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Abstract

A clone is a set of multi-variable operations which con-
tains all projections and is closed under composition.
For a set S of operations the centralizer S* is the clone
of operations which commute with all operations in S.

In this paper we consider some monoids consist-
ing of unary operations and the centralizers of such
monoids. We study (1) the centralizers of some
monoids which contain the symmetric group, (2) the
centralizers of permutation groups and (3) some rela-
tively small monoids whose centralizer is the least clone.
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1 Preliminaries

Let k = {0,1,...,k — 1} for a fixed £ > 1. For
a positive integer n let O,(c") be the set of all n-
ary operations on k, that is, maps from k" into k,
and let O = J, O{™. Denote by Ji the set of
all projections e, 1 < i < n, over k where €}
is defined as el'(z1,...,%i,...,2Zn) = Z; for every
(1,...,Zn) €K™,

Definition 1.1 A subset C of Ok is a clone on
k if the following conditions are satisfied:

(i) C contains Ji.
(i) C is closed under (functional) composition.

The set of all clones on k is denote by Ly. The
set Ly ordered by inclusion is called the lattice of
clones on k and is denoted by L.

The structure of L, is completely known
([Po 41]); however, the structure of Ly for every
k > 3 is extremely complex and still mostly un-
known. The cardinality of the lattice of clones is

known for each k > 2: [£3] = Ro ([Po 41]) and
|Lk| = 280 if 3 < k < Ny ([IM 59)).

To get better understanding of the lattice Ly,
we started in [MMR 01} to study the clones corre-
sponding to monoids of unary operations on k by
a natural Galois connection.

This paper is an attempt to briefly summarize
the work of [MMR 01], [MMR 02] and [MR 03].

Definition 1.2 A subset M of Ofcl) 18 @ trans-
formation monoid (or, simply, ¢ monoid) on k
if it satisfies the following conditions:

(i) For any s,t € M, the composition to s of
s and t belongs to M.

(i) The identity operation idy (= e]) belongs
to M.

Denote by My, the set of all monoids on k ordered
by inclusion.

We say that operations f € Ofcm) and g € 0,(:)
commute (or permute), in symbol f L g, if for
every m X n matrix B = (b;;) over k

f(g(bll,' .. ’bln): O 7g(b‘m1a e abmn))
= g(f(bll,' e ,bml)v' e )f(blnv- . abmn))-

Cleé.rly, the relation L on Oy is symmetric.
Definition 1.3 For a subset F' of Oy, define
F*={geOr | gLl fforal feF}

The set F* is called the centralizer of F.

Note: (1) It is easy to see that F™ is a clone on k
for any subset F' of Ok.

(2) Clearly from the definition, F* C G implies
G* C F* for any subsets F, G of Oy.



Definition 1.4 For a positive integer h, an h-ary
relation on k is a subset p of k", i.e., a set of h-
tuples over k. An operation f € O preserves p
if, for every h x m matriz B = (b;;) over k whose
column vectors all belong to p, the h-tuple of values
of f on the rows of B also belongs to p; i.e.,

(f(blla'-'1b1m),-~-af(bh11---,bhm)) Ep

whenever (byj,...,bnj) €p forall j=1,...,m.
For an h-ary relation p on k set

Polp = { f € O | f preserves p}.

It is easy to see that Polp is a clone on k.

In this paper we shall mostly deal with the fol-
lowing special type of relations. For f € O,(cm) set

fD = { (al""1ama f(ala-"va"m)) l
a1,...,0m €k }.
Even more specifically, our main concern is the
case m = 1, that is, the case of binary relations

induced by unary operations. To repeat, for an
: (1)
operation s € O’ we set

s° ={(z,s(z)) |z € k}.

For f € O and s € O, f € Pol(s?) is
equivalent to

f(S(.’I:l),S(.’Bz), teey S((L‘")) = S(f(xla‘TZa e )zn))

for every (z1,Z3,...,Z,) € k™. To put it in alge-
braic terminology, f € Pol(s”) means that s is an
endomorphism of the algebra (k; f).

From the definition of f L g and the symmetry
of L we obtain for f,g € O

flg <= fePolg" <= gePolf”
and hence the centralizer F* of F C O is
F* = () Pol f°.
feF

For F C Ok, (F) denotes the clone generated
by F, that is, (F) is the least clone containing F'.

The following definition and theorem are from
[Da77, 79].

Definition 1.5 For f € 01(:) and & C O, the
operation [ is parametrically expressible, in
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short, p-expressible, by ¥ if there exist (i) in-
tegersm > 1 and £ > 0, and (ii) (m + £+ 1)-ary
operations g;, h; (i =1,...,m) in (X) such that f°
consists of all (zy1,...,Znt1) € K™ satisfying the
system of equations

gi(Z1,- -+, Tnpes1) = Hi(Z15- -+ Trpet)
(t=1,...,m)
for some Tpia,...,Tnte+1 € K, i€,
fD = {(mls v )x‘n)xn+1) ‘
3Tni2y...,Znser1 € Vie{1,...,m}
9i(Z1, .. s Tnies1) = hi(T1, ., Tnye) )

Theorem 1.1 (Kuznetsov criterion) Let f € O
and T C Or. Then f is p-expressible by ¥ if and
only if * C {f}".

This property turns out to be quite useful in the
study of clones, in particular, of centralizers.

2 Centralizers of Monoids
containing the Symmetric
Group Sk

2.1 The Sequence {N;} of Monoids

First we consider the centralizers of monoids which
sit “above” the symmetric group Sk, i.e., monoids
containing Sk.

In [MMR 01] we introduced the operations d;’s
as follows: For every ¢ = 0,1,...,k — 1, a unary
operation d; : k — k is defined by

0 if 0<z<1,
di(x)={:c if i<zx<k-1.
In particular, dg = e} (the identity operation on k)
and di_» satisfies the following: dx—2(z) =0 for
zek\{k—~1} and di-2(k—1)=k—-1L

The monoid N; for ¢ € k is defined as the clone
generated by the symmetric group Sk on k and the
operation d;, i.e.,

N; = (Sx U {di}).

It is easy to see that Ny = Sk and N; = C’),(cl).
Also, Nj_, consists of Sy and all constant unary
operations.



0 1 i i+1i4+2 k-1
0 i+1¢4+2 k-1
Figure 1. The unary operation d;

We have a sequence
Sk C Nk-1 C Ng—a C -+ C N3 C Ny c O

where the symbol C denotes proper inclusion.

We also prepare the following unary operations.
Let 0, 7 : k — k be the permutations defined

as
_fz+1 if zek\{k-1}
“(””)‘{ 0 if z=k-1"
and
1 if z=0
rz)=¢ 0 if z=1
z  otherwise,
i.e., in the cyclic notation ¢ = (01 .-+ k£ —1) and
T7=(01).

Let cg : kK — k be a constant operation defined
as co(z) =0 for all z € k.

For every i € k let x; : kK — k be the unary
operation defined as

(z) = 1 if z=1,
XTI =1 0 otherwise.

Set Ty ={xiliek}
Lemma 2.1 For everyi € k, x; is generated by
{0, dx-2}.
Proof It is easily verified that
Xi = 0dg—3 o1 di—2 o= (+1), 0

2.2 Application of the Kuznetsov
Criterion : N;* = Ny_»*

Proposition 2.2 Forl <i < k—2, the operation
d; is p-expressible from Ni_3, namely,

4% = {(z,y) € k* | co(z) = x1 (%) = - - = x:(¥),

Xi+1(Z) = Xi+1(¥), - - - s Xk-1(2) = Xk-1(¥) }-
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Proof Denote by p; the binary relation on the
right side of the above equation.

For each z = 0,1,...,k — 1, we consider which
y satisfies (z,y) € p; where y € {0,...,k —1}.

Case 0: Suppose z = 0. Then it is easy to see
that ¢o(0) = x1(y) implies y # 1. Similarly, it is
implied from co(0) = x;(y) that y # j for every
J = 1,...,i. Next, from x;4+1(0) = xi4+1(y) it is
implied that y # ¢+ 1. Similarly, it is implied
from x¢(0) = xe(y) that y # £ for every £ = i +
1,...,k — 1. So the only possibility is ¥ = 0, and
clearly (0,0) € p;.

Analogously, we can check, for every z =
0,...,4, that (z,0) is the only pair that satisfies
(z,y)ep;fory=0,...,k—1.

Case ¢ + 1: Suppose z = i+ 1. In this case
co(i + 1) = x;(y) implies that y # j for every j =
1,...,4. Now, xi41(i + 1) = xi+1(y) implies y =
i+ 1. And, x¢(: + 1) = x¢(y) implies y # ¢ for
every £ =1i+2,...,k—1. Hence (i+1,i+1) is the
only pair that belongs to p; with i + 1 as the first
component.

In the similar way we can check, for every z =
i+1,...,k — 1, that (z,z) is the only pair that
satisfies (z,y) € p; fory=0,...,k - 1. _

Thus we have proved that p; = d;°. w]

Corollary 2.3 For everyi, 1<i<k -2,
Ni* = Ni_p*.

Proof Clear from the Kuznetsov criterion,
Lemma 2.1 and Proposition 2.2. O

2.3 The Centralizers of N;’s

In this subsection we assert without proof that
(O W)* = . Then, as a corollary, we have
N;* =T forevery 1 <i<k-—2.

An operation f € O™ is called conser-
vative if f(ai,...,an) € {a1,...,an} for every
(0,1, .. .,a,,.) € k™.

Lemma 2.4 For fe O™, iff e (Ofcl))‘ then f
18 conservative.

Moreover, we can show the following;:

Proposition 2.5 For f € 0,(:‘), if f € (0,(61))*
then f is a projection. Le., (Of:))“ = k.

The proof is tedious and omitted.



Corollary 2.6 Foreveryi=1,2,...,k—2

N;* = Jk.
To summarize, we have the following;:

No*(=Sik*)={f € O | f is synchronous }
Ni—1* ={f € O | f is synchronous and
idempotent }

Ne—a* =...=Np* =N1'(= (Ol(cl))t)___Jk

(The defintion of a “synchronous” operation ap-
pears in the next section.)

3 The Centralizers of the
Subgroups of S;

Next we turn to the centralizers of monoids which
sit “below” the symmetric group Sk, i.e., monoids
contained in Si, that is, permutation groups.

3.1 The Centralizers of the Permu-
tation Groups

As we have seen in the previous section, many dif-
ferent monoids have the same clone Ji as their cen-
tralizer. But, surprisingly, the situation is quite dif-
ferent for permutation groups on k, i.e., subgroups
of the symmetric group Sk. In fact, the *-operator
is proved to be an injective mapping on the set of
permutation groups. :

Lemma 3.1 For any subgroup H of Sy and any
8 € Sk, if s° is p-expressible by H then s € H.

Proof If sU is p-expressible by H, which is a

subgroup of Sk, then s” can be expressed as

7 = {(z,y) e K* | t(z) = u(y)}

for some t,u € H. This equation can be rephrased
as

87 = {(z,y) € k? | (u ') (z) =y }.

This implies s = u~¢ and thus s € H as desired.
D .

Theorem 3.2 For any subgroups Hy and Hs of
Sk, if H1 # Hy then Hy # Hj.
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Proof Suppose that H; # H; and Hf = Hj.
Without loss of generality we may assume that
there exists a unary operation s € Hy \ H;. Then
it holds that

Hi (= H3) C (s7)* (= Pols"),

since
Hy = (] Polt”.

tGHg

It follows from the Kuznetsov criterion that s is
p-expressible by H;. Hence by Lemma 3.1 we have
s € H,, a contradiction. D

3.2 The Centralizer of the Symmmet-
ric Group Sk

Marczewski [Ma 64] initiated the study of homoge-
neous algebras and homogeneous operations. An
operation f € O is homogeneous if it belongs to
the centralizer of the symmetric group Sk.

Definition 3.1 For (z1,...,Zs), (¥1,.--,Yn) €
k™, we say that (z1,...,T,) 1s similar to
(Y15 -+ YUn) if the following condition is satisfied:

T =T; = Yi = Yj for any 0S1,J<n

Definition 3.2 An operation f € O™ is syn-
chronous if the following condition is satisfied for
any element (z1,...,Z,) in k™.

If {z1,...,zZn}| # k-1 then

(1) f(z1,...,Zn) = ¢ for some 1 < £ < n, and

(2) f(yl)-'-,yn) = Ye fOT any (y11-~')yn) € k"
which is similar to (21,...,2Zn),

and, if |{z1,...,Zn} = k-1 and f(z1,...,2n) = u
for some u € k then

(1) u = z¢ for some 1 < £ < n implies
f(yl’---ayn) = y¢ for any (yla-"ayn) € k"
which is similar to (z1,...,%Zn), and

(2) v € k\ {z1,...,2.} implies f(y1,...,yn) =
v where v € k \ {y1,...,yn} for any
(y1,.-.,¥n) € k™ which is simiar to

(21,0, Zn).

The set of all synchronous operations in Oy is de-
noted by SYNy.



Theorem 3.3 For the symmetric group Sk on k,
Sy = SYN,

that is, an operation f € Ok is homogeneous if and
only if it is synchronous.

Again, we skip the proof. (See [MMR 01].)

3.3 The Centralizer of the Alternat-
ing Group A
For the alternating group Ax on k, Theorem 3.2

implies S; # Af. In the following we show how the
centralizer Aj, is characterized.

Theorem 3.4 Letn > 1 and f € 0£"). Then
f € A} if and only if the following conditions are
satisfied for every h-block equivalence relation 6 on
{1,...,n} with h < k:

(1) If h <k —3 then f is a projection on I1,(8).

(2) If h = k — 2 then on I1,(8) the operation f is
either a projection or f is uniquely determined
by f(a) € {k — 2,k — 1} where a € II,(8)
satisfies sgna = (0,1,...,k — 3).

(3) Ifh = k—1 then fori = 0,1 the operation f on
Hy_1,; is either a projection or it is uniquely
determined by f(a*) =k — 1.

(4) If h = k then for ¢t = 0,1 the operation f on
Hy; is a projection. m]

For the proof refer to [MR 03].

4 Monoid whose Centralizer
is Ok

Here we look at the largest clone in the lattice Ly,
that is, the clone Q. It is obvious that the least
monoid {id} consisting only of the identity oper-
ation corresponds to 0. We show that no other
monoid corresponds to O.

Proposition 4. 1 For any monoid M C 0,&1),
M* = Oy if and only if M = {id}.

Proof (<) Clear. (=) Let M* = Oy. Then by
Proposition 2.5 we have

ide M C M** =0 C (OM) =%
which shows M = {id}. O
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5 “Small” Monoids whose
Centralizer is J;

Since *-operator induces a Galois connection be-
tween monoids and clones, it seems natural to con-
sider that a smaller monoid corresponds to a larger
clone and vice versa. However, relatively small
monoids were found whose centralizer is J%, the
smallest clone.

5.1 Application of the Kuznetsov
Criterion : ({0,dk—2})* = Nx—3*

Now we look for small monoids whose centralizer

is Jk.

Proposition 5.1 The transposition T s
p-expressible from {o,dr—2}, namely,

79 = {(z,¥) € k¥? | xo(z) = x1(¥), xa(z) = x0(¥),
x2(z) = x2(¥), - - - Xk—1(Z) = xx—1(¥) }-

Proof Similar to the proof of Proposition 2.2. O

Corollary 5.2 Let My = ({0,dk-2}). Then
M* = Neg-2* (=Tk).

Proof It is well-known that {0, 7} generates the
symmetric group Sk. So the assertion is clear from
Proposition 5.1. ]

Remark: (1) The permutations in M; are those
generated by o, that is, My N Sk = (o). Thus,
not all permutations are contained in M, i.e.,
M; 2 Sk.

(2) An implication from above is that a monoid M
does not need to contain all permutations in order
to satisfy M* = Js.

5.2 Application of the Kuznetsov
Criterion : I'y* = N~
It should be reminded that Ty = {x; |i € k }.

Analogous constructions to the one in the pre-
ceeding subsection give us the following:

Proposition 5.3 The transposition (i j) (i # j)
is p-expressible from ['y.

Proof A construction for 7 = (01) was given
in Proposition 5.1. Any transposition (i j) can be
constructed similarly. 0O



Corollary 5.4
[x* = Ne2® (= i)

Proof It is well-known that the set of all transpo-
sitions generates the symmetric group Sk. So the
assertion is clear. 0

Remark: (1) I'y consists only of two-valued oper-
ations. In particular, 'y has no permutations, i.e.,
TN Sy =0.

(2) An implication from above is that transitivity
is not necessarily required for a monoid M to sat-
isfy M* = Jg.

5.3 The Centralizer of {I'x) \ {xo0,%:}

Even a smaller monoid than I'y can be proved to
have Jj as its centralizer.

The monoid (I'y) generated by I'y consists of
the following operations:

<Fk) = {XO)XI: v '7Xk—laY01_X_1,' . a?k-—l?
Co, C1, idk}

where ¥X;(z) = 1 — xi(z) and ci(z) = ¢ for all
i=0,1,....k—1.
Set O = (Fk> \ {XO, Yl}’ that is,

@k = {Xla caee st-—laYO’YZ, s ,Yk—-laCO’ claidk}-

It is readily verified that Oy, is a submonoid of (T').
For this monoid © we can prove the following:

Proposition 5.5 Let k > 2. Then O} = J&.

Thus the centralizer ©f of ©y is the least clone
Jx. The proof is long and omitted here. (See
[MR 03])
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