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1 Introduction

By Epstein and Penner [7], acusped hyperbolic manifold, that is, anon-compact, complete,
orientable, hyperbolic manifold finite volume, is canonically decomposed into afifinite collection
of hyperbolic ideal polyhedra, which is called the canonical decomposition. Given acusped
hyperbolic 3-manifold with at least 2cusps, one can obtain an infinite family of cusped hyperbolic
3-manifolds by using Thurston’s hyperbolic Dehn surgery theorem. In this paper, we study the
effect of Dehn fillings on the canonical decompositions of cusped hyperbolic 3-manifold, and
see aphenomenon similar to that which appears in the hyperbolic Dehn surgery theory.

Let $M$ be acusped hyperbolic 3-manifold of finite volume with $k_{1}+k_{2}(k_{1}, k_{2}>0)$ cusps.
For a $k_{2^{-}}\mathrm{t}\mathrm{u}\mathrm{p}1\mathrm{e}$ , $\mathrm{s}=$ $(s_{1}, \ldots, s_{k_{2}})$ , of pairs of coprime integers, let $M_{0}(\mathrm{s})$ be the manifold obtained
from $M$ by $sj$-Dehn filling on the end $j$ for $j\in\{k_{1}+1, \ldots, k_{1}+k_{2}\}$ . We will consider the
canonical decomposition of $M_{0}(\mathrm{s})$ . For almost every $\mathrm{s}$ , the canonical decomposition of $M_{0}(\mathrm{s})$ is
characterized in Theorem 3.14 as the union of the “stable part” and the “unstable part”;

1. the stable part is asubdivision of the polyhedra of the canonical decomposition of $M$ , with
sufficiently small “weights” on the cusps to be filled, whose “vertices” are not contained
in the cusps to be filled;

2. the unstable part is determined from the local property of each fifilled end.

There are only finitely many such subdivisions for the stable part described in 1. So, it seems
reasonable to say the part is stable, with respect to the change of Dehn surgery coefficient $\mathrm{s}$ .
On the other hand, if the end under consideration has a“simple combinatorial typ\"e, then the
unstable part is described more explicitly. In fact, it is essentially determined via the Euclidean
algorithm applied to the Dehn surgery coefficient $Sj$ . The proof uses the characterization of the
combinatorial types of the Ford domains of cyclic Kleinian groups due to Jorgensen [8].

This paper is organized as follows. In Section 2, we briefly review the definition of canonical
decompositions by Epstein-Penner. In Section 3, we study the relation of Dehn surgeries and
canonical decompositions in a general setting and define the stable and the unstable parts. In
Section 4, we study the unstable part more explicitly under the condition that the cusp has $\mathrm{a}$

simple combinatorial type, where we apply the Jorgensen’s work for cyclic Kleinian groups to our
setting. Finally, in Section 5, we study an example, and determine the canonical decompositions
explicitly for most Dehn surgery coefficients
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2 Canonical decomposition

Let $M$ be a hyperbolic $3$-manifold of finite volume with $k$ cusps. A weight for $M$ is a&-tuple
of positive numbers, $W=(w_{1}, \ldots, w_{k})$ . The canonical decomposition of $M$ with weight $W$ is
defined by Epstein and Penner [7] as follows.

1. Choose mutually disjoint (small) horospherical neighborhoods, $C_{1}(W)$ , $\ldots$ , $C_{k}(W)$ , of the
cusps of $M$ , so that the ratio of the volumes is equal to that of $w_{1}$ , $\ldots$ , $w_{k}$ .

2. Let $\mathcal{H}(W)$ be the set of horoballs in $\mathrm{F}$ which project onto the union of horospherical
neighborhoods $\cup^{k}{}_{\mathrm{j}=1j}C(W)$ by the universal covering projection.

3. Let $B(W)$ be the subset of the positive light-cone in the Minkowski space $\mathrm{E}^{1,3}$ correspond-
$\mathrm{i}\mathrm{n}\mathrm{g}$ to $\mathcal{H}(W)$ , that is, $\mathcal{B}(W)$ is the set of points $b$ in the positive weight-cone such that the
horoball $\{x\in \mathbb{P} |\langle b, x\rangle\geq-1\}$ is contained in $\mathcal{H}(W)$ .

4. Let $\mathrm{C}(W)$ be the closed convex hull of $B(W)$ in $\mathrm{E}^{1,3}$ . Then $\mathrm{C}(W)$ is a closed set contained
in the inside of the positive light-cone, and its interior is homeomorphic to the open 4-
ball. Moreover, every ray in $\mathrm{E}^{1,3}$ from the origin, which lies in the inside of the positive
light-cone, intersects $\mathrm{C}(W)$ at a single point in $\partial \mathrm{C}(W)$ .

5. Let $\tilde{\Delta}(W)$ be the polyhedral decomposition of $\mathbb{P}$ obtained from the natural cellular struc-
hull on $\partial \mathrm{C}(W)$ via the radial projection from the origin. Then it follows that $\Delta\sim(W)$ is
$\Gamma$-invariant and locally finite.

6. We define the canonical decomposition, $\Delta(W)$ , of $M$ with weight $W$ to be the ideal poly-
hedral decomposition of $M$ obtained from $\tilde{\Delta}(W)$ via the universal covering projection.

In particular, .the canonical decomposition with weight $(1, \ldots, 1)$ is simply called the canonical
decomposition of $M$ .

Canonical decompositions can be characterized without using the Minkowski space model
as above. For the purpose of doing it, we introduce the notion of the signed distance, $d(x, H)$ ,
between a point $x$ and a horoball $H$ in $\mathbb{P}$

$\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{r}_{\mathrm{t}}\mathrm{e}\mathrm{d}$ as

$d(x, H)=\{$
$d(x, \partial H)$ , if $x$ $\not\in H$ ,
$-d(x, \partial H)$ , otherwise.

Definition 2.1. For a point $x$ and a set of horoballs $\mathcal{H}$ in $\mathbb{P}$ , a horoball $H$ in $\mathcal{H}$ is said to be a
nearest horoball to $x$ in $\mathcal{H}$ if $d(x, H)$ attains the minimum among $d(x, H’)$ for $H’\in \mathcal{H}$ . The set
of nearest horoballs to $x$ in 7{ is denoted by Af(x, ??).

Proposition 2.2. Let $Mu$ a cuspd hyperbolic manifold, and $W$ a weight for M. Then an
ideal polyhedron spanned by a set of points $V\dot{/}n\partial \mathrm{E}^{n}$ projects onto a polyhedron in $\Delta(W)$ if and
only if there is a point $x$ such that the set of centers of horoballs in $N(x, \mathcal{H}(W))$ is equal to $V$ .
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3 Hyperbolic Dehn fillings and canonical decompositions
3.1 Thurston’s hyperbolic Dehn surgery theorem
Definition 3.1 (Dehn filling). Let $M$ be a $3$-manifold with an end $e$ with a neighborhood
homeomorphic to the product $T^{2}\mathrm{x}\mathbb{R}$ , where $T^{2}$ denotes the torus. We fifix a system of generators
$\{\mu, \lambda\}$ of $\pi_{1}(e)$ , which is regarded as the image of a pair of elements in $\pi_{1}(T^{2})$ of simple closed
curves on $T^{2}$ by the canonical identifification $\pi_{1}(e)\cong\pi_{1}(T^{2})$ . For a pair of coprime integers
$s=(p, q)$ , an $s$-Dehn fifilling on $e$ is the operation which produces a $3$-manifold $M(s)$ from $M$ as
follows.

1. Let $M’$ be the manifold obtained from $M$ by removing the neighborhood of the end $e$

corresponding to $T^{2}\mathrm{x}\mathrm{R}+$ , where $\mathbb{R}+\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the set of positive numbers, and denote the
boundary component of $M’$ corresponding to $T^{2}\mathrm{x}\{0\}$ by $T_{e}^{2}$ .

2. The manifold $M(s)$ is obtained from $M’$ by gluing the solid torus, $V$ , along $T_{e}^{2}$ and $\partial V$

so that the meridian of $V$ is identifified with a simple closed curve on $T_{e}^{2}$ representing the
element $p\mu+q\lambda$ of $\pi_{1}(T_{\mathrm{e}}^{2})\cong\pi_{1}(e)$ .

Definition 3.2. We denote the set of coprime pairs of integers by $P$ and the union $P\cup\underline{\{}\infty$ }
by $\hat{P}$ , which is regarded as a subset of the one-point compactification of the real plane, $\mathrm{R}^{2}=$

$\mathrm{R}^{2}\cup\{\infty\}\approx S^{2}$ .
Definition 3.3. Let $M$ be a3-manifold with $k$ specified ends, $e_{1}$ , $\ldots$ , $e_{k}$ , each with neighbor-
hoods homeomorphic to $T^{2}\mathrm{x}$ R. For a $k$-tuple $\mathrm{s}=$ $(s_{1}, \ldots, sk)\in(\hat{P})^{k}$ , $M(\mathrm{s})$ is the manifold
obtained from $M$ by performing the following operation simultaneously on the ends $e_{1}$ , $\ldots$ , $e_{k}$ .

$\bullet$ If $s\mathrm{j}\in P$, then perform the $Sj$ -Dehn filling on $ej$ .
$\bullet$ If $sj=\infty$ , then leave $ej$ unchanged.

We say that $M(\mathrm{s})$ is obtained from $M$ by $\mathrm{s}$-Dehn filling on the ends $e_{1}$ , $\ldots$ , $e_{k}$ .
The following is the hyperbolic Dehn surgery theorem by Thurston [9].

Theorem 3.4 (Thurston). Let $M$ be a hyprblic 3-manifold with $k$ cusps. Then there is $a$

neighbrhood $U$ of $\infty=(\infty, \ldots, \infty)$ in $(\overline{\mathbb{R}^{2}})^{k}$ such that for any $\mathrm{s}\in U\cap(\hat{P})^{k}$ , the manifold $M(\mathrm{s})$ ,
obtained from $M$ by the $\mathrm{s}$ -Dehn filling on the cusps, also admits a complete hyperbolic structure.

Remark 3.5. Moreover, the following holds. Let $\{\mathrm{s}_{n}\}$ be asequence in $(\hat{P})^{k}$ which converges
to $\infty$ , and $\rho_{n}\in \mathcal{R}(\pi_{1}(M))$ the composition of the holonomy representation of $M(\mathrm{s}_{n})$ and the
canonical onto homomorphism $\pi_{1}(M)arrow\pi_{1}(M(\mathrm{s}_{n}))$ . Then the sequence $\{\rho_{n}\}$ converges strongly
to the holonomy representation of $M$ .

3.2 Stable part

In what follows, we consider the “stable part” of the canonical decompositions of manifolds
obtained from ahyperbolic manifold with at least two cusps by Dehn fillings so that at least one
cusp remains unfifilled. This is ageneralization of what have been studied through [4, 3, 5]. In
the remaining of this section, we let $M$ be ahyperbolic 3-manifold with $k_{1}+k_{2}$ cusps for some
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positive integers $k_{1}$ and $k_{2}$ . We will consider manifolds $M(\infty, \ldots, \infty, \mathrm{s})$ for $\mathrm{s}\in P^{k_{2}}$ , which will
be denoted by $M_{0}(\mathrm{s})$ for simplicity. Let $U$ be a neighborhood of $(\infty, \ldots, \infty)$ in $(\hat{\mathbb{R}^{2}})^{k_{2}}$ such that
for any $\mathrm{s}\in U\cap P^{k_{2}}$ , $M_{0}(\mathrm{s})$ admits a complete hyperbolic structure.

Here, to simplify the notations, we will introduce the following symbol.

Definition 3.6. We denote by $[a]j$ the sequence of length $i$ whose terms are equal to the same
number $a$ .

Choose horospherical neighborhoods, $C_{1}$ , $\ldots$ , $C_{k_{1}}$ , of the cusps 1, $\ldots$ , $k_{1}$ of $M$ so that they
are mutually disjoint and that their volumes are equal to the same number, $\mathrm{v}\mathrm{q}$ . Let $\mathcal{H}_{\delta}$ be
the set of horoballs which project onto one of $C_{1}$ , $\ldots$ , $C_{k_{1}}$ by the universal covering projection,
$\pi:\mathrm{H}^{3}arrow M$ . For any $\mathrm{s}\in U\cap P^{k_{2}}$ , we defifine a set of horoballs $\mathcal{H}_{s}(\mathrm{s})$ as follows. Notice that
there is a canonical embedding $M\mathrm{e}arrow M_{0}(\mathrm{s})$ , which maps the cusps 1, $\ldots$ , $k_{1}$ of $M$ into the
cusps 1, ..., $k_{1}$ of $M_{0}(\mathrm{s})$ . The embedding induces an isomorphism from Stab $(\#, \rho(\pi_{1}(M)))$ onto
aparabolic subgroup of $\rho_{\mathrm{s}}(\pi_{1}(M))$ for any horoball $H$ in $\mathcal{H}_{s}$ , where Ps denotes the composition
of the holonomy of $\pi_{1}(M_{0}(\mathrm{s}))$ and the canonical onto homomorphism $\pi_{1}(M)arrow\pi_{1}(M_{0}(\mathrm{s}))$ .
The image of Stab(H, $\rho(\pi_{1}(M))$ ) in $\rho_{8}(\pi_{1}(M))$ also stabilizes a $1$-parameter family of horoballs,
and there is one, denoted by $h_{\mathrm{s}}(H)$ , among them such that the volume of the quotient by the
parabolic group is equal to $\mathrm{v}\mathrm{o}$ . We define $\mathcal{H}_{\epsilon}(\mathrm{s})$ to be the collection of $h_{\mathrm{s}}(H)$ for all $H\in \mathcal{H}_{s}$ .
It follows that $\mathcal{H}_{\mathrm{s}}$ is the set of horoballs which project onto the horospherical neighborhoods of
the cusps of $M(\mathrm{s})$

For a set of horoballs, $\mathcal{H}$ , we denote by $P(\mathcal{H})$ the ideal polyhedra i$\mathrm{n}$

$\mathrm{F}$ whose vertices are
contained in the set of centers of horoballs in ??. Then the map $h_{\mathrm{s}}$ from $\mathcal{H}_{e}$ to $\mathcal{H}_{s}(\mathrm{s})$ naturally
induces amap, denoted by the same symbol $h_{\mathrm{s}}$ , from $P(\mathcal{H}_{\epsilon})$ to $P(\mathcal{H}_{\theta}(\mathrm{s}))$ . We remark that
some ideal polyhedron may be $\mathrm{m}$ apped to asingleton in $\partial \mathrm{H}^{3}$ in general. However, if we only
consider afinite collection of finite sided ideal polyhedra in $P(\mathcal{H}_{s})$ , then we may assume that
the polyhedra are mapped to those with the same combinatorial types by choosing asufficiently
small neighborhood $U$ of $([\infty]_{k_{2}})$ in $(\overline{\mathbb{R}^{2}})^{k_{2}}$ .
Proposition $.7. For any ideal polyhedron $\sigma$ in $P(\mathcal{H}_{s})$ such that $\pi|\sigma$ is injective, there is $a$

neighborhood $U$ of $([\infty]_{k_{2}})$ in $(\overline{\mathbb{R}^{2}})^{k_{2}}$ which satisfies the following condition. For any $\mathrm{s}\in U\cap P^{k_{2}}$ ,
$\pi_{\mathrm{s}}\circ h_{\mathrm{s}}(\sigma)$ is ambient isotopics to the image of $\pi(\sigma)$ by the canonical embedding of $M$ into $M_{0}(\mathrm{s})$ ,
where $\pi_{8}$ : $\mathbb{H}^{3}arrow M_{0}(\mathrm{s})$ is the universal covering projection.

Definition 3.8. For any $\epsilon>0$ , we will denote by $\Delta \mathrm{o}(\epsilon)$ the subcomplex of the canonical
decomposition $\Delta([1]_{k_{1}}, [\epsilon]_{k_{2}})$ of $M$ with weight $([1]_{k_{1}}, [\epsilon]_{k_{2}})$ consisting of the polyhedra contained
in $\pi(\mathcal{P}(\mathcal{H}_{\epsilon}^{\mathrm{t}},)$ .

As acorollary to Theorem 1.1 of [2], the following holds.

Proposition 3.9. There is a $\mu sitive$ numkr $\epsilon 0$ such that for any $0<\epsilon\leq\epsilon_{0}$ , the hyperbolic
ideal polyhedral complex $\Delta_{0}(\epsilon)$ emkdded in $M$ is equal to $\Delta \mathrm{o}(\epsilon_{0})$ .
Definition 3.10. Let $\Delta_{\theta}$ be the hyperbolic ideal polyhedral complex $\Delta \mathrm{o}(\epsilon 0)$ embedded in $M$

obtained by Proposition 3.9. We will call $\Delta_{s}$ the stable part for the family of cusped hyperbolic
manifolds $\{M\mathrm{o}(\mathrm{s})|\mathrm{s} \in P^{k_{2}}\}$ .

We obtain the following proposition by using the strong convergence of the holonomies
mentioned in Remark 3.5
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Proposition 3.11. There is a neighborhood U of $([\infty]_{k_{2}})$ in $(\overline{\mathbb{R}^{2}})^{k_{2}}$ which satisfies the following
condition. For any s $\in U\cap P^{k_{2}}$ , there is a subdivision $\Delta_{s}(\mathrm{s})$ of $\Delta_{s}$ such that for any ideal
polyhedron $\pi(\sigma)$ in $\Delta_{s}(\mathrm{s})$ , the corresponding ideal polyhedron $\pi_{8}\circ h_{\mathrm{s}}(\sigma)$ is contained in the
canonical decomposition of $M_{0}(\mathrm{s})$ .

3.3 Unstable part

Let $\epsilon$ be a positive number which is strictly less than $\epsilon_{0}$ obtained by Proposition3.9, and
denote $\mathcal{H}([1]_{k_{1}}, [\epsilon]_{k_{2}})$ simply by ??. For each $j\in\{k_{1}+1, \ldots, k_{1}+k_{2}\}$ , fix ahoroball $H_{\infty}^{(j)}$ i$\mathrm{n}$

$\mathcal{H}$ which project onto aneighborhood of the cusp $i$ of $M$ . We can take aset of horoballs
$\{H_{1}^{(j)}, \ldots, H_{n_{f}}^{(j)}\}$ in $\mathcal{H}$ such that the geodesic $\tau_{l}^{(j)}(l\in\{1, \ldots, nj\})$ connecting the centers of
$H^{(j)}\infty$ and $H_{l}^{(j)}$ is a lift of an edge of $\Delta([1]_{k_{1}}, [\epsilon]_{k_{2}})$ , and that the set $\{\tau_{1}^{(j)}, \ldots, \tau_{n_{\mathrm{j}}}^{(j)}\}$ is a complete
collection of the representatives of the lifts of edges of $\Delta([1]_{k_{1}}, [\epsilon]_{k_{2}})$ which is not contained in
$\Delta_{s}$ modulo $\rho(\pi_{1}(M))$ . We denote by $\mathcal{H}^{(j)}$ the set of all $\gamma H_{l}^{(j)}$ for $\gamma$

$\in \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}(H_{\infty}^{(j)}, \rho(\pi_{1}(M)))$

and $l\in\{1, \ldots, nj\}$ . It follows that each horoball in $\mathcal{H}^{(j)}$ projects onto a neighborhood of the
cusp $i’$ for some $i’\in\{1, \ldots, k_{1}\}$ , and hence the set of horoballs $h_{\mathrm{s}}(\mathcal{H}^{(j)})$ , each of which projects
onto a neighborhood of a cusp of $M\mathit{0}(\mathrm{s})$ , is well defined for any $\mathrm{s}\in P^{k_{2}}$ contained in asmall
neighborhood of $([\infty])_{k_{2}}$ in $(\overline{\mathrm{R}^{2}})^{k_{0}}\cdot$ . We denote it by $\mathcal{H}^{(j)}(\mathrm{s})$ .

Definition 3.12. For any $\mathrm{s}$

$\in P^{k_{2}}$ contained in a small neighborhood of $([\infty]_{k_{2}})$ in $(\hat{\mathrm{R}^{2}})^{k_{2}}$ ,
we denote by $\Delta_{u}^{(j)}(\mathrm{s})$ the set of ideal polyhedra $\pi_{\mathrm{s}}(\sigma)$ such that the set of vertices of the ideal
polyhedron $\sigma$ in ffl is equal to the set of centers of the horoballs in $N(x, \mathcal{H}^{(j)}(\mathrm{s}))$ for some
$x\in \mathcal{H}^{3}$ , and let $\Delta_{u}(\mathrm{s})$ be the union of $\Delta_{u}^{(j)}(\mathrm{s})(j\in\{k_{1}+1, \ldots, k_{1}+k_{2}\})$ . We call $\Delta_{u}(\mathrm{s})$ the
unstable part of the canonical decomposition of $M\mathrm{o}(\mathrm{s})$ .

Then, by an argument similar to that is used in the proof of Proposition 3.11, we can prove
the following proposition.

Proposition 3.13. There is a neighborhood $U$ of $([\infty]_{k_{2}})$ in $(\overline{\mathrm{R}^{2}})^{k_{2}}$ with the follo wing property.
For any $\mathrm{s}_{\underline{\underline{\acute{|}}}}P^{k_{2}}\cap U$, an ideal polyhedron $\pi_{\mathrm{g}}(\sigma)$ embedded in $M_{0}(\mathrm{s})$ is contained in the canonical
decomposition of $M_{0}(\mathrm{s})$ if and only if it is contained in $\Delta_{u}(\mathrm{s})$ .

As an immediate corollary to Propositions 3.11 and 3.13, we obtain the following theorem.

Theorem 3.14. There is a neighborhood $U$ of $([\infty]_{k_{2}})$ in $(\overline{\mathrm{R}^{2}})^{k_{2}}$ $such$ that, for any $\mathrm{s}\in P^{k_{2}}\cap U$ ,
the canonical decomposition of $M_{0}(\mathrm{s})$ is the union of the stable part $\Delta_{\epsilon}(\mathrm{s})$ and the $\dot{u}$nstable part
$\Delta_{u}(\mathrm{s})$ .

The unstable part $\Delta_{u}(\mathrm{s})$ is described more precisely when it is “simple” in the following
sense.

Definition 3.15. We say that the cusp $j$ $(j\in\{k_{1}+1, \ldots, k_{1}+k_{2}\})$ has asimple combinatorial
type if the number of edges in $\Delta(\epsilon)$ which intersect the cusp is equal to 1, where $\epsilon$ is apositive
number less than $\epsilon 0$ obtained by Proposition 3.9,
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4 Cyclic Kleinian groups
4.1 Ford domain as adual of canonical decomposition
In [8], Jorgensen studied the Ford domains of cyclic Kleinian groups, and gave, without writing
down aproof explicitly, acharacterization of the combinatorial types of them. (A nice exposition
and the proof for the characterization is given by Drumm and Poritz [6].) In this section, we
will use the characterization to determine the unstable part arising from a cusp with a simple
combinatorial type.

First, we recall some property of Ford domains and see how it can be used to decide the
canonical decompositions.

Deflnition 4.1. The isometric hemisphere, $Ih(\gamma)$ , of an element $\gamma=$ $\{\begin{array}{ll}a bc d\end{array}\}$ of $PSL_{2}(\mathbb{C})$ with
$\gamma(\infty)\neq\infty$ is the hemisphere in the upper half space of the Euclidean 3-space, which can be
identifified with $\mathbb{H}^{3}$ , with boundary $\mathbb{C}$, whose equator is equal to the circle $\{z \in \mathbb{C}| |cz+d|=1\}$

in $\mathbb{C}$. The closure of the unbounded component of the complement of $Ih(\gamma)$ in the upper half
space will be called the exterior of $Ih(\gamma)$ .
Definition 4.2. For aKleinian group $G$ which contains no elements stabilizing $\infty$ , the Ford
domain of $G$ is the common exterior of all the isometric hemispheres of the elements of $G$ .

The following lemma will be well-known.

Lemma 4.3. Let $H$ be a horoball in $\mathbb{H}^{3}$ centered at $\infty$ , and $\gamma$ be an element of $PSL_{2}(\mathbb{C})$ with
$\gamma(\infty)\neq\infty$ . Then the set of points $x$ satisfying $d(x, H)\leq d(x, \gamma H)$ is equal to the exterior of
$Ih(\gamma^{-1})$ .

Corollary 4.4. Let $G$ be a Kleinian group which contains no elements stabilizing $\infty$ . Let $H$ be
a horoball in $\mathbb{H}^{3}$ centered at $\infty$ . Then the Ford domain of $G$ is equal to the set of all points $x$ in
$\mathbb{H}^{3}$ $such$ that $N(x, G(H))$ contains $H$ , where $G(H)$ denotes the family of all translates of $H$ by
$G$ .
Remark 4.5. Notice that the image, in the fundamental group of the Dehn fifilled manifold, of
the peripheral group of each end to be filled is cyclic. Thus, by the corollary, one can determine
the unstable part, arising from a cusp with asimple combinatorial type, by using the Jorgensen’s
result.

4.2 Layered solid torus

In what follows, we will define atriangulation of the solid torus which has only one vertex in
the boundary (and has no other vertices). From the construction, we call the solid torus with
the triangulation the layered solid torus.

To define the triangulation, we recall the Farey triangulation of $\mathbb{P}$ .

Definition 4.6. The Farey triangulation, $D$ , of $\mathbb{P}$ is the ideal triangulation whose triangles are
the translates by the action of $PSL_{2}(\mathrm{Z})$ on $\mathbb{P}$ of the ideal triangle with vertices 0, 1, and $\infty$ .

The set of vertices of ?) is equal to $\mathbb{Q}$ $\cup\{\infty\}$ , which is naturally identified with the set of
essential simple closed curves modulo isotopy on the torus, $T^{2}$ , as follows. The torus is the
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quotient of the complex plane $\mathbb{C}$ by the group of parallel translations $\langle z-*z+1, z\mapsto z+\sqrt{-1}\rangle$ .
Then the homotopy classes of essential simple closed curves on $T^{2}$ have representatives of the
form $\{\triangleright s(z\grave{)}=s\Re(z)\}$ for some $s$ $\in \mathbb{Q}\cup\{\infty\}$ . ( $s$ is called the slope of the isotopy class.) This
gives the desired correspondence.

The condition that three points in $\mathbb{Q}\cup\{\infty\}$ span atriangle of $V$ is equivalent to that the
isotopy classes with the slopes contain representatives which intersect at asingle point. In fact,
$V$ can be thought as the set of triangulations of $T^{2}$ with only one vertex.

Notice that two adjacent triangles of 7) have vertices $\{p/q, (p+r)/(q+s), r/s\}$ and $\{p/q$ , $(p-$

$r)/(q-s)$ , $’/s\}$ for some integers $p$ , $q$ , $r$ , and $s$ . Then the triangulation of $T^{2}$ corresponding
to one of them is obtained from that to another by “pasting atetrahedron” on it. Precisely,
the triangulation of $T^{2}$ corresponding to $\{p/q, (p+r)/(q+s), r/s\}$ is obtained from that to
$\{p/q, (p-r)/(q-s), r/s\}$ as follows. First, consider the decomposition of $T^{2}$ by the two curves
with slopes $p/q$ and $r/s$ . By lifting the decomposition, one obtains a $\langle z\downarrowarrow z+1, z\vdasharrow z+\sqrt{-1}\rangle-$

invariant tessellation of $\mathrm{C}$ by parallelograms. Each parallelogram has two diagonals, whose
slopes are $(p+r)/(q+s)$ and $(p-r)/(q-s)$ . Now consider the $\langle z\mapsto+z+1, z\vdasharrow z+\sqrt{-1}\rangle-$

invariant triangulation of $\mathbb{C}$ obtained by adding the lines with slope $(p+r)/(q+s)$ pasing
through the vertices of the parallelograms. The quotient of this triangulation by the action
of $\langle z\mathrm{h}arrow z+1, z-\rangle z+\sqrt{-1}\rangle$ is the one corresponding to $\{p/q, (p+r)/(q+s), r/s\}$ . First,
look at any one of the parallelograms. It is the union of two triangles with an edge with slope
$(p+r)/(q+s)$ in common. We put atetrahedron on it so that two of the four faces coincide
with the two triangles. Then, looked down from above, the diagonal of the parallelogram with
slope $(p+r)/(q+s)$ is switched to the other, with slope $(p-r)/(q-s)$ . We put infinite copies of
the tetrahedron in the $\langle z\vdash+z+1, z-\succ z+\sqrt{-1}\rangle$ -equivariant way. Then, looking down from the
above, the triangulation of $\mathrm{C}$ corresponding to $\{p/q, (p+r)/(q+s), r/s\}$ is switched to that to
$\{p/q, (p-r)/(q-s), r/s\}$ . If we consider the quotient of this process by $(\mathrm{z}$ $|arrow z+1,$ $z\vdash+z+\sqrt{-1}\rangle$ ,
we can observe that the triangulation of $T^{2}$ corresponding to $\{p/q, (p+r)/(q+s), r/s\}$ is switched
to that to $\{p/q, (p-r)/(q-s), r/s\}$ , by pasting atetrahedron between them.

Given two triangles $\sigma^{-}$ and $\sigma^{+}$ of $\mathrm{V}$ , there is aunique shortest sequence of triangles in $D$ ,
$\sigma 0=\sigma^{-}$ , $\sigma_{1}$ , $\ldots$ , $\sigma_{n-1}$ , $\sigma_{n}=\sigma^{+}$ , such that each $\sigma j\cap\sigma j+1\neq\emptyset(j\in\{0, \ldots, n-1\})$ . Then,
by the construction explained in the previous paragraph, we obtain a“layer” of tetrahedra
corresponding to the pairs $\{\sigma j, \sigma j+1\}$ $(j\in\{0, \ldots, n-1\})$ stacked upon the torus.

Definition 4.7. We denote by $\Delta(\sigma^{-}, \sigma^{+})$ the space obtained as the layer of tetrahedra in the
above way.

Proposition 4.8. Let $\sigma^{-}$ and $\sigma^{+}k$ two triangles of 7). Then the following hold.

1. If $\sigma^{-}=\sigma^{+}$ , then the underlying space of $\Delta(\sigma^{-}, \sigma^{+})$ is homeomorphic to the torus.

2. Suppose that $\sigma^{-}\neq\sigma^{+}$ and that they have one or teoo $co$ ntaon vertices. Let $c$ be the union
of one or two essential simple closed curves on $T^{2}$ with slopes corresponding to the common
vertices. Then the underlying space of $\Delta(\sigma^{-}, \sigma^{+})$ is homeomorphic to $T^{2}\mathrm{x}[0,1]/\approx_{l}$ where
$(x, s)\approx(y, t)$ if and only if $(x, s)=(y, t)$ or $x=y\in c$ .

S. Suppose that $\sigma^{-}$ and $\sigma^{+}have$ no common vertex. Then the underlying space of $\Delta(\sigma^{-}, \sigma^{+})$

is homeomorphic to $T^{2}\cross[0,1]/\approx$ , where $(x, s)\approx(y, t)$ if and only if $(x, s)$ $=(y,t)$ or
$x=y=x_{0}$ for arbitrarily fixed point $x_{0}\in T^{2}$ .
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For different triangles $\sigma^{-}$ and $\sigma^{+}$ , there is a unique vertex, $v$ , of $\sigma^{-}$ which is not contained
in the other triangles in the sequence connecting $\sigma^{-}$ and $\sigma^{+}$ . Then the triangulation of the
bottom boundary component of $\Delta(\sigma^{-}, \sigma^{+})$ contains the edge with slope $v$ . Let $V(\sigma^{-}, \sigma^{+})$ be
the quotient space of $\Delta(\sigma^{-}, \sigma^{+})$ by the orientation reversing simplicial isomorphism on the
bottom boundary component of $\Delta(\sigma^{-}, \sigma^{+})$ which fifixes every point of the edge with slope $v$ .
Proposition 4.9. The space $V(\sigma^{-}, \sigma^{+})$ is homeomorphic to the solid torus for any pair of
different triangles $\sigma^{-}$ and $\sigma^{+}$ of D. Moreover, the triangulation induced ftvm that of $\Delta(\sigma^{-}, \sigma^{+})$

has a single vertex, which is the vertex of the triangulation on the boundary of the solid torus
corresponding to $\sigma^{+}$ .
Definition 4.10. For apair of different triangles $\sigma^{-}$ and $\sigma^{+}$ of $D$ , we call $V(\sigma^{-}, \sigma^{+})$ the
layeooed solid torus determined by the pair. We fifix a basis $\{\mu, \lambda\}$ of $\pi_{1}(\partial T^{2})$ as follows. Let $v^{\pm}$

$\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}!\mathrm{y}$ be the vertices of $\sigma^{\pm}$ which are not contained in the other triangles in the sequence
connecting $\sigma^{-}$ and $\sigma^{+}$ . Then is an oriented geodesic in $\mathbb{P}$ from $v^{-}$ to $v^{+}$ . Let $v_{l}^{+}$ and $v_{r}^{+}$

respectively be the vertices of $\sigma^{+}$ which lies in the left and the right side of the oriented geodesic.
Then we defifine $\mu$ and $\lambda$ to be represented by the simple closed curves on the boundary with
slopes $v_{l}^{+}$ and $v_{f}^{+}$ , respectively. We denote by $\tau$ the edge of the triangulation of the boundary
of $V(\sigma^{-}, \sigma^{+})$ with slope $v^{+}$ .
Proposition 4.11. For any layered solid torus $V(\sigma^{-}, \sigma^{+})$ , let $m(\sigma^{-}, \sigma^{+})$ be the pair, $(p, q)$ , of
coprime integers such that $p\mu+q\lambda$ is its meridian and that $p>0$ . Then $m$ induces a bijection
from the set of simplicial isomorphism classes of layered solid tori to the set of pairs of coprime
integers $(p, q)$ with $p>0$ and $q<0$ .

By using the idea mentioned at the beginning of this section, we obtain the following.

Proposition 4.12. Let $M$ and $U$ be as in Theorem S. 14. Suppose that the cusp $j(j\in\{k_{1}+$
$1$ , $\ldots$ , $k_{1}+k_{2}\})$ has a simple combinatorial type. Then, for any $\mathrm{s}\in P^{k_{2}}\cap U$ , the unstable part
$\Delta_{u}^{(\mathrm{j})}(\mathrm{s})$ is isomorphic to some layered solid toms with the vertex deleted.

As adirect consequence from Theorem 3.14 and Proposition 4.12, we obtain the following.

Corollary 4.13. Let $M$ and $Uk$ as in Theorem 3. 14. Suppose that every cusp $j(j\in\{k_{1}+$
$1$ , $\ldots$ , $k_{1}+k_{2}\})$ has a simple $combinator\cdot al$ type. Then, for any $\mathrm{s}$

$\in P^{k_{2}}\cap U$ , the canonical
decomposition of $M_{0}(\mathrm{s})$ is the union of the stable $pa\hslash$ $\Delta_{s}(\mathrm{s})$ and $k_{2}$ layered solid tori.

5 Example

Let $L=K_{1}\cup K_{2}$ be the link in $S^{3}$ illustrated in Figure 1, and $M$ be its complement in $S^{3}$ . We
name the ends corresponding to $K_{1}$ and $K_{2}$ , respectively, $e_{1}$ and $e_{2}$ . For $s\in\hat{P}$ , we denote by
$M_{0}(s)$ the manifold obtained from $M$ by $s$-Dehn filling on the end $e_{2}$ . In this section, we will
consider the canonical decompositions of the hyperbolic manifolds $M_{0}(s)$ with asingle cusp for
$s\in P$ sufficiently close to $\infty$ . We remark that the manifold $M\mathrm{o}(1, n)$ for an integer $n\in \mathrm{Z}$ is equal
to the complement of the pretzel knot of type $(-2, 3, 2n+1)$ . This motivates the author to study
this family; it is an example of the family which is obtained by using A’Campo’$\mathrm{s}$ divides and
hence is in particular an example of the family of fibered knot complements (see [1] for example).
Moreover, the pretzel knot of type (-2, 3, 7), in our family, is regarded as the simplest hyperbolic
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$K_{2}$

Figure 1: The end corresponding to $K_{2}$ will be Dehn filled

knot next to the figure eight knot, and has many special properties in terms of the knot theory.
Though our method cannot reach this knot for the present, it seems important to discover what
happens when we approach from $M$ to its complement via the hyperbolic Dehn surgery space.

5.1 An ideal polyhedral decomposition of $M$

First, we must find the stable part $\Delta_{s}$ , which is asubcomplex of the canonical decomposition
of $M$ with asufficiently $\mathrm{s}$ mall weight on the cusp 2. It is achieved as follows.
Step 1. Find the canonical decomposition of $M$ with an arbitrary weight on the cusps. Prac-
tically, it is possible by using Weeks’ computer program SnapPea [10]; though one may need a
“proof by hand” that the decomposition which SnapPea proposed is certainly the desired one.
Step 2. By using the “tilt formula” introduced by Weeks [11], find the canonical decompositions
of $M$ with smaller and smaller weights on the cusp 2. It is certainly possible because, after a
small change of weight, (i) the canonical decomposition does not change if it is tetrahedral,
and (ii) the change will be only the subdivision of the non-tetrahedral polyhedra even if it is
not tetrahedral. The process finishes after afinite sequence of modifications from the original
decomposition ([2]).

Proposition 5.1. For any $\epsilon<16/125$ , the canonical decomposition of $M$ with weight $(1, \epsilon)$

is the one illustrated in Figure $\ell$. In the figure, the end e2 has a neighborhood consisting of
a neighborhood of the center vertex of the top polyhedron, and the end $e_{1}$ has a neighborhood
consisting of neighborhoods of the remaining vertices. In particular, $\Delta_{s}$ consists of the middle
and the bottom polyhedra, and the cusp 2has a simple combinatorial type.

In fact, the canonical decomposition of $M$ (with the same weight on the cusps) consists of
6 ideal tetrahedra, and after 3modifications, in each of which atetrahedral decomposition is
modified to another tetrahedral one via anon-tetrahedral one. We will denote the top (resp.
middle and bottom) polyhedra by $\sigma_{1}$ (resp. $\sigma_{2}$ and $\sigma_{3}$).

Since $\sigma_{3}$ is an ideal tetrahedron, it suffices to see how $\sigma_{2}$ is subdivided after a Dehn filling in
order to find out the part of the canonical decomposition arising from the stable part (Propositio$\mathrm{n}$
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1

66
2 3

10 9
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$\sigma_{2}$

7 8

12

Figure 2: Canonical decomposition of $M$ with a suiRciently small weight on the cusp 2

3.11). By looking the horoball patterns arising from $\sigma_{2}$ , one can prove the following proposition.
In the proposition, we will use the canonical meridian-longitude system defined from the link
diagram in Figure 1. Moreover, to simplify the notation, we denote the top-left (resp. bottom-
left, bottom-right, top-right, middle-left, and middle-right) vertex of $\sigma_{2}$ by $v_{tl}$ (reps. $v_{bl}$ , $v_{b\mathrm{r}}$ ,
$Vtr$ , $v_{ml}$ , and $v_{m\mathrm{r}}$ ).
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Proposition 5.2. There is a neighborhood, U, of $\infty$ in $\mathbb{R}\overline{2}$ such that for any (p,$q)\in P\cap U$ , the
following conditions are satisfied.

1. The convex hull of $vti$ , $v_{bl}$ , $Vbr$ and $vt\mathrm{r}$ is not contained in any ideal polyhedron in the
canonical decomposition of $M_{0}(p, q)$ .

2. The geodesic connecting $vtf$ and $vbl$ (resp. $vtl$ and $v_{b_{\Gamma}}$) is contained in the canonical de-
composition of $M_{0}(p, q)$ if $p(p+q)<0$ (resp. $p(p+q)>0$).

By Propositions 3.11 and 5.2, we obtain the following corollary.

Corollary 5.3. There is a neighborhood, $U$ , of $\infty$ in $R\overline{2}$ such that for any $(p, q)\in P\cap U$ , the
stable $pa\hslash$ $\Delta_{s}(p, q)$ is the union of $\sigma_{3}$ and $\sigma_{2}$ subdivided into three ideal tetmhedm as follows.

1. If $p(p+q)<0$ , then $\sigma_{2}=\langle v_{tl}, v_{b1}, v_{tr}, v_{ml}\rangle\cup\langle v_{bl}, \mathrm{v}\mathrm{t}\mathrm{i}, v_{ml}, v_{m\mathrm{r}}\rangle\cup(vbi, vbr)vti,$ $v_{m\mathrm{r}}\rangle$ .
2. If $p(p+q)>0$ , then $\sigma_{2}=(\mathrm{v}\mathrm{h}\mathrm{l},$ $v_{bl},$ $v_{b\mathrm{r}},$ $v_{ml}\rangle\cup(v_{tl},$ $v_{bt}$ , $v_{ml}$ , $v_{mr}\rangle\cup\langle v_{tl}, v_{br}, v_{tr}, v_{mr}\rangle$ .

In the above, the symbol $\langle\cdot\rangle$ denotes the convex hull.

By Corollary 4.13, the canonical decomposition of $M_{0}(p, q)$ is the union of the stable part
$\Delta_{s}(p, q)$ and a layered solid torus with the vertex deleted. Recall that $M_{0}(p, q)$ is obtained from
$M$ by adding a solid torus to the end e2 so that the meridian of the solid torus is identified with
the loop $p\mu+q\lambda$ in $e_{2}$ . We can see that for any $(p, q)\in P\cap U$ , there is aunique choice of the pair
of (i) a layered solid torus, $V$ , and (ii) the gluing of $V$ to $\Delta_{s}(p, q)$ , because the ideal triangulation
of the boundary of $V$ is equal to that of $\Delta_{s}(p, q)$ . Then we finally obtain the following theorem.

Theorem 5.4. There is a neighborhood, $U$ , of oo in $\overline{\mathrm{R}^{2}}$ such that for any $(p, q)\in P\cap U$ , the
canonical decomposition of $M_{0}(p, q)$ is characterized as follows.

1. If $p(2p+q)<0$ , then the canonical decomposition of $M\mathrm{o}(p, q)$ is the union of $\Delta_{\theta}(p, q)$ and
the layered solid torus, $V$ , with meridian $p\mu+(2p+q)\lambda$ , where $V$ is glued to $\Delta_{s}(p, q)$ so
that the edge $\tau$ on $\partial V$ is identified with the edge $\langle vtl, vbl\rangle$ in the boundary of $\Delta_{\theta}(p, q)$ .

2. If $(p+q)(2p+q)<0$ , then the canonical decomposition of $M_{0}(p, q)$ is the union of $\Delta_{\epsilon}(p, q)$

and the layered solid torus, $V$ , with meridian $(2p+q)\mu-p\lambda$ , There $V$ is glued to $\Delta_{s}(p, q)$

so that the edge $\tau$ on $\partial V$ is identified with the edge $\langle v_{tl}, v_{t\mathrm{r}}\rangle$ in the boundary of $\Delta_{s}(p, q)$ .

S. If $(p+q)q<0_{f}$ then the canonical decomposition of $M_{0}(p, q)$ is the union of $\Delta_{s}(p, q)$ and
the layered solid torus, $V$ , with meridian $(p+q)\mu+q\lambda$ , where $V$ is glued to $\Delta_{*}(p, q)$ so
that the edge $\tau$ on $\partial V$ is identified with the edge $\langle v_{tl}, v_{t\mathrm{r}}\rangle$ in the boundary of $\Delta_{s}(p, q)$ .

4. If $pq>0$ , then the canonical decomposition of $M_{0}(p, q)$ is the union of $\Delta_{\epsilon}(p, q)$ and the
layered solid torus, $V$ , with meridian $q\mu-p\lambda$ , where $V$ is glued to $\Delta_{s}(p, q)$ so that the edge
$\tau$ on $\partial V$ is identified with the edge $\langle vt\iota, vbl\rangle$ in the boundary of $\Delta_{s}(p, q)$ .
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