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My memory with Professor Richard Pelz
It was summer in 2002 when Imet Professor Pelz for the first time. He had been
staying in RIMS at Kyoto University as avisiting professor at that time. Igave a
tdk at aseminar there and he was in the audience. After then, Ivisited him. He was
interested in the topic that Italked at the seminar and made insightful comments
about it. Ialso talked with him about the $\mathrm{A}\mathrm{P}\mathrm{S}/\mathrm{D}\mathrm{F}\mathrm{D}$ conference that was to be
held at Dalas that year. Itold him that Iwas not able to make apresentation
about my recent research at the conference though Ihoped to do so, since Iwas
not amember of the APS. Then he wiUIngly offered to introduce me to the APS,
which made me possible to participate in the conference as aspeaker.

This artide contains asurvey of the research that Icould talk there thanks to
his kindness. Iwould say the research is never completed without his introduction.
Iam very Fateffil to him for his kindness and generosity. Idedicate this article to
my short but wonderful memories with him.

1Introduction
We consider Euler equation for inviscid and incompressible fluids in $\mathrm{R}^{\theta}$ space:

$\{$

$\frac{Dw}{Dt}$ $=$ $w\nabla v$, $x\in \mathrm{R}^{\mathrm{g}}$ , $t>0$,
$w(x,0)$ $=$ $w_{0}(x)$ ,

(1)

where $\varpi D$ is the convective derivative, $v$ is the velocity field that satisfies $\mathrm{d}\mathrm{I}\mathrm{v}$ $v=0$

and $w=\nabla \mathrm{x}v$ is the vorticity. The velocity and the vorticity appear in the equation,
but this is in fact only for the vorticity, since the Biot-Savart integral recovers the
velocity from the vorticity.

$v(x,t)=- \frac{1}{4\pi}\int\frac{(x-y)}{|x-y|^{8}}\mathrm{x}w(y,t)dy$ . (2)

It is quite difficult to show weU-po6ednm of the equations in three-dimensional
space, since the quadratic term $w\nabla v\neq 0$ allows the vorticity to grow largely.
According to Beale et $\mathrm{a}\mathrm{L}[1]$ , the maximum vorticity necessarily diverges in finite
time, if the smooth solution loses its analyticity. Hence, the growth of the vorticity
due to the quadratic term is akey factor for the blow-up.
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One of the trials for the mathematical problem is to construct amodel equa-
tion to observe the analytic property of the quadratic term. Constantin, Lax and
Majda[2] introduced aone- imensional model for the Euler equations.

$\frac{u}{\partial t}=\omega H(\omega)$ , $x\in \mathrm{R}$ , $t>0$ .

This is called Constantin-Lax-Majda equation. The operator $H$ is the Hilbert trans-
form and $\omega H(\omega)$ is ascalar one dimensional analogue of the quadratic term. They
gave an explicit solution that blows uP in finite time and discuss the similarity
between the Euler equations and the model equation. See [2] for the details.

Another important topic in the field of mathematical fluid dynamics is well-
posedness of the Navier-Stokes equation in three-dimensional space. Now, we oon-
sider the CLM equation with the diffusion term, which gives aheuristic model $\mathrm{f}\mathrm{i}$)$\mathrm{r}$ the
3-D Navier-Stokes equations. The simplest model was considered by Schochet[7].

$\frac{\partial\omega}{\partial t}=\omega H(\omega)+\nu\omega_{aex}$ , $x\in \mathrm{R}$, $t>0$.

He found asolution that blowed up in finite time and showed that the velocity
recovered from the solution also blowed up at the same time. He also concluded
that the model with the simple diffusion term was less successful than the CLM
equation, inoe the solution of the model equation blowed up khre the solution of
the original CLM equation.

On the other hand, Murthy[3] and Wegert&Murthy[8] chose an non-local $\mathrm{v}\mathrm{i}*$

cosity term, $\nu H(\omega_{ae})$ as the diffusion term. They gave asolution that blowed uP
after the solution of the CLM equation blowed up.

Now we consider the CLM equation with agenerffind viscosity term:

$\{$

$=$ $\omega \mathrm{H}(\omega)-\nu(-\Delta)^{\mathrm{g}}\omega$ ,
$\frac{\ v}{\omega\gamma_{X}},0)$

$=$ $\omega \mathrm{o}(x)$ ,

$x\in \mathrm{R}$ , $t>0$, (3)

where apositive real $\nu$ represents the viscosity coefficient and $\alpha\in \mathrm{R}$ is order
of derivative. $\mathrm{W}\mathrm{e}\mathrm{u}$-posedness of the generffized CLM equation is studied by S-,
recently[5] and [6]. In the present paper, we outline the results in these papers and
add some new materials in terms of the singularity formation.

This paper contains four sections. We give aspectral representation of the CLM
equation (3) and give aformal solution in \S 2. In \S 3, we show blow-up and $\not\in \mathrm{o}\mathrm{b}\mathrm{d}$

existence of solutions when initially aU FOurier coefficients are non-negative. In \S 4,
we show the distribution of singularity times in the complex-time domain to see the
analytic property clearly.

2Spectral Method
We assume that the periodic boundary condition in $x;\omega(x+2\pi,t)=\omega(x,t)$ . Thus
the following Fourier series represents aformal solution of the generalized CLM
equation;

$\omega(x,t)=\sum_{n=-\infty}^{\infty}\omega_{n}(t)\mathrm{e}^{1nx}$ , $\omega_{n}(t)\in \mathrm{C}$. (4)

The Hilbert transform of (4) is expressed as follows[4].

$\mathrm{H}(\omega)=\sum_{n=-\infty}^{\infty}\mathrm{i}\mathrm{s}\mathrm{g}\mathrm{n}(n)\omega_{n}(t)\mathrm{e}^{1nz}$ ,
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where the function $\mathrm{s}\mathrm{g}\mathrm{n}(n)$ is

$\mathrm{s}\mathrm{g}\mathrm{n}(n)=\{$

1if $n>0$ ,
0if $n=0$ ,

-1 if $n<0$ .

Then, the quadratic term $\omega \mathrm{H}(\omega)$ was simply given as follows[5].

(5)$\omega \mathrm{H}(\omega)$ $=$ $\sum_{n=1}^{\infty}\{(\mathrm{i}\sum_{k=0}^{n}\omega_{\mathrm{k}}\omega_{n-k})\mathrm{e}^{\dot{m}x}-(\mathrm{i}\sum_{k=0}^{n}\omega_{-k}\omega_{-r\iota+k)}$ $\mathrm{e}^{-1noe}\}$ .

Substituting (4) and (5) into (3) and equating coefficients of $\mathrm{e}^{1nx}$ , we obtain infinite
dimensional ordinary differential equations for the spectra;

$\{$

$\frac{\mathrm{d}\omega_{n}}{\mathrm{d}t}$ $=$ $- \nu n^{a}\omega_{n}+\mathrm{i}\sum_{k=0}^{n}\omega_{k}\omega_{*-k},$ ,

$\frac{\mathrm{d}\omega 0}{\mathrm{d}t}$ $=$ $-\nu n^{\alpha}\alpha \mathfrak{y}$ ,

$\frac{\mathrm{d}\omega_{-n}}{\mathrm{d}t}$ $=$ $- \nu n^{\alpha}\omega_{-n}-\mathrm{i}\sum_{k=0}^{n}\omega_{-k}\omega_{-n+k}$.

(6)

We assume that initial condition of $\omega$ is symmetric with respect to the origin.

$\omega(x,0)=\sum_{1*=0}^{\infty}A_{n}\sin nx$ . (7)

Then, it follows from the equations (6) that the solution is symmetric with respect
to the origin for all time. That is to say,

$\omega_{n}(t)+\omega_{-n}(t)=0$ , for t $>0$.
Because of the symmetry, the function $\mathrm{i}\omega_{n}(t)$ becomes real-valued and thus the
equations (6) and (7) are reduced to

$\frac{\mathrm{d}_{h^{(\alpha)}}}{\mathrm{d}t}$

$=$ $- \nu’\iota^{\alpha}p_{**}^{(a)}+\sum_{k=1}^{1*-1}p_{k}^{(\alpha)}p_{n-k}^{(\alpha)}$, (8)

$p_{n}^{(\alpha)}(0)$ $=$ $\frac{A_{n}}{2}$ , n $=1,2$ , \cdots , (9)

where $p_{n}^{(a)}(t)\equiv \mathrm{i}u1_{n}(t)$ .
Let $p_{n}^{(\alpha)}(t;A_{n})$ denotes the solutions of (8) with the initial conditions (9), which

are given recursively by

$p_{1}^{(\alpha)}(t;A_{1})$ $=$ $\frac{A_{1}}{2}\mathrm{e}^{-\nu t}$, (10)

$p_{n}^{(\alpha)}(t;A,*)$ $=$ $\frac{A_{n}}{2}\mathrm{e}^{-n^{\alpha}\nu t}+\mathrm{e}^{-n^{\alpha}\iota h}[_{0}\mathrm{e}^{\mathrm{r}\iota^{a}\nu\iota}\sum_{k=1}^{n-1}p_{k}^{(\alpha)}p_{n-k}^{(\alpha)}ds.$ (11)

Note that the solution of the equation (3) for the initial condition (7) is represented
formaly by

$\omega(x,t)=\sum_{n=1}^{\infty}2p_{n}^{(\alpha)}(t;A_{n})\sin nx$ .
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3Blow-up and global existence of solutions
In this section, we outline the blow-up and global results for the generalized CLM
equation. We assume that the initial spectra $A_{ll}$ are non-negative. As for the
detailed proof, please refer to the papers [5] and [6].

3-1 Two comparisons
The following two comparisons are required to show blow-up and global existence
of solutions for general non-negative initial spectra and arbitrary $\alpha$ from asolution
for special initial data. The first comparison is obtained in terms of the index $\alpha$ .

Proposition 1If $\alpha_{2}\geq\alpha_{1}$ , then $p_{n}^{(\alpha_{1})}(t;A_{n})\geq p_{n}^{(\alpha \mathrm{a}\}}(t;A_{n})\geq 0$ for ya $\geq 1$ and
$t\geq 0$ .

The second comparison is about the initial conditions.

Proposition 2If $A_{n}\geq\tilde{A}_{n}\geq 0$ , then $p_{n}^{(\alpha)}(t;A_{n})\geq p_{n}^{(\alpha)}(t_{1}.\overline{A}_{n})\geq 0$ far $n\geq 1$ and
$t\geq 0$ .

3.2 Blow-up solutions
3.2.1 Explicit solution for $\alpha=1$

When $\alpha=1$ , we are able to give an explicit expression of $p_{n}^{(\alpha)}(t;A_{1}\delta_{1n})$ , where
$A_{1}>0$ and $\delta_{1n}$ is Kronecker’s delta

Lemma 3 When $\alpha=\mathrm{I}$, the solutions (10) and (11) for $A_{n}=A_{1}\delta_{1n}$ are represented
by

$p_{n}^{(\alpha)}(t;A_{1} \delta_{1,*})=(\frac{A_{1}}{2})^{n}t^{n-1}\mathrm{e}^{-\mathrm{n}\nu \mathrm{t}}$ . (12)

This lemma is shown easily by the mathematical induction. Then, this lemma and
Proposition 2indicate the blow-up solutions for the general non-negative initial
data, when the viscosity coefficient is sufficiently small.

Theorem 4When a $=1$, for $0< \nu\leq\frac{A_{1}}{2\mathrm{e}}$ , there $\dot{\varpi}sts$ a finite $t\dot{l}$ me $T_{1}(\nu)$ such
that $||\omega(x,t)||_{t^{2}}arrow\infty$ as t $arrow T_{1}^{*}(\nu)$ .
3.2.2 Blow-up solutions for $\alpha>1$

For $\alpha>1$ , we obtain the $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\mathrm{i}\cdot \mathrm{g}$ blow-up solutions for non-negative initial spectra.

Theorem 5hen $\alpha>1$, for $0< \nu\leq\frac{A}{2}\mathrm{L}\mathrm{e}^{-S\alpha-1}$ , $ffie[] toe\dot{|}su$ a finite time $T_{2^{l}}(\nu)$

such that $||\omega(x,t)||_{L^{2}}arrow\infty$ as $tarrow T_{2}^{*}(\nu)$ .

The first step to prove the theorem is to define asequence $\{b_{n}^{(a)}\},*\geq 1$ recursively by

$b_{1}^{(\alpha)}=1$ , $b_{*}^{(\alpha)}.= \frac{1}{n^{a}}\sum_{\mathrm{k}=1}^{n-1}b_{k}^{(a)}b_{n-k}^{(\alpha)}$ for $n=2,3$ , $\cdots$ .

We give alower bound for $b_{n}^{(\alpha)}$ .
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Lemma 6For $\alpha>1$ , let $D_{a}$ be a co nstant such that $\alpha 2^{3\alpha}<D_{a}\leq \mathrm{e}^{3\alpha}$ . Then, the
sequence $b_{n}^{(\alpha)}$ is bounded as follows:

$\mathrm{e}^{-3an}<D_{\alpha}n^{c\iota-1}\mathrm{e}^{-3\alpha n}<b_{n}^{(\alpha)}$ . (13)

Next lemma gives alower estimate for the special solution $p_{n}^{(\alpha)}(t;A_{1}\delta_{1n})$ .

Lemma 7Let functions $f_{n}^{(\alpha)}(t)$ be defined by

$p_{n}^{\{\alpha)}(t)= \nu b_{n}^{(\alpha)}(\frac{A_{1}}{2\nu}\mathrm{e}^{-\nu t})^{n}f_{n}^{(\alpha)}(t)$ . (14)

Then, for ( $\leq n$ $\leq 1$ , ffie functions $f_{1*}^{(\alpha)}(t)$ satisfy

$f_{||}^{(\alpha)}(t)$ $\geq$ $(\nu t)^{\iota-1}’$ . (15)

We finaly prove Theorem 5by using these lemma

Proof of Theorem 5. Rom Paraewl’s equality and Proposition 2, we have

$||\omega(x,t)||_{L[-\pi,\pi)}^{2}$, $=$ $\pi\sum_{n=1}^{\infty}\{2p_{n}^{(a)}(t;A_{n})\}^{2}$

$\geq$ $\pi\sum_{1*=1}^{\infty}\{2p_{n}^{(\alpha)}(t;A_{1}\delta_{1n})\}^{2}=\pi\sum_{n=1}^{\infty}\{2\varphi_{n}^{(\alpha)}(\frac{A_{1}}{2\nu}\mathrm{e}^{-\nu t})^{n}f_{n}^{(\alpha)}(t)\}^{2}$

It blows from Lemma 6and Lemma 7that br $0\leq\nu t\leq 1$ ,

$\sum_{\sim-1}^{\infty}\{2\nu p_{1*}^{(a)}(\frac{A_{1}}{2\nu}\mathrm{e}^{-\nu t})^{n}f_{n}^{(\alpha)}(t)\}^{2}$ $>$ $\sum_{n=1}^{\infty}\{A_{1}\mathrm{e}^{-\nu\iota_{\mathrm{e}}-3\mathrm{m}(\frac{A_{1}t}{2}\mathrm{e}^{-\nu t)^{n-1}\}^{2}}}$

$=$ $A_{1}^{2} \mathrm{e}^{-2d}\mathrm{e}^{-6\alpha}\sum_{n=1}^{\infty}(\frac{A_{1}t}{2\mathrm{e}^{3\alpha}}\mathrm{e}^{-\nu t})^{2(n-1)}$

Therefore, if $R(t)= \frac{A_{1}t}{\Re^{\mathrm{s}\alpha}}\mathrm{e}^{-\nu t}$ is less $\mathrm{t}\mathrm{h}\mathrm{m}\prime \mathrm{o}\mathrm{n}\mathrm{e}$, we obtain

$\mathrm{I}h(x,t)||_{L}^{2}$, $>$ $\pi A_{1}^{2}\mathrm{e}^{-2\nu t}\mathrm{e}^{-6\alpha}\sum_{n=1}^{\infty}\{R^{2}(t)\}^{n-1}$

$=$ $\pi\frac{A_{1}^{2}\mathrm{e}^{-2\nu t}\mathrm{e}^{-6\alpha}}{1-R^{2}(t)}$. (16)

Since $R(t)$ is monotonicdy increasing for $0\leq\nu t\leq 1$ , there exists atime $T_{2}^{\cdot}(\nu)\in$

$[0, \frac{1}{\nu}]$ such that $R(T_{2^{t}}(\nu))=1$ , if the viscosity coefficient satiffies

R $( \frac{1}{\nu})=\frac{A_{1}}{\mathit{2}\nu\theta^{a+1}}\geq 1$.

Hence, it follows
$\square \mathrm{f}\mathrm{f}\mathrm{o}\mathrm{m}$

(16) that if $0<\nu\leq A$ -e$\mbox{\boldmath $\alpha$}-l$\vec{2}$ , $||\omega(x,t)||_{L}$, blows up as
t $arrow T_{2^{l}}(\nu)$
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3.2.3 Blow-up solutions for $\alpha<1$

We consider blow-up of the solution (10) and (11) when the order of viscosity term
is less than one $(\alpha<1)$ . We give alower comparison function ffir the spectra
$p_{n}^{(\alpha)}(t;A_{1}\delta_{1n})$ .
Lemma 8For $\alpha<1$ , $n\geq 1$ and $t\geq 0$ ,

$p_{n}^{(\alpha)}(t;A_{1} \delta_{1n})\geq(\frac{A_{1}}{2})^{n}t^{n-1}\mathrm{e}^{-*\nu t}’$ . (17)

Therefore, we obtain the blow-up theorem for $\alpha<1$ owing to Proposition 2and
Lemma 8.

Theorem 9When $\alpha<1$, fcrr $0<\nu$ $\leq\frac{A_{1}}{2\mathrm{e}}$ , there $oe\dot{u}k$ a finite time $T_{1}^{*}(\nu)$ such
that $||\omega(x,t)||_{L^{2}}arrow\infty$ as t $arrow\Gamma_{1}(\nu)$ .
Consequently, the solution of the CLM equation with the generalized viscosity term
for non-negative initial Fourier coefficients blows up in finite time regardless of the
index $\alpha$ , if the viscosity coefficient is sufficiently smal.

3.3 Global solutions
3.3.1 Global Existence of solutions for $\alpha\geq 1$

First of all, we consider local existence of solution of (3) ffir $\alpha\geq 1$ using the general
theory of the abstract evolution equations. Since the linear operator $A_{\mathrm{o}}=\nu(-\Delta)9$

is the infinitesimal generator of a $C^{0}$ group on $L^{2}$ , the initial value problem with
the periodic boundary condition on if $=[-\pi,\pi)$ can be expressed by

$\{$

$\frac{\partial\omega}{\partial t}+A_{0}\omega$ $=$ $F(\omega)$ , in $L^{2}(\Omega)$ , $t>\mathfrak{h}$

$\omega(0)$ $=$ $\omega_{\mathrm{O}}$ ,
(18)

where the nonlinear mapping $F(\omega)=\mathrm{w}$ (o). The nonlinear operator $F(\omega)$ is
Lipschitz continuous in $H^{1}(\Omega)$ .

Lemma 10 The nonlinear operator $F(u)$ maps $H^{1}(\Omega)$ into $H^{1}(\Omega)$ and satisfies the
following properties; for $u,v\in$ $H^{1}(\Omega)$ there exist constants $C$ and $C’$ such that

$||F(u)-F(v)||_{H^{1}}||F(u)||_{H^{1}}\leq\leq C||u||_{H^{1}}\sigma||u-v||_{H^{1}}$ .
$(\Re)(19)$

Hence, it bUows from Lemma 10 that the initial value problem (18) has aunique
local solution ffir $\alpha\geq 1$ .

Proposition 11 For every $\omega_{0}\in \mathrm{F}(\mathrm{U})=D(A_{0})$ , there exist a time $T_{m}$ and $a$

$un\dot{\eta}_{1}ae$ solution of the init.d value problem (18) such that

$\omega\in$ $c^{1}([0,T_{m}):L^{2}(\Omega))\cap C([0,\tau_{m}):H^{\alpha}(\Omega))$ .

Now suppose that $\omega(x,\mathrm{O})\in H^{\alpha}$ and M $=||\omega(x,0)||H^{\alpha}$ . Then we have an
explicit representation of (10) and (11) with $A_{n}=M$ .
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Lemma 12 When $\alpha=1_{y}$ the functions (10) and (11) for $A_{n}=\mathrm{A}\#$ (n $\geq 1)$ are
represented explicitly by

$p_{n}^{(1)}(t;M)=( \frac{M}{2})(1+\frac{M}{2}t)^{n-1}\mathrm{e}^{-n\nu \mathrm{t}}$. (21)

Consequently, we have the following lemma.

$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}13When_{H}\alpha_{\mathrm{B}}su\mathrm{f}\mathrm{f}\mathrm{i}thd||\omega(x,t)||\geq 1,if\omega(x,0\in<Cfo\mathrm{r}\nu>\frac{\lambda}{2}. H^{\alpha}(\Omega)$

, then there exists a constant $C(\nu)$

Finally, Lemma 10 and Lemma 13 yield the existence of aunique global solution.

Theorem 14 Suppose that $\omega_{0}\in H^{a}(\Omega)$ and all of its initial Fourier coefficients
are $not\vdash nqat\cdot.ve$. Then the initial value problem (18) has $a$ unique global solution,

$u\in C([0,\infty):H^{a}(\Omega))\cap C^{1}([0,\infty):L^{2}(\Omega))$ ,

for $\alpha\geq 1$ and $\nu>51$ $||\omega 0||H^{\alpha}$ .

3.3.2 No global solution for $\alpha\leq 0$

For arbitrary $\nu$ , there exists alarge integer $N_{\mathrm{O}}$ such that the dissipation term
$\nu n^{a}p_{n}^{(\alpha)}$ in (8) becomes quite small for $n\geq N\mathit{0}$ , since $\alpha<0$. Hence, we expect that
the dissipation term fails to control the growth of the high spectra, which leads to
the blow-up of the solution. The following lemma supports this expectation.

Lemma 15 Let $\alpha<0$ . For arbitrary $\nu$ and $\epsilon>0$, there exists a $psit\dot{l}ve$ integer
$N_{0}$ such that the solution of (S) for the initial condition $\omega(x,0)=2\epsilon$ in $N_{0}x$ blows
up in finite time in $L^{2}$ norm.

The comparison in terms of the initial conditions (Proposition 2) and this lemma
show that br given non-negative initial conditions $4\geq 0$, the viscosity coefficient
$\nu$ and an arbitrary $\epsilon$ , there exists apositive integer $N_{0}$ such that the solution of (3)
for the slightly perturbed initial condition $A_{\mathfrak{n}}+\epsilon\delta_{N\mathrm{o}n}$ blows up in ffilte time. Since
$\epsilon$ is arbitrary, we show that no global solution exists for $\alpha<0$ .
Theorem 16 When $\alpha<0$, the solution of (S) for initial condition with non-
negative Fourier coefficients $A_{n}\geq 0$ always blows up in finte time in $L^{2}$ no $m$.

Hence, the solution of (3) blows up in finite time no matter how large the viscosity
coefficient is.

4Singularity time in complex time domain
The results for $\alpha\geq 1$ in the previous section indicate that the solution of the CLM
equation blows up in finite time when the viscosity coefficient is small, while it
exists globally for large viscosity. It means the singularity abruptly disappears as
the viscosity increases. In order to study the discontinuity in terms of the singularity
formation, we investigate distribution of singular times in the complex time plane.

Now, assuming that the time variable is complex number, we regard the spectra
$p_{n}^{(\alpha)}$ as complex-valued function. First, choosing the integration path starting form
the origin in the complex time plane, we compute (10) and (11) numericaly alon
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Figure 1: Distribution of singularity time in the complex-time plme hr $\alpha=1$

the path. Next, since the sufficient and necessary condition ffir the convergence of
$L^{2}$ norm of the solution is

$n arrow\infty 11\mathrm{m}|\frac{p_{n+1}^{(\alpha)}}{\mathrm{p}_{\mathrm{n}}^{(a)}}|=g(t)<1$,

we compute the critical time $t^{\mathrm{r}}\in \mathrm{C}$ such that $g(t^{*})=1$ for various $\nu$ and Not them

in the complex time domain. In the present paper, we show the distribution of the

critical times for aspecific initial condition, $A_{n}=\delta_{1n}$ .
When $\alpha=1$ , we have the explicit representation of $p_{n}^{(\alpha)}$ in Lemma 3and thus

$g(t)=| \frac{t}{2}\mathrm{e}^{-\nu t}|$. We plot the contour plot of $g(t)$ for various $\nu$ in Figure 1. Rr a mffi
$\nu$ , the dIstrlbution of the singuMity times $\infty \mathrm{n}\mathrm{s}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}$ of a circulff h.ne surrounding

the origin and vertical line in the right Mnd side of the figure. A region inside the
$\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}\mathrm{u}\mathrm{l}\pi$ distribution and an unbounded region whose boundary is the vertical h.ne

are regular regions in which the solution of the generalized CLM equation exists.

The distribution has three intersections with the real time axis. Hence, when the

path goes ffom the origin in the positive real-time direction, it maets one of ffie
$\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{n}\cdot \mathrm{t}\mathrm{y}$times in the circular distribution at which the solution blows up. As the

viscosity coefficient increases, the two disjoint regular regions unite and move to

the left. Then, since the origin is always in the right hand side of the distribution,

the solution along the path from the origin in the positive real-time direction exists

globally. we must note that the solution always blows up along the negative real-

time axis, since the path meets the distribution.
Next we show the distribution of the singularity times for $\alpha=1.5$ . $\mathrm{h}$ $\mathrm{t}\mathrm{h}\dot{s}$ case,

since we have no explicit expression for the solution, we compute the function $g(t)$
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$\Leftrightarrow\wedge \mathrm{g}^{\mathrm{I}}=$

$\underline{\check{\check{\mathrm{g}}_{1}}}$

Figure 2: Ratio function $. \frac{p_{\mathrm{A}}^{(1.)}}{\mathrm{r}_{+1}^{\{1.5)}}$‘ffir $n=10,20,30$ and 40 from $t=0$ to 5. They

converges uniformly to afunction rapidly as $narrow\infty$ . The integration path is taken
from the origin in the positive imaginary time direction.

numerically. Figure 2shows the ratio fimction $\frac{\mathrm{p}_{n\neq 1}^{(\propto)}}{-p_{\hslash}^{\mathrm{T}\alpha \mathrm{T}}}$ for $n=10,20$, 30 and 40 from
$t=0$ to 5, when the integration path is along the imaginary time axis. It indicates
that the ratio function converges uniformly to afunction. Since the convergence
is quite rapid, we use the ration function for $n=50$ instead of $g(t)$ and plot its
contour plot br various $\nu$ in Figule $\mathrm{r}\mathrm{e}3$ . The distribution of the singularity time
is topologically the same as the distribution for $\alpha=1$ , which corresponds to the
similarity in the analytic properties for $\alpha\geq 1$ in Theorem 4and 5for small viscosity
and Theorem 14 for large viscosity.

On the other hand, Figure 4shows the distribution of the singularity times
br $\alpha=-0.5$. The singularity times ffims a closed curve for each $\nu$ . Hence, the
distribution has intersections with the positive real-time axis, which indicates that
the solution always blows up in finite time. This supports Theorem 16.

5Conclusion
First, Ireview the analytic properties of the generalized Constantin-Lax-Majda
equation that obtained in the papers$[5, 6]$ . For small viscosity, $L^{2}$ norm of the
solution diverges in finite time regardless of the order of the diffusion term. Ebr
large viscosity, it exists globally when a $\geq 1$ but it always blows up when $\alpha<0$.

Next, Icompute the distribution of critical times of the generalized CLM $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}_{\mathrm{P}}$

tion in the complex-time domain. The continuous change of the distribution ex-
plains the discontinuity of the singularity formation for $\alpha\geq 1$ . Thus the topology
of the distribution supports the analytic properties of the equation.

Finally, Icompare the generalized CLM equation with the 3-D Navier-Stokes
equations. In 3-D Navier-Stokes equations, the solution exists globaly in time
regardless of the viscosity coefficient when $\alpha>\frac{5}{2}$ . Hence, the CLM equation with
the generalzed viscosity term ffils to catch this analytic property of the 3-D Navier-
Stokes equations.
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Figure 3: Distribution of singularity time in the complex-time plane for $\alpha=1.5$ .
The distribution is $\mathrm{t}\mathrm{o}\mu \mathrm{l}\mathrm{o}\dot{\mathrm{g}}\mathrm{c}\mathrm{a}\mathbb{I}\mathrm{y}$ the same as that for $\alpha=1$ .
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Figure 4: Distribution of singularity time in the complex-time plane for $\alpha=-0.5$.
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