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1Introduction
Historically, aconformal field theory is amathematical method for physical phenomena,

for example, astring theory. In astring theory, aparticle (or astring) is expressed
by asimple module. Physicists constructed many examples of conformal field theories
whose simple modules were explicitly determined. Such conformal field theories are called
solvable models. It is natural to divide theories into two types. One has infinitely many
kinds of particles or simple modules, the other has only finitely many simple modules. For
example, aconformal field theory for free bosons has infinitely many simple modules and
lattice theories are of finite type. In 1988, in connection with the moonshine conjecture (a
mysterious relation between the largest sporadic finite simple group “Monster” and the
classical elliptic modular function $\mathrm{j}(\mathrm{r})=q^{-1}+744+196884q+\cdots)$ , aconcept of vertex
operator algebra was introduced as aconformal field theory with arigorous axiom. In
this paper, we will treat avertex operator algebra of finite type.

Until 1992, in the known theories of finite type, all modules were completely reducible.
This fact sounds natural for physicists, because amodule in the string theory was thought
as abunch of strings, which should be adirect sum of simple modules. At this stage, one
of the most important methods for conformal field theory, modular invariance or $SL_{2}(\mathrm{Z})-$

invariance of the set of characters, was proved by Zhu for vertex operator algebra under
the assumptions of the completely reducibility of modules and some technical condition
which is now called $C_{2}$-finiteness. He has also introduced apowerful method, Zhu algebra
$A(V)$ , which determines all simple modules.

However, after that, physicists have constructed more examples and found strange
VOAs. The first one was found in 1992, but went unnoticed. The second was found in
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1995 and several examples succeeded and then have begun to make amark. Physicists
are trying to understand physical meanings of these models (for example, gravitationally
dressed conformal field theory, etc). Anyway, these models are vertex operator algebras
of finite type, but some module is not completely reducible and the set of characters is
not $SL_{2}(\mathbb{Z})$-invariant. Iwill show you an example later. (Garberdiel, etc.)

The results in this paper are, roughly speaking, in any finite models, it doesn’t matter
whether modules are completely reducible or not:
(1) Modular variance property holds.
(2) $C_{2}$-finite condition is anatural condition.
(3) Extend Zhu algebra $A_{n}(V)$ , but not Zhu algebra, plays an important role.

2Notation
Let me explain notation and terms. Let $V$ be aVOA $(V, \mathrm{Y}, 1,\omega)$ . If the reader is not

familiar with VOA, just consider it as a $\mathbb{Z}_{+}$-graded vector space

$V=\oplus_{n=0}^{\infty}V_{n}$

with infinitely many products $\mathrm{x}_{n}(n\in \mathbb{Z})$ and 1and $\omega$ are two special elements of $V$ .
The following is ashort introduction of VOA. For any $v\in V$ , we have infinitely many

endomorphism $v_{n}:=v\mathrm{x}_{n}$ of $V$ and we denote them $\mathrm{Y}(v, z)=\sum v_{n}z^{-n-1}$ by using formal
variable $z$ and call it avertex operator of $v$ on $V$ . One of axiom of VOA is locality:

$\forall v,u\in V$, $\exists N\in \mathbb{Z}\mathrm{s}.\mathrm{t}$ . $(z-x)^{N}\{\mathrm{Y}(v, z)\mathrm{Y}(u, x)-\mathrm{Y}(u,x)\mathrm{Y}(v, z)\}=0$ .

Moreover, $V$ has two special elements 15 $V_{0}$ and $\omega$ $\in V_{2}.1$ (called Vacuum) is cor-
responding to identity $\mathrm{Y}(1, z)=1\mathrm{y}$ , and the coefficients of vertex operator $\mathrm{Y}(\omega, z)=$

$\sum_{n\in \mathrm{Z}}L(n)z^{-n-2}$ satisfy Virasoro algebra relation

$[L(m), L(n)]=(m-n)L(m+n)+\delta_{m+n,0}$ $(\begin{array}{ll}m +1 3\end{array})$
$\frac{\mathrm{c}}{2}$

with $c\in \mathbb{C}$ (called central charge of $V$) such that $\omega_{1}=L(0)$ defines agrading and
$\omega_{0}=L(-1)$ is adifferential operator

$[L(-1), \mathrm{Y}(v,z)]=\frac{d}{dz}\mathrm{Y}(v, z)$ .

Similarly, amodule $W$ is a $Z_{+}$ -graded vector space $W=\oplus_{m=0}^{\infty}W(m)$ and for each $v\in V$ ,
operator $v_{m}$ on $W$ satisfies the similar conditions as the operators on $V$ do.
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A $V$-module is a $Z_{+}$-graded vector space $W=\oplus_{m=0}^{\infty}\mathrm{V}V(m)$ such that for any $v\in V$ , we
have infinitely many endomorphisms $v_{n}^{W}$ of $W(n\in \mathbb{Z})$ and $\mathrm{Y}^{W}(v, z)=\sum_{n\in \mathbb{Z}}v_{n}^{W}z^{-n-1}$

satisfies the same properties as $\mathrm{Y}(v, z)$ does. Our finiteness condition assures that if $W$

is simple, then $\dim W(m)<\infty$ and the grading $L(0):=\omega_{1}^{W}$ is ascalar $r+m$ on $W(m)$

with some $r\in \mathrm{C}$ . Among the endomorphisms $\langle v_{n}^{W}|n\in \mathbb{Z}\rangle$ , there is agrade preserving
operator $o(v)$ of $W$ . Then $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ function is given by

$S^{W}(v, \tau)=\sum_{m=0}^{\infty}(\mathrm{t}\mathrm{r}_{|W(m)}o(v))q^{r+m-c/24}$

where $q=exp(2\pi i\tau)$ . In particular, using $\mathrm{o}(1)=1_{W}$ , we have acharacter of $W$

$S^{W}(1, \tau)=\sum_{m=0}^{\infty}(\dim(W(m))q^{r+m-e/24}$.

For example, character of the moonshine VOA $V^{\mathfrak{b}}$ ,

$S^{V^{\mathrm{Q}}}(1, \tau)=J(\tau)=q^{-1}+196884q+\cdots$

is $J$-function. If we have any even positive lattice $L$ and acoset $x+L\subseteq \mathbb{Q}L$ , then there
is alattice VOA $V_{L}$ and its (twisted) module $V_{L+x}$ whose character is

$S^{V_{L+\mathrm{r}}}(1, \tau)=(\frac{1}{\eta(\tau)})^{\mathrm{c}}\theta_{L+x}(\tau)$ ,

where $\eta(\tau)$ is Dedekind $\mathrm{e}\mathrm{t}\mathrm{a}$ function and $\theta_{L+oe}(\tau)$ is the that -function of $L+x$ .

2.1 Zhu algebra

We next explain $n$-th Zhu algebra An(V) and its role. For $V$-module $W$, $o(v)$ acts on
$n$-th homogeneous part $W(n)$ . Define $O_{n}(V)\subseteq V$ by

$v\in \mathrm{O}(v)\Leftrightarrow \mathrm{o}(\mathrm{v})=0$ on $W(n)$ for all $V$-modutes $W=\oplus_{m=0}^{\infty}W(m)$ .

We are able to define a $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}*\mathrm{b}\mathrm{y}$

$o(v*u)=o(v)\mathrm{x}o(u)$ on $W(n)$ for all V-module

(Axioms of VOA assures the existence of such an element $v*u$ ). These are all well-defined
and the factor space

$A_{n}(V)=V/O_{n}(V)$
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becomes an algebra. It is clear that the $n$ -th piece $\mathcal{V}V(n)$ of $W$ is amodule of $n$-th Zhu
algebra An(V). We should note that the real definition of $n$ -th Zhu algebra is given by $V$

itself, but not modules.
An excellent property of $n$-th $\mathrm{Z}\mathrm{h}1_{-}1$ algebra is the converse, that is, if $T$ is an $A_{n}(V)-$

module, then by generating from $T$ by the formal actions of $V$ and divided by relations
(truncations, locality and associativity), we have a $V$ module $W$ whose $n$-th piece is
$T$ . In particular, if $V$ has only finitely many simple modules, then there is one to one
correspondence between $A_{n}(V)$-modules and $V$-modules for asufficiently large $n$ .

Originally, Zhu introduced $A(V)=A_{\mathrm{O}}(V)$ and Dong, Li and Mason extended it to n-th
Zhu algebras.

Definition 1Defin$e$

$C_{2}(V)=\langle v\mathrm{x}_{-2}u|v,u\in V)$ .
$V$ is called $C_{2}$-cofinite if $\dim V/C_{2}(V)<\infty$ .

Amodular invariance property that Zhu proved is:

Theorem 1If all modules are completely reducible (or $A(V)$ is semisimple) and $V$ is
$C_{2}$ -cofinite, then trace functions are all holomorphic function on the upper half plane and
the set of all trace function of $v$ is $SL_{2}(Z)$ -invariant, that is,

$(S^{W}(v, \tau)|W$ all simple modules)

is $SL_{2}(\mathrm{Z})$ invariance for $v\in V$ .
Here modular transformation is given by

$S^{W}|$ $(\begin{array}{l}abcd\end{array})$ $(v, \tau)=\frac{1}{(c\tau+d)^{n}}S^{W}(v\frac{a\tau+b}{c\tau+d}\})$

if the weight of $v$ is $n$ .

2.2 Conformed block of torus and Zhu’s result
Zhu introduced conformal block $\mathrm{C}_{1}(V)$ on torus by the set of family of functions

$S(*, *)$ : $V\mathrm{x}H$ $arrow \mathbb{C}$ satisfying
(1) $S(v, \tau)$ is aholomorphic function on $\mathcal{H}$ for $v\in V$

(2) $u\in O_{q}(V)\Rightarrow S(u, \tau)=0$

(3) $S(L(-2)u, \tau)=\frac{1d}{2\pi\cdot d\tau}.S(u, \tau)+\sum_{k=2}^{\infty}E_{2k}(\tau)S(L(2k-2)u, \tau)$ .
Here A(V) $= \langle v\cross_{0}u, v\mathrm{x}_{-2}u+\sum_{k=2}^{\infty}(2k-2)E_{2k}(\tau)|v, u\in V\rangle$ and $\mathrm{E}2\mathrm{k}(\mathrm{r})$ denotes
Eisenstein series.

It is easy to see:
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Proposition 1Ci(V) is $SL_{2}(\mathbb{Z})$ -invariant

Zhu showed the space spanned by $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ functions on simple modules is equal to con-
formal block.

Theorem 2(Zhu) $\langle$ $S^{W}(*, \tau)|W$ simple modules) $=\mathrm{C}_{1}(V)$

3General Case
If some module is not completely reducible, the space of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ function is not necessary

to be equal to conformal block.

$\langle$ $S^{W}(*, \tau)|W$ simple) (; $\mathrm{C}_{1}(V)$

What is the difference?
This is my motivation of today’s result. To fill agap, Iintroduce “interlocked module”
and pseud0-trace function pstr, which are defined by asymmetric linear function of n-th
Zhu algebra An(V). My main result is that if $V$ is of finite type, then the conformal
block is equal to the space of pseud0-trace functions on interlocked modules (including
all simple modules). In particular, the conformal block is isomorphic to the space of
symmetric linear functions of $n$-th Zhu algebra for some $n$ .

Namely, set $\mathrm{t}$ ing
$S^{W}(v, \tau)$ $=\mathrm{p}\mathrm{s}\mathrm{t}\mathrm{r}_{W}o(v)q^{L(0)-c/24}$

for an interlocked module $W$, we have:

Theorem 3(Main Theorem) If V is offinite type, then

$(S^{W}(*, \tau)|W$ interlocked $modules\rangle$ $=\mathrm{C}_{1}(V)$

In particular, $\mathrm{C}_{1}(V)\cong space$ of symm. func. of An(V) for a sufficiently large $n$ .

In order to get these results, the assumptions we need are:
(1) $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ function should be well-defined and
(2) dimCi(V) $<\infty$

It is already known that $C_{2}$-finiteness means the both by Zhu, DLM and G.
Although $C_{2}$-finiteness was introduced by Zhu as atechnical condition to obtain a

differential equation, it is anatural condition in order to consider $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ functions on all
(weak) modules
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Theorem 4The followings are equivalent.
1) V satisfies $C_{2}$ -cofiniteness
2) V is finitely generated and all weak modules are $\mathbb{Z}_{+}$ graded
3) $S^{W}(1, \tau)$ is well-defined on finitely generated weak modules.

3.1 Logarithmic forms

The well known examples of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ functions are rational power sum of $q$ . However, in
our case, $L(0)$ may not act semisimply. So we devide $L(0)$ into

semisimple nilpotent
$L(0)=$ $L^{\epsilon \mathrm{e}}(0)$ $+$ $L^{nl}(0)$

Then we have

$q^{L\{0)}=q^{L(0)}. \mathrm{e}(_{m=0}\sum^{f}\frac{(2\pi iL^{ni}(0))^{m}}{m}!(\tau)^{m})$

which contains $\tau$-terms, that is, logarithmic form $(\ln q=2\pi i\tau)$ . However, if we take a
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ $\mathrm{t}\mathrm{r}_{W}q^{L(0)}$ , then there is no $\tau$ forms since $L^{nl}(0)$ is anilpotent operator. So we need
anew kind of “trac\"e. What does $” \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$”mean in our setting? It is just asymmetric
linear function of the ring generated by grade preserving operators of $V$ . So we have a
question.

Is there another suitable symmetric linear function?

The answer is “Yes” and Iwill introduced anew $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ function $” \mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}\mathrm{o}- \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}^{}$ .

3.2 PseudO-trace
Consider

$R_{m}=\{g=(\begin{array}{ll}A_{g} B_{g}O A_{g}\end{array})$ $|A_{g}$ , $B_{g}\in M_{m,m}(\mathbb{C})\}$ .
Then pstr(g) $=\mathrm{t}\mathrm{r}B_{g}$ is asymmetric linear map. We will show that these symmetric linear
function of the ring of graded preserving operators of $V$ is defined by asymmetric linear
function of $A_{n}(V)$ , which is also given by aconformal block.

Let me explain the image of pseudo $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ function. Let $R$ be aring and $W$ aleft R-
module. Set $P=\mathrm{E}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{l}(\mathrm{W})$ . Assume that there is an $R$-isomorphism $\phi$ : $W/WJ(P)arrow$
Wsoc(P). Consider $\alpha$ $\in R$ and $\alpha$ : $Warrow W$ . An oridinary $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{t}\mathrm{r}\alpha$ is the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of a
matrix $(m_{ij})$ given by $\alpha(w.\cdot)=\sum m_{i\mathrm{j}}w^{j}$ for some basis $\{w^{*}.\}$ of $W$ . In our case, we have
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amatrix representation

$\alpha=(\begin{array}{lll}A * B0 C *O 0 A\end{array})$

$A$ $*$ $B$

0 $C$ $*$

$O$ 0 $A$

’

and we define $\mathrm{p}\mathrm{s}\mathrm{t}\mathrm{r}^{\phi}\alpha=\mathrm{t}\mathrm{r}B$ .

4Finite dimensional algebra
Now let start the proof of the main theorem.
If we choose $S(*,\tau)\in \mathrm{C}_{1}(V)$ , then since $\dim$ Ci(V) $<\infty$ , $\mathrm{S}(\mathrm{v},\mathrm{t})$ is asolution of some

differential equation of regular singularity type and so $5(\mathrm{v}, \tau)$ has aform

$\sum_{t=0}^{p}\sum_{s=0}^{q}\sum_{i=0}^{\infty}\lambda_{t,s,i}(v)q.\cdot q^{r_{*}}\tau^{t}$

The first result we have is

Lemma 1 $\phi$ $=\lambda_{t,s,n}$ : $Varrow \mathbb{C}$ is symmetric linear function of $A_{\mathfrak{n}}(V)$

We use ordinary finite dimensional ring theoretic arguments since $A_{n}(V)$ is afinite
dimensional ordinary algebra and $A_{n}(V)/\mathrm{R}\mathrm{a}\mathrm{d}\phi$ is symmetric algebra, where $\mathrm{R}\mathrm{a}\mathrm{d}\phi$ $=$

$\{a\in A_{n}(V)|\phi(A_{n}(V)aA_{n}(V))=0\}$ .

4.1 Definition of Symmetric algebra.
Let $A$ be afinite dimensional algebra over complex number field.

Definition 2A is called Frobenius if the left module $AA$ is isomorphic to the dual
$\mathrm{H}\mathrm{o}\mathrm{m}_{A}(A_{A}, \mathbb{C})$ of right module $A_{A}$ . If we denote the regular action of $a\in A$ on $A$ from
the right and left by $R(a)$ and $L(a)$ , then $A$ is Frobenius algebra means that there is $a$

non-singular matrix $Q$ such that $Q^{-1}R(a)Q=L(a)$ . If we can take $Q$ as a symmetric
matrix, then $A$ is called a syrnrnetric algebra.

Lemma 2A is symmetric if and only if $A$ has a symmetric linear map $\phi$ with zero radical
It is also equivalent to that $A$ has an associative, symmetric nondegenerated bilinear form
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4.2 Result by C Nesbitt, W.Scott (1943)

(A short proof was given by Oshima (1952))
There is aclassical result for symmetric algebra given by Nesbitt and Scott. This is a

good method to explain astrategy of my proof. They showed:

Theorem 5(Nesbitt and Scott) $A$ is symmetric algebra if and only if so is its basic
algebra.

4.3 Definition of basic algebra.

This is the last definition Iwill introduce here.

Definition 3Decompose $A/J(A)$ into the direct sum of simple components.

$A/J(A)=A_{1}\oplus\cdots\oplus A_{k}$

where A.$\cdot$ is a matrix algebra $M_{n_{i}}(\mathbb{C})$ . Take a primitive idempotent $e_{i}\in A.\cdot$ , say $e_{i}=$

$(\begin{array}{llll}1 0 \cdots 00 0 \cdots 00\cdots 0\cdots \cdots\cdots \cdots 0\end{array})$ . Set $e=e_{1}+\cdots+e_{k}$ and we can consider that $e$ is an idempotent of

A. Then $eAe$ is called a basic algebra of A. The important properties of basic algeb$m$

is that the semisimple factor is commutative and $Ae$ is a faithful A $\mathrm{x}eAe$ -module and
$eAe=\mathrm{E}\mathrm{n}\mathrm{d}_{A}(Ae)$ .

5Outline of proof of the main theorem
Now let me explain my strategy. Take afunction $S(*, \tau)$ from conformal block. As I

explained, we have asymmetric function $\phi$ of $A_{n}(V)$ . So we have asymmetric algebra
$A=A_{n}(V)/\mathrm{R}\mathrm{a}\mathrm{d}(\phi)$ . As we explained, there is an idempotent $e$ of $A$ such that $P=eAe$
is abasic algebra, which is also asymmetric algebra by Nesbitt and Scott. Since $Ae$ is an
$A_{n}(V)- \mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{e}$, we can construct $V$-module $W$ by multiplying the actions of $V$ from the
left side. So their actions commute with the actions of $P$ from the right side. Consider
the endomorphism ring $R=Endp(W)$ , which contains all actions of $V$ . Iproved that $P$

is the basic algebra of $R$ if $n$ is sufficiently large. We should note that since the actions
of $V$ generate infinite dimensional ring, we always have to consider the actions on finite
dimensional parts $\oplus_{m=0}^{k}W(m)$ . This is the definition of interlocked module. Then again
by Nesbitt and Scott, $R$ is asymmetric algebra with asymmetric linear map, which we
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will call pseud0-trace. Then define pseud0-trace function, which almost coincides with
the original one. Actually, we have to construct asymmetric function explicitly.

6Example

6.1 logarithmic form

Let’s show you one example. Assume that $W$ is a $V$-module such that $L(0)^{2}$ is zero on
the top module $W(0)$ . We also assume:

$W\cong W^{1}\oplus L^{nil}(\mathrm{O})W$, as vector spaces
$L^{nil}(\mathrm{O})W\cong W/WJ(P)\cong W^{1}$ as V-modules

Then consider apseud0-trace function.
$S^{W}(1, \tau)=$ $\sum_{n=0}^{\infty}\mathrm{t}\mathrm{r}_{W(n)}^{\phi}(1+2\pi i(L^{nil}(0)-\frac{\mathrm{c}}{24})\tau)q^{n-\mathrm{c}/24}$

$=$ $(\mathrm{c}\mathrm{h}L^{n}:(\iota(0)W)(\tau)2\pi i\tau$

where $L^{nil}(0)\Leftrightarrow$ $(\begin{array}{ll}O IO O\end{array})$ and $1+2 \pi i(L^{nil}(0)-\frac{c}{24})\tau\Leftrightarrow(\begin{array}{ll}I-\frac{\pi ic}{12}\tau I 2\pi i\tau IO I-\frac{\pi\mathrm{c}}{\mathrm{l}2}\tau I\end{array})$

6.2 Triplet algebra with central charge c $=-2$ .
It is generated by $\omega$ and three vectors $v^{a}\in V_{3}(a=1,2,3)$ . $o_{m}(v)$ denotes $v_{\mathrm{w}\mathrm{t}(v)-1+m}$

$\{$

$[L_{m}, L_{n}]=(m-n)L_{m+n}- \frac{m(m^{2}-1)}{6}\mathit{5}_{m+n,0}$

$[L_{m}, o_{n}(v^{a})]=(2m-n)o_{m+n}(v^{a})$

$[o_{m}(v^{a}),o_{n}(v^{b})]= \delta_{a,b}(2(m-n)o_{m+n}(L_{-2}\omega-\frac{3}{10}L_{-1}L_{-1}\omega)$

$+ \frac{\{m-n)\{2m^{2}+2n^{2}-mn-8)}{20}L_{m+n}-\delta_{m+n,0}(\begin{array}{l}m+25\end{array}))$

$\sqrt{-1}\epsilon^{ab\mathrm{c}}(\frac{5(2m^{2}+2n^{2}-3mn-4)}{14}o_{m+n}(v^{c})+\frac{12}{\mathrm{s}}o(L(-2)v^{c})-\frac{18}{35}o_{m+n}(L(-1)^{2}v^{c}))$

It has six irreducible modules
$V$, $M^{1}$ , $M^{-1/8}$ , $M^{3/8}$ , $X^{0}$ , $X^{1}$

Theire characters are

$\{$

$S^{1}( \tau)=\frac{1}{2}(\eta(\tau)^{-1}\theta_{1,2}(\tau)+\eta(\tau)^{2})$

$S^{2}( \tau)=\frac{1}{2}(\eta(\tau)^{-1}\theta_{1,2}(\tau)-\eta(\tau)^{2})$

$S^{3}(\tau)=\eta(\tau)^{-1}\theta_{0,2}(\tau)$

$S^{4}(\tau)=\eta(\tau)^{-1}\theta_{2,2}(\tau)$

$S^{5}(\tau)=2\eta(\tau)^{-1}\theta_{1,2}(\tau)$

$S^{6}(\tau)=2\eta(\tau)^{-1}\theta_{1,2}(\tau)$
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The space spanned by last four characters is invariant under $SL(2, \mathbb{Z})$ , but

$\{\begin{array}{l}S^{1}(-1/\tau)=\frac{\mathrm{l}}{4}S^{3}(\tau)-\frac{1}{4}S^{4}(\tau)-\frac{i}{2}\eta(\tau)^{2}\tau S^{2}(-1/\tau)=\frac{1}{4}S^{3}(\tau)-\frac{1}{4}S^{4}(\tau)+\frac{i}{2}\eta(\tau)^{2}\tau\end{array}$

It is not alinear sum of characters, but there exists an interlocked module $W$ such that
apseud0-trace function is

$S^{7}(\tau)=(S^{1}(\tau)-S^{2}(\tau))2i\pi\tau)=\eta(\tau)^{2}(2\pi i\tau)$ .

$S^{1}( \frac{-1}{\tau})$ $= \frac{1}{4}(S^{3}(\tau)-S^{4}(\tau)+2i\tau\eta(\tau)^{2}$

$= \frac{1}{4}(S^{3}(\tau)-S^{4}(\tau)+\frac{1}{\pi}S^{7}(\tau)$

$S^{2}( \frac{-1}{\tau})$ $= \frac{1}{4}(S^{3}(\tau)-S^{4}(\tau)-2i\tau\eta(\tau)^{2})$

$= \frac{1}{4}(S^{3}(\tau)-S^{4}(\tau)-\frac{1}{\pi}S^{7}(\tau))$

$S^{7}( \frac{-1}{\tau})$ $=(S^{1}( \frac{-1}{\tau})-S^{2}(\frac{-1}{\tau}))(\frac{-2\pi i}{\tau})$

$=(-i\tau)\eta(\tau)^{2}(-2\pi i/\tau)=-2\eta(\tau)^{2}$

$=2\pi(-S^{1}(\tau)+S^{2}(\tau))$
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