(x), x€R,

where the initial data w(x) is defined by

WR(x) 1= { Pd 2<0 e oy > 0),

f’(ui-)’ x> 0>
R | —f@), x<0, .
Wy (x) = { ), x>0, Gf f'(u-) = 0).

Because (4) is the Burgers equation, we can get the explicit formula of W(x, ) by using the
Hopf-Cole transformation. Successively, by using this w(w, f), we define a smooth approxi-
mation w(x, ¢) of the rarefaction wave r(x, f) as

w(x, 1) = (f) (W(x, 1). &)
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Substituting (5) to (4), we have the equation of w(x, #):

f—@wz x€eR, >0,

frw) F (6)
w(x, 0) = wo(x) == (") (w(x,0)), xe€R.

Wi+ f(W) = wi +

Here we summarize the well-known results for the smooth approximation w(x, t) in Lemma
2.1. This lemma is proved by the direct computations of the explicit formula of Ww(x, f). For
details, readers refer to [1, 4].

Lemma2.1 Forl<p<owandt20, w(x,t) satisfies the followings.
(i) 0 <w(0,1) - u_ < Ce™0* for f'(u_) > 0 and w(0,) = u_ for f'(u_) = 0,
(i) w:(0, ) < Ce™*, w0, 0] < Cem(+,
(i) (W) = r@)ll < C(1 +07H %,
@) (W@l < CA+ 75, W@l < C(1 + 1715,

(v) wi(x,8)>0 for xeR.

We can see that w(x, ) does not satisfy the boundary condition in (1). So we need to
modify w(x, f) around the boundary. Our modified smooth approximation W(x, ¢) is defined
as

W(x, 1) := w(x, t) — ¥(x, 1), @)
where
Y(x, 1) := w(0,1) — u_)e™. 8)

By virtue of this modification, W(x, ) satisfies the boundary condition W(@©,t) = u_. By
using this W(x, #), we define the perturbation v(x, ) from the modified smooth approximation
W(x, 1) as

v(x, t) := u(x, t) — W(x, o).

From (1), (6) and (7), we have the equation of v(x, t):

i+ (F(W+v)— f(W), =v +R(x, 1), xeR,, t>0,
v(0,1)=0, t>0, 9
v(x, 0) = vo(x) := ug(x) — Wo(x), x€R,,

where R(x, t) is defined as

. _ff/l(w) ) _ _
RGx, 1) 1= =Wl ok (W +4) = W) = Y

98



From Lemma 2.1, we can see that R(x, ) satisfies
IR@IlL < C(1 + 8727

Making use of a standard iteration method, it is shown that the equation (9) has a unique
solution locally in time in the space

Xy(0,T) = [v € C°([0, T}; H'(R,)) | v € L*(0, T; H'(R,)) and sup [v()llm < M}

0<t<T
for positive constants T’ and M.

Proposition 2.2 (Local existence) Suppose that vy € H YR,) and vo(0) = 0. Forany M > 0
with |[vollin < M, there exists a positive time T depending on M such that the equation (9)
has a unique solution v € X4(0, T).

3 Apriori estimate and decay estimate

In this section, we show the a priori estimate and decay estimate of v(x, t). By virtue of the
modification in Section 2, the outline of the proof of these estimates is similar to that of the
full space problem. Therefore, in this paper, we omit the proof of the following propositions
and theorems. For details, readers refer to [2, 3, 5, 6].

Proposition 3.1 (A priori estimate) Suppose that v € Xy(0, T) is a solution of (9) for some
positive constants T and M. Then there exists a positive constants C independent of T, such
that v(x, t) satisfies the estimate

V@I + j{: INWLEWOIE: + eI dr < CllivollZ, + 1. 10)

The combination of Proposition 2.2 and Proposition 3.1 proves the global existence theo-
rem.

Theorem 3.2 (Global existence) Suppose that vy € H'(R,) and vo(0) = 0. Then there exists
a unique global solution v(x, t) of (9) satisfying

v € C%([0, 00); H'(R,)), vy € L*(0, 00; H'(R,))

and the estimate (10).
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In order to derive the decay estimate, we employ the L!-estimate of v.

Proposition 3.3 (L'-estimate) Suppose that vy € (H' N L')(R,). Then the solution v(x, t) of
(9) satisfies the estimate
IV®llzr < lvolly + Clog(1 + ). (11)

Finally, we obtain the decay estimate of v. The following theorem is proved by using
L'-estimate and H'-estimate.

Theorem 3.4 (Decay estimate) Suppose that vy € (H' N L')(R,). Then the solution v(x,t)
of (9) satisfies
'
(1 + D2, + f (1 + D (I VW@ + @I, dr
0
< CA +)°log’2+1), (12)

(1 + 0|l + j; (1 + DI VW @I + VeI + £/ (0, 77 )dr
<C(1 +1°10g°Q2+1) (13)
for arbitrary constant € € (0, ).

The combination of Lemma 2.1 and Theorem 3.4 immediately proves Theorem 1.1.
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