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1. INTRODUCTION

We consider the following reaction-diffusion-advection equation on R:
1
(1.1) Uy =eum+6b(z)uz+gf(u), z€R, t>0,

where € is a small positive parameter, b is a smooth periodic function with zero mean,
and f(u) = —W'(u) is a smooth function derived from a double-well potential W (u)
having different depth at its two wells. In the case where b(z) = 0, it is well-
known that there exists a traveling front solution which travels at a constant speed
preserving its shape ([3]). On the other hand, if b(z) # 0, then traveling front
solutions in the usual sense can no longer exist. However, under suitable conditions
on b and f, there exists a kind of front solutions whose shape and propagation speed
vary periodically in time ([8, 9]). Our aim in this article is to study the influence of
spatial inhomogeneity on the speed of front propagation in periodic diffusive media.

Equation (1.1) is related to problems on front propagation in an infinite tubular
domain with a smooth and oscillating boundary. Let

Qa. = {(x, oY1, - - .,O'yn_l) c R x Rn—l | y= (’.111, e ay'n-l) € w(:l:)},

where o > 0 is a parameter and the map z +— w(z) is periodic. Matano [6] has
considered the Allen-Cahn equation

(1.2) ut=eAu+-:;f(u), €y t>0

under the homogeneous Neumann boundary conditions on 92, and has obtained
some conditions on f and w(z) for the existence and non-existence of traveling
fronts for (1.2). Some numerical experiments imply that the characteristics of front
propagation such as front speeds and front profiles are strongly influenced by the
shape of 89, (See Figure 1). It follows from an argument in [4] that equation (1.2)
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is formally reduced in the limit 0 — 0 to equation (1.1) with b(z) = o'(z)/a(z),
where a(z) > 0 is the (n — 1)-dimensional volume of w(z).

t=0 t=T

FIGURE 1. Numerical simulations of front propagation for (1.2) in
five different domains when € = 0.050, f(u) = u(1 — u)(u—1/4). The
white region approximately represents the position of the front.

Since the effects of diffusion and advection are negligible for small ¢, the solution
of (1.1) is known to develop transition layers connecting two stable states within a
short time. Let P¢(t) denote the position of one of the layers at time t. When the
parameter ¢ is small, we will see that the speed of the layer at time t has the formal
expansion
dpP¢

dt

where ¢ > 0 is the speed of the traveling front solution in the homogeneous case
and v is some constant. By constructing suitable supersolutions and subsolutions
of (1.1), we justify the above formal expansion up to &2, provide sharp estimates
for the propagation speed of the front solution and show that spatial inhomogeneity
slows down the speed of front propagation for (1.1).

(1.3) = ¢ — eb(P*) — *yb'(P°) + (higher order terms),

2. MAIN RESULT

Our hypotheses are as follows:

(B1) b(z) is a smooth periodic function with least period L > 0;
L

(B2) /0 b(z)dz = 0;
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(F1) f is smooth and has exactly three zeros 0,a,1 with 0 < a < 1;

(F2) f(u) <0 for u € (0,a) U (1,+00), f(u) > 0 for u € (—o0,0) U (a, 1);
(F3) £(0) <0, f(1) <0;

(F4) / f(u)du > 0.

0
A typical example of f is a cubic function f(u) = u(l—u)(u—a) where 0 < @ < 1/2.

In what follows we denote by (g) the mean of an L-periodic function g on R, namely,

L
@ =1 [ oy

In the homogeneous case (b(z) = 0), there exists a traveling front solution of (1.1)

written in the form
uzt) = ¢ (222

where (¢(§), ¢) is a unique solution of

2.1) {¢£e+0¢e+f(¢)=0, ¢eR
' ¢(—00) =1, $(0) =a, ¢(+00)=0.
In addition, the speed c is positive by virtue of (F4). See [3] for details.

In the periodic case (b(z) # 0), the notion of traveling fronts has to be replaced
as follows:

Definition. A solution U® of (1.1) satisfying

(2.2) xligloo U‘.(a:, t) =1, x}-lrfw Ut(z,t)=0 forall teR
is called a traveling front if there exists a 7, > 0 such that

(2.3) Uf(z,t +T.) =U*(z — L,t) forall z€R, t€R.
We define the effective speed (or the average speed) s, of U by L/T..

The main result of this article is:

Theorem 1. Suppose that b(z) # 0. Then there ezist positive constants e and C
such that for any € € (0, &), we have

8¢ — (c - %2252)

Thus spatial inhomogeneity slows down the front propagation in this case.

(2.4) < Ce¥|logel?.

Remark 2. Some existence results for traveling fronts of multidimensional reaction-
diffusion-advection equations with bistable nonlinearities have been obtained by Xin
[8, 9] on the supposition that diffusion and advection coefficients are nearly constant.
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Applying his results to (1.1), we see that if ¢ is sufficiently small there exists a
traveling front U* satisfying (2.2) and (2.3) with positive effective speed s, and that
it is unique up to time shift.

Remark 3. In [5], Heinze, Papanicolaou and Stevens has given some variational
formulas of the effective speeds of traveling fronts in the multidimensional case.
However, it is rather difficult to obtain sharp estimates for s, like (2.4) by using the
formulas.

3. FORMAL ASYMPTOTIC EXPANSIONS OF THE FRONT SPEED

In this section we present a formal derivation of the propagation speed of the
traveling front U, for (1.1).

Suppose that equation U¢(z,t) = a has a unique solution z = P4(t) for each ¢
and that U® and P° have the expansions
Us(za t) = UO(Eat) + 5Ul(€1 t) + 52U2(§) t) +oeey,

PE(t) = Po(t) + ePi(t) + E2Ry(t) + -+ -,
where £ = (z — P*(t))/e. The stretched space variable ¢ gives the right spatial
scaling to describe the sharp transition layer between the two stable states 0 and 1.
Since U® = a at P¢(t), we normalize Uy in such a way that

(3.2) Uo(0,) =, Ux(0,8)=0 (k=1,2,...)
for all ¢ (normalization conditions). By (2.2), we also impose the following conditions
as £ — +oo:
(3.3) Uo(—o00,t) =1, Up(400,t) =0, Up(£oo,t)=0 (k=1,2,...)
for all ¢ (limiting conditions).

Substituting the above expansions (3.1) into (1.1) and collecting the ° terms, we
obtain

(3.1)

Uogg + POtUO£ + f(Uo) = 0.
From this together with (3.2) and (3.3), we find that

UD(E’t) = ¢(£)1 Py = c,
where (¢, c) is the unique solution of (2.1).

Collecting the ! terms and recalling (3.2) and (3.3), we get

Urge + clre + f(#(€))U1 = — (P + b(Po))¢'(€), £ €R,
Ul(—OO, t) = 0, U1(0, t) = 0, U1(+00,t) = (.

The following Fredholm type lemma. gives us the solvability conditions for (3.4). For

the case ¢ = 0, similar statements have been appeared in [1].

(3.4)
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Lemma 4. Let A(€) be given and assume that A(€) = O(e #¢) as [¢] — oo for
some yu > 0. Then the following problem

{ Wee +c¥e + f(0())Y = A(§), C€R,
¥(0) = 0,

has a bounded solution if and only if

/R A(E)d(€)ede = 0.

Moreover, the solution is written by
3 Yy
v =4 [ 6w { [ Aps@ed}a,

and satisfies W(€), ¥'(£), U"(£) = O(e*¥)) as €] — oo.

By this Lemma, the solvability condition for (3.4) yields P, = —b(F) and thus
Ui(¢,t) = 0 for all (€,¢).
In the same way as above, collecting the €2 terms, we get

(3.5) { Usge + cUng + f(9(€))Uz = —(Pae + ¥/ (Po)(PL + £))¢' (), £ €R,
’ Uz(—OO,t) = 0, U2(0,t) = O, U2(+00,t) =0.

Again by Lemma 4, the solvability condition for (3.5) yields
Py = =V (Po)(Pr+7), Ua(§,t) = (R(t)V(§),
where vy € R is defined by

| #eresee

=" :

[ #eresas

R
and .
v

V() = 4"(5)/0 ¢ (y)2e™ {/ (v - z)¢’(z)2e°"dz} dy.
Consequently, we obtain the following formal asymptotic expansions

(3.6) Us(z,t) = ¢ (i—fﬂ) + 2 (PE(t))V (-z—"g(ﬂ) e,

and
dP¢
(3.7) dt

= ¢ — eb(Po(t)) — e®' (Ro(8))(Pr(t) +7) +- -+,
= ¢ — eb(P5(t)) — e29b/ (PE(t)) + - - .
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4. PRELIMINARIES

Let do > 0 be such that for each § € [, &), fs(u) = f(u) + & satisfies the
following conditions:

(a) fs has exactly three zeroes (o(d), (a(6), C1(6) With (o(8) < (a(8) < 1(8);
(b) fé(CC?J()é)) <0, f5(¢a(6)) > 0 and f5(¢1(6)) < 0;
(c) /CO(J) fs(u)du > 0.

Then there exists a solution (1, s) = (¥(§; ), s(4)) of

{ Yee + 5% + f5(¥) =0, €€R,
P(—00) = (1(4), ¥(0) =, P(+o00) = (o(9),

satisfying 1¢(£; ) < 0 for all £ € R and s(8) > 0 ([3]). It is known that ¥(-;6) — ¢
uniformly on R and s(d) = ¢+ O(d) as § — 0, where (¢, c) is the solution of (2.1). |
For 6 € [0y, 8], we define a function V(-;d) by '

(4.1)

42) V(o) = ve(eio) [ " ge(€; )2 {[ a6 -0t 8" | an
where

[ vetesoeroteas

[ veleiopeotae

Then the function V'(-;d) solves the problem

wa | LAY MG = 00~ k(e €eR
' V(0;6) =0,

Furthermore, 1(£; 8) and V(&; ) satisfy the following:

Lemma 5. There erist positive constants M and A depending on 8y such that if
16| < 8o, then

(4.3) v(8) =

G1(8) — Me™ < (€;6) < G1(6), for £ <0,

Go(6) < ¥(§;6) < Go(8) + Me™,  for £ >0,

(4.5) —Me=M < 4y (¢;6) < 0, for £€R,
vhee(€;8)] < Me™™6, for £€R,

V(&) [Ve(& )], [Vee(€:6)| < Me Al for £ €R.



5. CONSTRUCTION OF SUPERSOLUTIONS AND SUBSOLUTIONS

This section is devoted to the proof of Theorem 1. In order to obtain sharp
estimates for the effective speed s®, we construct suitable supersolutions and subso-
lutions of (1.1). The formal asymptotic expansions (3.6) and (3.7) provide us with
useful information for the construction.

Let ¥(&;-), V(&1), Co(-), G1(+), v(-) and s(-) be as in the previous section and
define 62(€) = V(€ 2hed), VE(E) = V(& +hed), () = G(xhed) (5 = 0,1),
7vE = y(xhed) and ¢t = s(+hed), where h is a positive constant. In other words,
(¢, cE) and VE(£) satisfy '

dg? d§

{ T % fgtyhet =0, feR,
¢2(—00) = 2 (e), $5(0) =, ¢E(+o0) = 25(e),

and
dd),si

dE ]

+ f(WVE= (7 - ¢

g2 c; pT: £ ER,

Ve (&00) = VF(0) = 0,
respectively. In what follows we assume that he? < dp, where & is the positive
constant in the previous section.
Let K be a positive constant and define functions W by

50 Wit = et EY) s oy (D),

where RE are solutions of

dRE
dt

Proposition 6. There exist positive constants h, K and &y depending on &y such

that if € € (0,¢€0), then W is a supersolution of (1.1) and W is a subsolution of
(1.1).

{ dZVEi N :thEi

(5.2) = ct — eb(RE) — e24Eb (RE) £ Ke¥| logel®.

Outline of proof. We only show that W is a supersolution of (1.1) since the assertion
for W can be proved in the same manner. In the rest of the proof, we drop the
subscript ¢ for simplicity. We define

(5.3) I{z,t) = WL + ()W) + f(WT) —eWF
and 7n(z,t) = (z — R*(t))/e. Substituting (5.1) into (5.3), we get

I(z,) = ~he® + (Rf — ¢* +eb(@)} (m) + F(6* (n) + W (RIWV* () = F(6* (m)
+ W (RY)ViH (1) + € (RY{RE +eb(@)} Vi (n) — ' (R*)RY V(7).
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By Lemma 5, there exists a positive constant 1 depending on dy satisfying
| [l [V, Ve, IVl < e for [€] > pflogel.
Therefore, I(z,t) = —he® + O(e*) < 0 for [z — R*(t)| > pe|loge| when ¢ is small.
In the case where |z — R*(t)| < ue|loge|, we see that
2
I(z,t) < {K - L;— |b”(R+)|} ¢ie|logel? — {h—c|b"(RT)VT|} &3 + O(e*| loge]®).
Since ¢f < 0, if b > p?||t"[|oo/2 and K > cM ||V oo, then I(z,t) < 0 for smalle. O

Corollary 7. Fiz ¢ € (0,&9). Then for anyt € R, we have
inf W}(z,t) >0, supW;(z,t) < 1.
z€R zeR
Since the right-hand sides of (5.2) are L-periodic and positive for small €, there
exist positive constants 7 satisfying
(5.4) REt+1E)=REt)+ L
forallt € R.
Let zo be such that U%(z,0) = a. By (2.2) and Corollary 7, we can choose
R;(0) < zo < R (0) such that
WE-(z" 0) S Ue(x’ 0) S W:(x, 0)'
Hence the comparison theorem yields that
W (z,t) < Us(z,t) < Wi(zx,1)
for all £ > 0. Thus we obtain:
Lemma 8. Let s, = L/T, be the effective speed of US. Then L/77 < s. < L/T7.

Proof of Theorem 1. Let A = ¢t + Ke3|loge|? and BE(R) = eb(R) + e2vEY (R).
Then it follows from (5.2) and (5.4) that

L - 1

£ ((AF - BE())Y)
Since A¥ = ¢+ O(e®| loge|?) and since B¥ are L-periodic functions with (B%) = 0,

(- B2 ™) = 3 (14 e+ otpoge).

c2

and hence

L (b%)
(5.5) p= =c— —0—62 + O(e%| loge}?).

The assertion of the theorem immediately follows from (5.5) and Lemma 8. O
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