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My memory with Professor Richard Pelz

It was summer in 2002 when I met Professor Pelz for the first time. He had been
staying in RIMS at Kyoto University as a visiting professor at that time. 1 gave a
talk at a seminar there and he was in the audience. After then, I visited him. He was
interested in the topic that I talked at the seminar and made insightful comments
about it. I also talked with him about the APS/DFD conference that was to be
held at Dallas that year. I told him that I was not able to make a presentation
about my recent research at the conference though I hoped to do so, since I was
not a member of the APS. Then he willingly offered to introduce me to the APS,
which made me possible to participate in the conference as a speaker.

This article contains a survey of the research that I could talk there thanks to
his kindness. I would say the research is never completed without his introduction.
I am very grateful to him for his kindness and generosity. I dedicate this article to
my short but wonderful memories with him.

1 Introduction

We consider Euler equation for inviscid and incompressible fluids in R® space:

Dw _ 8
{ Y = uVs,  zeR% >0, M
w(z,0) = wo(x),

where TI))'E is the convective derivative, v is the velocity field that satisfies div v =0
and w = V xv is the vorticity. The velocity and the vorticity appear in the equation,
but this is in fact only for the vorticity, since the Biot-Savart integral recovers the
velocity from the vorticity.

oat)= - [ l‘:—_‘ﬁ%— x w(y, )dy. @)

It is quite difficult to show well-posedness of the equations in three-dimensional
space, since the quadratic term wVv # 0 allows the vorticity to grow largely.
According to Beale et al.[1], the maximum vorticity necessarily diverges in finite
time, if the smooth solution loses its analyticity. Hence, the growth of the vorticity
due to the quadratic term is a key factor for the blow-up.
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One of the trials for the mathematical problem is to construct a model equa-
tion to observe the analytic property of the quadratic term. Constantin, Lax and
Majda[2] introduced a one-dimensional model for the Euler equations.

?-“—J:wH(w), z€R, t>0.

ot

This is called Constantin-Lax-Majda equation. The operator H is the Hilbert trans-

form and wH (w) is a scalar one-dimensional analogue of the quadratic term. They

gave an explicit solution that blows up in finite time and discuss the similarity

between the Euler equations and the model equation. See (2] for the details.
Another important topic in the field of mathematical fluid dynamics is well-

posedness of the Navier-Stokes equation in three-dimensional space. Now, we con-

sider the CLM equation with the diffusion term, which gives a heuristic model for the

3-D Navier-Stokes equations. The simplest model was considered by Schochet{7].

%tq=wH(w)+uwzz, z€R, t>0.

He found a solution that blowed up in finite time and showed that the velocity
recovered from the solution also blowed up at the same time. He also concluded
that the model with the simple diffusion term was less successful than the CLM
equation, since the solution of the model equation blowed up before the solution of
the original CLM equation.

On the other hand, Murthy[3] and Wegert & Murthy|8] chose an non-local vis-
cosity term, vH(w,) as the diffusion term. They gave a solution that blowed up
after the solution of the CLM equation blowed up.

Now, we consider the CLM equation with a generalized viscosity term:

{ & UHW)-v(-b)lw, zTER,t>0, &)
wz,O) = »wo(:b'),

where a positive real v represents the viscosity coefficient and o € R is order
of derivative. Well-posedness of the generalized CLM equation is studied by S-,
recently[5] and [6]. In the present paper, we outline the results in these papers and
add some new materials in terms of the singularity formation.

This paper contains four sections. We give a spectral representation of the CLM
equation (3) and give a formal solution in §2. In §3, we show blow-up and global
existence of solutions when initially all Fourier coefficients are non-negative. In §4,
we show the distribution of singularity times in the complex-time domain to see the
analytic property clearly.

2 Spectral Method

We assume that the periodic boundary condition in z; w(z + 27,t) = w(z,t). Thus
the following Fourier series represents a formal solution of the generalized CLM

equation;
o0

wz,t)= Y walt)e™, wa(t)€C. (4)

n=-—00
The Hilbert transform of (4) is expressed as follows|4].

o0

Hw)= ) ism(ln(t)e™,

n=—00
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where the function sgn(n) is

1 ifn>0,
sgn(n) = 0 ifn=0,
-1 ifn<0.

Then, the quadratic term wH(w) was simply given as follows(5].
[+ ] n . n

wHw) = Z { (i }:wkw,,_k) emT — (i Zw-kw_n+k) e""’} . (5
n=1 k=0 k=0

Substituting (4) and (5) into (3) and equating coefficients of e!"*, we obtain infinite
dimensional ordinary differential equations for the spectra;

¢ dw" N ) n
- = ~wm wf.+1'§)wwn—k,
4 dwo —vnuwy, (6)
d‘g n
\ -—(-l-;—'-‘- = —Un%w_, -—ikgow_kw-,.%.

We assume that initial condition of w is symmetric with respect to the origin.

©0

w(z,0) = Z Apsinng. (7

n=0

Then, it follows from the equations (6) that the solution is symmetric with respect
to the origin for all time. That is to say,

Because of the symmetry, the function iw,(t) becomes real-valued and thus the
equations (6) and (7) are reduced to

(a) n-1
T~ e+ Y ®
k=1
A
p’(za)(o) = "22’ n=12,-.-, (9)

where p{® (£) = iwn(t).
Let p$.°) (t; An) denotes the solutions of (8) with the initial conditions (9), which
are given recursively by

A
PO A) = e, ()
' t n—1
It An) = -A2—Ee"'°""+e'”¢”‘ /0 ™ Y pi (D ds. (11)
k=1

Note that the solution of the equafion (3) for the initial condition (7) is represented
formally by

w(z,t) =) 2p{*(t; An) sin na.

n=1
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3 Blow-up and global existence of solutions

In this section, we outline the blow-up and global results for the generalized CLM
equation. We assume that the initial spectra A, are non-negative. As for the
detailed proof, please refer to the papers [5] and {6].

3.1 Two comparisons

The following two comparisons are required to show blow-up and global existence
of solutions for general non-negative initial spectra and arbitrary « from a solution
for special initial data. The first comparison is obtained in terms of the index a.

Proposition 1 If a; > a1, then p,({")(t; A,) 2 pf,"“)(t;An) >0 forn>1and
t>0.

The second comparison is about the initial conditions.

Proposition 2 If A, > 4, > 0, then p{(t; An) > p$(t; An) 2 0 for n > 1 and
t20.

3.2 Blow-up solutions

3.2.1 Explicit solution for a =1

When a = 1, we are able to give an explicit expression of pf."‘) (t; A161,.), where
A; > 0 and 8y, is Kronecker’s delta.

Lemma 3 When a = 1, the solutions (10) and (11) for A, = A101, are represented
by

™ (t; Aydry) = (%) tnlgmavt, (12)

This lemma is shown easily by the mathematical induction. Then, this lemma and
Proposition 2 indicate the blow-up solutions for the general non-negative initial
data, when the viscosity coefficient is sufficiently small.

Theorem 4 When a = 1, for 0 < v < 4L, there erists a finite time T (v) such
that ||lw(z,t)||L2 — o0 ast — T} (v).

3.2.2 Blow-up solutions for o > 1
For o > 1, we obtain the following blow-up solutions for non-negative initial spectra.

Theorem 6 When a > 1, for 0 < v < 4re~32~1, there exists a finite time T3(v)
such that ||w(z,t)||L2 — o0 as t — T3 (v).

The ﬁrst step to prove the theorem is to define a sequence {b.(,“) }">1 recursively by
(a) 1 3 @)@
[+ ]
¥ =1, b= = 3 b, for n=2,3,.--.
=1

We give a lower bound for b{®.
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Lemma 6 For a > 1, let D, be a constant such that a23* < D, < e3*. Then, the
sequence b'>) is bounded as follows:

e73" < D nle3m < (), (13)

Next lemma gives a lower estimate for the special solution p,(f') (t; Ay 01n).
Lemma 7 Let functions fi* (t) be defined by

(1) =vb£°"(fz%"hw)nf$°’(t)- (14)

Then, for 0 < vt < 1, the functions f{(t) satisfy |
) 2 @) (15)

We finally prove Theorem 5 by using these lemma.

Proof of Theorem 5. From Parseval’s equality and Proposition 2, we have

o@Dl rm = 7Y {2 A}

n=1

> IZ{%(")('? A151n)} —~7FE{ (°)( : —"‘) (°)(t)}2-

n=1

It follows from Lemma 6 and Lemma 7 that for 0 < vt < 1,

v~ Loup@ (A" f@p o | g gmtg-tom (At _a\" ’
E v\ 5,8 () > z 1% -

n=1 n=1
= Ale~tgta Z (Alt —vt)m—l).
Therefore, if R(t) = vt is less than.one, we obtain

iz, t)]2. > nAle2te—b f: (R3(t) }n—l

n=1

A%e—-Qvte—Sa
ﬂm')-— . (16)

Since R(t) is monotonically increasing for 0 < vt < 1, there exists a time T5(v) €
[0,1] such that R (T3 (v)) = 1, if the viscosity coefficient satisfies

1\ | A
R(3)=pamm 21

Hence, it follows from (16) that if 0 < v < 4te~3*-1, |jw(z,t)||1s blows up as
t— T3 (v) a



3.2.3 Blow-up solutions for a < 1

We consider blow-up of the solution (10) and (11) when the order of viscosity term
is less than one (@ < 1). We give a lower comparison function for the spectra

25 (t; Ardin).
Lemma 8 Fora<l,n>21andt >0,

P8O (t; Aydyn) > (i;—’) tn—le—mvt, an

Therefore, we obtain the blow-up theorem for & < 1 owing to Proposition 2 and
Lemma 8.

Theorem 9 When o < 1, for 0 < v < 4%, there exists a finite time Ty (v) such
that ||lw(z,t)||z2 — o0 ast — T (v).

Consequently, the solution of the CLM equation with the generalized viscosity term
for non-negative initial Fourier coefficients blows up in finite time regardless of the
index a, if the viscosity coefficient is sufficiently small.

3.3 Global solutions

3.3.1 Global Existence of solutions for « > 1

First of all, we consider local existence of solution of (3) for a > 1 using the general
theory of the abstract evolution equations. Since the linear operator Ag = v(—A)*%
is the infinitesimal generator of a C°® group on L2, the initial value problem with
the periodic boundary condition on £ = [—=, ) can be expressed by

{ %% +Aw = F), inL?Q),t>0, (18)
w@0) = wo,

where the nonlinear mapping F(w) = wH(Ww). The‘ ponlinear operator F(w) is
Lipschitz continuous in H!(S).

Lemma 10 The nonlinear operator F(u) maps H'(Q) into H* () and satisfies the
following properties; for u,v € H(S)) there ezist constants C and C’' such that

IF@)ler < Cliuller (19)
IF() - F@)lle < Cllu—ollm. (20)

Hence, it follows from Lemma 10 that the initial value problem (18) has a unique
local solution for o > 1.

Proposition 11 For every wo € H*(Q) = D(Ag), there exist a time Tr, and a
unique solution of the tnitial value problem (18) such that

w € C! ([0, T.n) : L2(Q)) N C ([0, ) : HA(N)).

Now suppose that w(z,0) € H* and M = ||w(z,0)||y=. Then we have an
explicit representation of (10) and (11) with A, = M.
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Lemma 12 When o = 1, the functions (10) and (11) for A, = M (n > 1) are
represented explicitly by

pD(t; M) = (%) (1 + %—t)n—le-""f. (21)

Consequently, we have the following lemma.

Lemma 13 When a > 1, if w(z,0) € H*(), then there exists a constant C(v)
such that |jw(z,t)||g= < C forv > %

Finally, Lemma 10 and Lemma 13 yield the existence of a unique global solution.

Theorem 14 Suppose that wo € H*(Q) and all of its initial Fourier coefficients
are non-negative. Then the initial value problem (18) has a unique global solution,

u € C ([0, 00) : H*(£2)) N C! ([0, 00) : L*(R)),

for a>1 and v > }|lwollH=.

3.3.2 No global solution for a <0

For arbitrary v, there exists a large integer Np such that the dissipation term
Vn"‘psf') in (8) becomes quite small for n > N, since @ < 0. Hence, we expect that
the dissipation term fails to control the growth of the high spectra, which leads to
the blow-up of the solution. The following lemma supports this expectation.

Lemma 15 Let a < 0. For arbitrary v and € > 0, there exists a positive integer
No such that the solution of (3) for the initial condition w(z,0) = 2¢sin Nox blows
up in finite time in L? norm.

The comparison in terms of the initial conditions (Proposition 2) and this lemma
show that for given non-negative initial conditions A, > 0, the viscosity coefficient
v and an arbitrary ¢, there exists a positive integer No such that the solution of (3)
for the slightly perturbed initial condition A, + €6n,r. blows up in finite time. Since
€ is arbitrary, we show that no global solution exists for a < 0.

Theorem 16 When a < 0, the solution of (8) for initial condition with non-
negative Fourier coefficients A, > 0 always blows up in finite time in L? norm.

Hence, the solution of (3) blows up in finite time no matter how large the viscosity
coefficient is.

4 Singularity time in complex time domain

The results for a > 1 in the previous section indicate that the solution of the CLM
equation blows up in finite time when the viscosity coefficient is small, while it
exists globally for large viscosity. It means the singularity abruptly disappears as
the viscosity increases. In order to study the discontinuity in terms of the singularity
formation, we investigate distribution of singular times in the complex time plane.

Now, assuming that the time variable is complex number, we regard the spectra
p,(f) as a complex-valued function. First, choosing the integration path starting form
the origin in the complex time plane, we compute (10) and (11) numerically along
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Figure 1: Distribution of singularity time in the complex-time plane for o = 1

the path. Next, since the sufficient and pecessary condition for the convergence of
L2 norm of the solution is

PS:-?]
e

Y

=gt) <1,

N—r00

we compute the critical time ¢t* € C such that g(t*) = 1 for various v and plot them
in the complex time domain. In the present paper, we show the distribution of the
critical times for a specific initial condition, Ap = din. :

When o = 1, we have the explicit representation of ps.") in Lemma 3 and thus
g(t) = |ke~"*|. We plot the contour plot of g(t) for various v in Figure 1. Fora small
v, the distribution of the singularity times consists of a circular line surrounding
the origin and a vertical line in the right hand side of the figure. A region inside the
circular distribution and an unbounded region whose boundary is the vertical line
are regular regions in which the solution of the generalized CLM equation exists.
The distribution has three intersections with the real time axis. Hence, when the
path goes from the origin in the positive real-time direction, it meets one of the
singularity times in the circular distribution at which the solution blows up. As the
viscosity coefficient increases, the two disjoint regular regions unite and move to
the left. Then, since the origin is always in the right hand side of the distribution,
the solution along the path from the origin in the positive real-time direction exists
globally. We must note that the solution always blows up along the negative real-
time axis, since the path meets the distribution.

Next we show the distribution of the singularity times for o = 1.5. In this case,
since we have no explicit expression for the solution, we compute the function g(t)
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Figure 2: Ratio function -a—gy for n = 10, 20, 30 and 40 from ¢ = 0 to 5. They
n+l
converges uniformly to a funt'tlon rapidly as n — oco. The integration path is taken

from the origin in the positive imaginary time direction.

numerically. Figure 2 shows the ratio function —ﬁ,‘- for n = 10, 20, 30 and 40 from

t = 0 to 5, when the integration path is along the imaginary time axis. It indicates
that the ratio function converges uniformly to a function. Since the convergence
is quite rapid, we use the ration function for n = 50 instead of g(t) and plot its
contour plot for various v in Figure 3. The distribution of the singularity time
is topologically the same as the distribution for & = 1, which corresponds to the
similarity in the analytic properties for @ > 1 in Theorem 4 and 5 for small viscosity
and Theorem 14 for large viscosity.

On the other hand, Figure 4 shows the distribution of the singularity times
for a = —0.5. The singularity times forms a closed curve for each ». Hence, the
distribution has intersections with the positive real-time axis, which indicates that
the solution always blows up in finite time. This supports Theorem 16.

5 Conclusion

First, I review the analytic properties of the generalized Constantin-Lax-Majda
equation that obtained in the papers[5, 6]. For small viscosity, L?> norm of the
solution diverges in finite time regardless of the order of the diffusion term. For
large viscosity, it exists globally when a > 1 but it always blows up when a < 0.

Next, I compute the distribution of critical times of the generalized CLM equa-
tion in the complex-time domain. The continuous change of the distribution ex-
plains the discontinuity of the singularity formation for & > 1. Thus the topology
of the distribution supports the analytic properties of the equation.

Finally, I compare the generalized CLM equation with the 3-D Navier-Stokes
equations. In 3-D Navier-Stokes equations, the solution exists globally in time
regardless of the viscosity coefficient when a > 5 Hence, the CLM equation with
the generalized viscosity term fails to catch this a.nalytlc property of the 3-D Navier-
Stokes equations.

40




Imt 9
v=0 = 0.
/v 0.\
v=0.05
5
Ret
V=°\1°

Figure 3: Distribution of singularity time in the complex-time plane for a = 1.5.

The distribution is topologically the same as that for a = 1.
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