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Modified Elastic Wave Equations
on Riemannian and Kahler Manifolds
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We introduce some geometrically invariant systems of differential equa-
tions on any Riemannian manifolds and also on any Kéhler manifolds, which
are natural extensions of the elastic wave equations on R3. Further we prove
the local decomposition theorems of distribution solutions for those systems.
In particular, the solutions of our systems on Kéhler manifolds are decom-
posed into 4 solutions with different propagation speeds.

Definition 1. Let A® T*M be a vector bundle of p-differential forms on
M. Let 83’4’) be a sheaf of p-forms on M with C* coefficients, and Dbg’,}) a
sheaf of p-currents on M; that is, p-forms with distribution coefficients. In
this article, we do not mean distributions the dual space of C§°(M). Our
distributions behave as “functions” for coordinate transformations.

Definition 2. We put M= R; x M. We denote by gl(ﬁ) , ﬁ)(;,) the sheaves
of sections of 8%) , ’Db%) which do not include the covariant vector dt . That

is, setting the projection 7 : M- M , we define

i _ : —~(») 0 -
£D = 8;7) ® 15‘3), Dby, = Db;-;f) ® IEA(;).
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Definition 3. The inner products (-,-) : AP T*M x AV TL,M - R, (-, -)*:
/\(p) TrM x /\(p) TyM — R, are defined as follows. We choose a posi-
tive orthonormal system (w!,---,w") of C*™ sections of T*M concerning
the Riemannian metric; that is, there is a positive number o such that
WA Aw™ = af)y > 0. Then for

o= Z o.dz, T= Z 7*6;

1<i<n 1<i<n
we define
(o,7) = E o;T,
1<i<n
and for
Z i i
¢= d)il...ipwl/\---/\w”,
1<i; <+ <ip<n
Z i i
.¢= 1/),-1...,-Pw1/\---/\w",
1<iy<<ip<n
we define

(¢’ w)* - Z ¢£1.“ip¢11---1:p
1<y <+<ip<n
= Z ¢i1...,-pg“j1 cee gi"J"'(/le...jp.

1<i; < <ip<n
1551 <+<jp<n

Definition 4. We denote by d : Dbgﬁ) — Dbg{fl) the exterior differential op-
erator which acts on Dbg\f}) as a sheaf morphism. Then the following formulas
are well-known:

(1. d(¢+9) = dg=tdy (6,9 € DbF)),

2. d(¢AP) = dp A+ (1)@ A dyp (¢ € DE), 4 € DbY),
{3. d(dg) =0 (¢ € DY),

4. For f € Dby}, df ==Y %daﬂ' € Db,
\ J

Here 0 < p < n. If p=n, d¢ = 0 holds.



Definition 5. The isomorphism * : AT*M — AT*M of vector bundle is
defined as follows:

1 x: AP T:M — AN™ P T*M is a linear map,
2. (W Acee Awie) = (1) ETDHHEGR AL A i,

for any permutation (i, -+ ,%p, J1,"* »Jn-p) Of (1,-+- ,n).
Here (i1---4p) and (j1 - - jn-p) are indices satisfying

1. (41 - 4pj1 - - - jn—p) is a permitation of (1---n),
2.1<i1 < <p <, 1< < <Jnp <

Remark 6. The definition above does not depend on the choice of the pos-
itive orthonormal system {w',--- ,w™}.

Proposition 7. We set ¢,¢ € AP TxM. Then we obtain

L gAxp = (x§) Ap = (§,9)" w! A--- A,

2. xl=wlA--- Aw" = /gdzt A--- Adz",

3. x¢p= (_1)(i1-1)+“'+(ip“1’)\/§ g ... g"’j’@l---i,, dxir A -+ Adzin-r
e N\® P T*M.

Here g = det(gax)-

Let U C M be an open subset. Let a® € Dbg{,})(U), B® e SA(’,'})(U)
be sections. We suppose that 3®) has a compact support in U. Then the
following integral is well-defined.

(a(p), ﬁ(p)) - <a(p), ﬁ(p))* WA AW
M



Definition 8. Let a® € Db, p#-D € P~V be sections. We suppose
B®=Y has a compact support. Then the sheaf morphism & : Db®) — Dbg’}—l)
is defined as

(Ja(P), 5(1:—1)) - (a(P), dg(p—l)).

Hence we have
§=(—=1)"" V¥ w g«

Definition 9. Let X7 be the sheaf of @ T, M @ ®° Tx M-valued C* func-
tions, and Db} the sheaf of @ T, M ® Q° T M-valued distributions. Then,
the sheaf morphisms V : X} — X7, Db} — Db}, are defined as follows:

(1. For a(z) € X9, we have Va(z) = —?ida:j.
9 1 O\_rpi 0 K
< 2. For 507 e Xy, we have V (sz) =lkgn ®dz".
3. For dz’ € %9, we have  V (dz’) = —I{ds’ ® dz*.
4. Foreexf;,fex;:,‘ we have V(e®f)=(Ve)® f+e® V.

Here,

0gi  Ogw  Ogri
Y] l 1 —
{F k=9l =g" (3:1:" * o Bx') }

are the Riemann-Christoffel symbols.

Proposition 10. We set

o 0

7 ‘l. r
e=ef . ;,dt"® - ®dz ®-—-———a T ® ®-—--aJ € X..
Then we have

— T q r q
Ve = (akeil...i, + Cirislq k + eu ip_1qip41- z,r;p k)
0

0
k (3 iy —_—
Xxdr*@di" @ --- Q@ dz ®61 ® - ®8x1r'



Hence we call the following the covariant differentiation :

_ r q r r 9
Vke = (6;;6,-1...,-, + eil---i,Fq k + ei]"’ip-.lqip+1"'ial-"ip k)

) . 0 0
2 s s " —— . o 0 A —
x dz™ ® Rdz* ® s X X Py
For )
u= Z Uiyi,dT? A -+ A dz'® € Dby,

1<i1 < <ip<n

we define an operator P, for 137)(:,) on M (1 < p < n-—1), where the
coefficients {u;,...,} are supposed to be alternating with respect to (i - - -4p).

Definition 11. We define sheaf-morphisms F : 1’3355) — 57;,({;) by

62
Ppu:= Pou+ (A + 2u)dbu + pddu,
where the density constant p and the Lame constants A, p are positive.
For p = 1, this equation is the covariant form of Py u'.

When p = 0 or n, P, u = 0 reduces to a wave equation. Therefore we
suppose 1 <p<n -1

For u € "DT)Y}), we define equations IM®, IMT, M5, ME as follows:

ME . Pru=0,

o - Py u=0, - (82 + aQ)u =0,
1) du=0, du =0,
Pou=0 (O} +BAu=0
R R ] t ’
: —
el {5u=0, {6u=0,
Pau=0, BPu=0,

My : < du=0, <= { du =0,
du =0, éu = 0.

(=



Here, a = (A +2u)/p, B = u/p and A = dé + 4d : ’57)55) — 1’55;3) is the

Laplacian on M. ‘
Further we define subsheaves Sol(IM%;p), Sol(MF;p), (j = 0,1,2) of

1%55) as follows: For M* = O™, I,
Sol(N*; p) :={u € 531(5) ' u satisfies ‘ﬁ“}.

Then, we have the following theorem.

Theorem 12. For any germ u € Sol(9MF; p) i there ezxist some germs

t,.z
u; € Sol(IM%; p) 0 (7 = 1,2) such that u = u; + us.
"
Further, the equation u = u; + ug = 0 tmplies u1, us € Sol(MF; p) 6
t

»

Equivalently, we have the following exact sequence:
0 — Sol(9MF; p) — Sol(IMT; p) & Sol(M5;p) — Sol(M*;p) — 0,

where F(U) =U® (—U), G(U1 @UQ) =U; + U,.

Remark 13. For the case p = 1, the contravariant form of this decom-
. . S~
position means the decomposition u* = uj + uj € Db, satisfying the next

conditions:
Viu*=0, V'uy? —Viup' =0.

Let X be an n-dimensional complex manifold with a Hermitian metric,
and /\(‘”) T*X a vector bundle of (g, r)-type differential forms on X. Let

Sgg’r) be a sheaf of (g, 7)-forms on X with C coeflicients, and Dbg?’r) a sheaf

of (g,r)-currents on X. Setting X = R, x X, we also define £¢", ﬁg’r)

similarly to Eg), I%M :



Definition 14. We denote by 8 : Db} @r) _, ppigth ") the exterior differential

operator which acts on Db_(,? ™) as a sheaf morphism and 3 : Db(q’ — Db
the conjugate exterior differential operator. For a section

¢ =i 5,7, dZ' A---ANdz9 AdZPA--- ANdZTT of Dbg?’r),

the following formulas are well-known:

(dp = (0+0)¢,

¢ ; ; . _ (@+1)
$ ¢ =—a—d~ AdzP A~ ANdz AdZ A--- ANdZ" € Dby 7,
| 9 =§—<€=d_'°/\dz“/\ - Adzs AdF* A--- AdFT € DY

Definition 15. The linear operator x on X induces isomorphisms NG T X
— AP =9 T X of vector bundle. Hence we have sheaf-morphisms * :
Db — Db ™" on X as follows: For

¥ =15 AT € Db,

we have
-]_.- C —JC n—r,n— )
*1p = 5(1 5 50 ) b W’ AT € Db,
where {w!,---,w"} is a local orthonormal system of C* sections of T*X

concerning the Hermitian metric and I¢ := {1,--- ,n}\J. Here §(-) = £1 is
the signature of the permutation (/ JI°I1 Nof (1---nl---m).

Let U C X be an open subset. Let o@” = a5 w! AW’ € 'Dbg‘é’r) (U),
B = B~ w AwT € EF7(U) be sections. We suppose that 5@7) has a
compact support in U. Then the following integral is well-defined.

(a(q!r)’ ﬁ(qu)) — / <a(q T) B(q’r)>* wl A RRE /\ wn A w—l N oo A w‘n’

where, (a(@"), g@m))* Za, B,



Definition 16. Let a@") € D", g@-1r) g £4717) ang Hlar-1 g glgr=1
be sections. We suppose (H(q L) and ler=1) have com%)act supports Then
sheaf morphisms 9 : Db — Db and ¢ : DbY Db are

defined as

(-aa(%r),ﬂ(q—l!r)) P (a(Q1T), aﬁ(q_l’r)),
(1901("”), Alar=1) = (a(@m), 57(”—1))_

Further they satisfy the following equations:

b5 =9+9,
¥ = — % Ox,

¥ = —%x0*.

Now we assurmne that X is a Kahler manifold; that is, for the Hermitian
metric h ,we have the equation d (3_ hjz(2)d2? A dz*) = 0, and we know that

h;z can be described as h;z = 9;0x¢ with a smooth real function ¢ locally.
Then the following equations for operators on ’B?)f,?r) are well-known:
0=0=14,

M +99=0, 9+99=0,
89+00 =0, 9I+99=0.

Definition 17. We define sheaf-morphisms Py : Dbﬁ?") Dbgg' on X by
2
P = &2 + 011619 + 02193 + 03319 + a4'¢96

Here, a1, a2, a3 and a4 are positive coefficients.

When ¢,r = 0 or n, P u = 0 reduces to a wave equation. Therefore, we
suppose 1 < ¢, r <n-—-1.

For u € z'fbg‘}”), we define equations 2%, M (i = 1,2,3,4), MY, MY,
((jk) = (13),(14), (23), (24)) as follows:



K .,
13 °

K .
Moy :

K .
12-<

PKU=0,
rP,(u=0,
ou =0,
| Ou =0,
'PKu—O,
{ Yu =0,
| Bu =0,
rPK'U/:-O,
{ Ou =0,
k’l9’u,=0,
( P u=0,
 Ju = ,
k19'u,=0,
'qu':O,
ou =0,
Ou =0,
u?u-—o,
r.ID]('M::O,
du =0,
Ju =0,
Lﬁu:O,
'PKu=0,
Ou =0,
Ju = 0,
[ Ou =0,

v




( P u =0, (2u=0

X Yu =0, du=0
“ \gu=0, T JBu=o,
{ Ou =0, (Ou=0

(P u=0, [ 92u =0,

ou =0, ou =0,

M : ¢ Ou=0, <= < u=0,
du =0, du =0,
\§u=0, ~5u=0

Further we define subsheaves Sol(9M%; ¢, ), Sol(M¥; q,7) (i = 1,2,3,4),

Sol(T,; a,7) , Sol(T0;q,7) (k) = (13), (23), (14), (24)) of Db as the

sheaves of ﬁ)gg’r)-solutions, respectively.
Then, we have the following theorem.

Theorem 18. For any germ u € Sol(IMX; q,r)

u;; € Sol(MF;q,7) 6 ((i7) = (13),(23),(14), (24)) such that u = uy3 +

Ugz + U4 + Uo4.
Further, we find that u = ui3 + ugs + usq + ugg = 0 implies

ujk € Sol(Mo;0,7)  ((7k) = (13),(23), (14), (24)).

Equivalently, we have the following exact sequence:

6’ there exist some germs
t‘z)

0— @Sol 0@ T)
(i5)

= P Sol(mE; q,7) <L Sol(M*; q,7) — 0.
(i5)
Here,

@'Sol( ?jo;q’r) :2{(“'1'1') € @SOl(mfjo;q, 7') l Zuij = O},

(#) (%) ()
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GUi13 @ Uy ®U1a® Uszg) = Ur3® Uz ® U14® Uns, HU13D Uz ®U14 @ Upy) =
Uiz + Uaz + Urg + Upg.

Example 19. We assume X = C2. Then, X is a Kahler mamfold with

the complex Euclidean metric. We find a solution u € Dbx of the form
with ¢ = (1dz! + (odz? where ({1, (2) € C?\{0} ;

ult, 2) = U(t)e'@<t79,
Then,
Peu=U"+ (1 — as) ¢ A ( ¥ (CA *U)) + an|CIPU
+(as—a) TA (* (CA *U)) + a4|C?U = 0.

We put

U(t) = ca(t) AT+ calt) (AT +est) ¢ AT +calt) ¢ AT,
wheré ¢t = (odz! — (1d2?, [¢] = |¢1] hold. Then, we get

(& + (0 + a)l¢Per )¢ AT+ (o + (n + aw)ilea )¢ AT

(e + (02 + as)l¢fes )¢ AT+ (ch + ez + an)lCPes)¢H AT =0,

Hence, we obtain

a(t) = A1+3 exp (iv/a1 + az|C|t) + Af exp (—ivar + as|Clt)
C2 t) = Af, exp (iv/ar + aa||t) + Ayexp (—ivor + aulC]t)

A23 exp (iv/as + a3¢|t) + Az exp (—ivas + as|([t)
C4(t A}, exp (iv/aa + 0alC[t) + Ay exp (—ivag + aglC]t) -

11



Since
U(0) =(Af; + A) CAT+ (Af + AR) CAT
+ (A + AR) CH AT+ (Af + A7) ¢ AT,
2 0(0) =iv/a T aslCl(Al — 4z) ¢ AT
+ivar + oalCl(Af, — Ag) (AT
+iv/az + 05| (A% — Az) (1 AT
+ivan + aalC|(A%, — A7) ¢t AT

we get
an 2 U©, AT (FU©), NG
185 TR 2v/a1 T GalP
A = UOCAT (ZU(0), (A Q)
B 2|¢|* 2V +a|CF
4o (UO.CATY (BUO,CAT)
a 2/¢)* Vo +aql¢®
4o = UOCATY | (BUO).CAT)
14 2|¢|* 2oy + ad{f’ ’
ar = U@.¢HAQ L (5U0).¢E QY
T 2v/az ¥ alP
a2 WO G L (FU0),¢ AL
B 2|¢|4 2va; + a3l¢lP
WO AT (FUO), ¢ AT
#o 2|¢)* 2vVay +ag(ls
4o = (UO.CATY L (BUO).C AT
24 —

2|¢)* T oon T aalCP



