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1. JNTRODUCTION

As is seen in the Stokes phenomenon, differential equations with irregular sin-
gularities are more complex than ones with regular singularities. In spite of the
difficulties, we treat them as if they had regular singularities by using asuitable
transformation on aRiemannian sphere.

In this article, we introduce how to construct solutions for some partial dif-
ferential equations of irregular type. We actualy consider an ordinary differential
equation because we regard adifferential operator appear in that partial differential
equation as alarge parameter according to the microlocal analysis and the WKB
method. In addition, our solutions are composed of amplitude and phase functions
similar to the WKB solutions.

By the several transformations, the partial differential equation we first consider
is reduced to amicrodifferential equation with afractional filtration. For the equ&

tion, we do not make microfunction solutions but microdifferential operators $\mathrm{w}\underline{\mathrm{h}\mathrm{i}}\mathrm{c}\mathrm{h}$

act on microfunctions. Successive approximation is well performed to make such
solutions.

Our construction does not give aconcrete expression of the WKB solutions, but
it gives an algorithm of making them. In the similar way of usual microdifferen-
tial operators, formal norms are used to show the convergence of the asymptotic
expansion of the microdifferential operator solutions with afractional power.

2. PROBLEM

We are going to consider the next partial differential equation:

$P(x,\partial_{x}, \partial_{z})u(x, z)$

$=(\partial_{x}^{m}+a_{1}(x)\partial_{z}\partial_{x}^{m-1}+a_{2}(x)\partial_{z}^{2}\partial_{x}^{m-2}+\cdots+a_{m}(x)\partial_{z}^{m})\mathrm{u}(z,x)=0$,

where $\partial_{*}$ stands for $\partial/\partial*(*=x,z)$ . For the sake of brevity, let $x$ and $z$ be one
dimensional complexes.

We assume some conditions on the partial differential operator above.
(Assumption 1.) The principal symbol $\sigma(P)(x,\xi,\langle)$ of the operator $P(x, \partial_{x},\partial_{f})$ has

the following form in aneighborhood of (0, 0; 0, it7) :

$\sigma(P)(x,\xi, \zeta)=\prod_{j=1}^{m}(\xi-x^{\lambda}\alpha_{j}(x)\zeta)$ ,
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where $\lambda$ is apositive number, $\alpha_{j}(x)(j=1,2, \cdots, m)$ are analytic in aneighborhood
of the origin. Moreover, we assume that each $\alpha_{j}(0)$ are mutually distinct.
(Assumption 2.) We asume that we have

$a_{k}(x)=x^{l_{k}}b_{k}(x)$ , $l_{k}\geq k\lambda$ ,

where each $b_{k}(x)(k=1,2, \cdots, m)$ is holomorphic in aneighborhood of the origin.
Furthermore, we regard $\partial_{z}$ as alarge parameter $\langle$ because of the commutativity

of operators.

On the hypothesis above, setting y $=x^{\lambda+1}/(\lambda+1)$ for the operator $x^{m}P(x, D_{x}, \zeta)$

we have

(2.1) $x^{m}P(x, D_{x}, \zeta)=\sum_{k=0}^{m}\{(\lambda+1)y\}^{\frac{k}{\lambda+1}}a_{k}(((\lambda+1)y)^{\frac{1}{\lambda+1}})\zeta^{k}$

$\mathrm{x}\prod_{l=0}^{m-k-1}\{(\lambda+1)yD_{y}-l\}$ ,

where $D_{*}$ stands for an ordinary differential operator $(*=x, y)$ .
It is WKB solutions of type

(2.2) $\int S(w, \zeta)_{\mathrm{f}\mathrm{f}}\mathrm{i}\mathrm{p}(-\zeta yw)dw$

that we need to obtain. Here $S$ is an amplitude $\mathrm{a}\mathrm{n}\mathrm{d}-\zeta yw$ is aphase. For this aim,

we use the quantized Legendre transformation with respect to $y$:

(2.3) $\beta_{k}$ : $\{$

$\frac{d}{dy}=-\zeta w$ ,

1 $d$

$y=\overline{\zeta}\overline{dw}$
’

which keeps the sheaf isomorphism of microfunction.
We can finally reduce the partial differential operator $P$ to the microdifferential

operator $\hat{P}$ as follows:

$\hat{P}(w, D_{w},\zeta)=\{\sum_{k=0}^{m}\tilde{b_{k}}((\zeta^{-1}D_{w})^{\frac{1}{\lambda\dagger 1}})(-w)^{m-k}\}D_{w}^{m}$

$+c_{1}$ ($w$ , $(\zeta^{-1}D_{w})^{\frac{1}{\lambda+1}}$ ) $D_{w}^{m-1}+\cdots+c_{m}(w,$ $(\zeta^{-1}D_{w})^{\frac{1}{\lambda+1}})$ ,

where q( $=\mathrm{t}\mathrm{h}\mathrm{e}$ coefficient of $D_{w}^{m}$ ), $c_{1}$ , $\cdots$ , $c_{m}$ are 0-th order operators with resped

to $\zeta^{-1}D_{w}$ .
By the division theorem of Sp\"ath type about microdifferential operators, the

coefficient $\infty$ is split as $\mathrm{q}(w,D_{w},\zeta)=d(w,D_{w},\zeta)(w-\Phi(D_{w},\zeta))$ (ref. $[\mathrm{K}\mathrm{t}\mathrm{S}]$).
Therefore we consider the operator

(2.4) $L=wD_{w}^{m}+\gamma_{1}(w,D_{w},\zeta)D_{w}^{m-1}+\cdots+\gamma_{m}(w,D_{w},\zeta)$

for the sake of brevity.
Asuccessive approximation plays an important role in our construction of the

solutions for the equati $0$

$L(w,$ $D_{w},$ $()U(w, \zeta)=0$ ,
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where the microdifferential operator $U(w, \zeta)$ has aform

$U(w, \zeta)=\sum_{\overline{J}^{=-\infty}}^{0}w^{-1+\neq_{+\mathcal{T}}}.u_{j}(\zeta)$

at $w=\infty$ .
Our successive approximation is the following:

$\{$

$L_{0}=L|_{\zeta^{-1}D_{w}=0}$ ,

$L_{1}=L-L_{0}= \sum_{j=0}^{m}\gamma_{j}(w, \zeta^{-1}D_{w})D_{w}^{m-\mathrm{j}}$ ,

where

$L_{1}= \sum_{j=0}^{m}\tilde{\gamma_{j}}(w,\zeta^{-1}D_{w})\zeta^{-\frac{1}{\lambda+1}}D_{w}^{m-j++_{+}}$ .

Using the terminologies of physics, we call $L_{0}$ aclassical term and $L_{1}$ aquantum
term with asmall parameter $\zeta^{-1/(\lambda+1)}$ .

Set

$D_{\nu}=\{(w, z;\tau,\zeta)\in T^{*}(\mathrm{C}\mathrm{x}\mathrm{C});|w|\leq 1+\nu$, $|z-i|$ $\leq\nu$,

$| \frac{\tau}{|\zeta|}-\frac{i\eta}{|\eta|}.\cdot|\leq\nu\}$

and

$V_{\nu}=\{(z;\zeta)\in \mathrm{C}$ x $\mathbb{C};$ |z $- \dot{x}|\leq\nu, |\frac{\zeta}{|\zeta|}-\frac{i\eta}{|\eta|}.\cdot|\leq\nu\}$ .

Theorem. Let $U_{0}\equiv U_{\mathrm{m}}$ be an arbitrary holomor phic solution of $L_{0}U\mathit{0}=0$ in

a domain $D_{\nu}(\supset\{w\in \mathrm{C};|w|\leq 1\}\mathrm{x}\{(i;i\dot{\eta})\})$ with homogeneous &goee 0 $w|.\#$

respect to $\zeta$ . We have a series $U_{k}(k=1,2, \cdots)$ of a successive prvycess so that each
$U_{k}= \sum_{j=-\infty}^{0}U_{jk}$ is a formal symbol defined in a neighborhood of $D_{\nu/2}$ satisfying

$\partial_{w}^{l}U_{k}|_{w=0}=0$ $(l=0,1,2, \cdots,m-2;k\geq 1)$.

Then $U= \sum_{k=0}^{\infty}U_{k}$ converges in a suitable formal norm $N_{m}(\cdot;T)un\dot{l}fo\mathrm{R}y$ on $a$

certain domain and it becomes a solution of the microdifferential equation

$L(w,\partial_{w},\partial_{z})U(w, \partial_{z})=0$

to which is reduced the partial differential equation

$P(x, \partial_{x},\partial_{z})u(x, z)=0$ .
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3. CONVERGENCE OF M1CR0D1FFERENT1AL 0PERAT0R S0LUT10NS

In this section, we estimates the term of the successive approximation introduced
in secti0n2.

To begin with, we introduce affactional derivation as the Riemann-Liouville
integral.

Aderivation of fractional order $1/q(1<q<\infty)$ as the Riemann-Liouville
integral for afunction $f(w)$ holomorphic in aneighborhood of $\gamma$ including the
origin $w=0$ can be defined as

$( \frac{d}{dw})^{1/q}f(w):=\frac{1}{\Gamma(1-1/q)}\frac{d}{dw}\int_{\gamma}\frac{f(t)}{(w-t)^{1/q}}dt$ ,

where $\Gamma(\cdot)$ is agamma function and 7is aproper integral contour which begins
and ends at $t=w$ enclosing $t=\infty$ on CP once in the positive sense. Here the value
of amany-valued function $(w-t)^{1/q}$ is defined by

$(w-t)^{1/q}=|w-t|^{1/q} \exp(\sqrt{-1}\frac{1}{q}\arg(w-t))$ .

Lemma 3,1. We have the following estimation around the origin for a function
$f(w)$ holomorphic in a neighborhood of $\gamma$ :

$|( \frac{d}{dw})^{1/q}f(w)|$

$\leq\frac{1}{\Gamma(1-1/q)}\{C_{1}|w|^{-1/q}\sup_{\gamma}|f(w)|+C_{2}|w|^{1-1/q}\sup_{\gamma}|f’(w)|\}$ ,

$urid\iota$ some constants $C_{1}$ , $C_{2}>0$ .

By means of this lemma, we have the estimation around the origin by the fol-
lowing:

$|( \frac{d}{dw})^{1/q}f(w)|$

$\leq\frac{1}{\Gamma(1-1/q)}\{C_{1}\epsilon^{-1/q}\sup_{\gamma}|f(w)|+C_{2}(1-\frac{1}{q})\epsilon^{1-1/q}\sup_{\gamma}|f’(w)|\}$ ,

where $|w|<\epsilon$ . Ihh.ng suitable constants, the inequality

(3.1) $|( \frac{d}{dw})^{1/q}f(w)|\leq\frac{C’}{\Gamma(1-1/q)}\epsilon^{-1/q}\sup_{\gamma}|f(w)|$

holds.
Next, we introduce the definition of microdifferential operators with afractional

filtration.

Definition 3.2. Let $a_{\mathrm{j}}(z, \zeta)(j=0, \pm 1, \pm 2, \cdots)$ be holomorphic functions on $\Gamma$ .
When eadb $a_{j}(z,()$ satisfies the following conditions, we call the sum $\sum_{j}aj(z,\zeta)\mathrm{a}$

formal symbol of microdifferential operator with fractional order $1/q$:
(1) for any $\delta>0$ , there exists aconstant $C_{\delta}>0$ such that we have

(3.2) $\sup_{\Gamma}|a_{j}(z, \zeta)|\leq C_{\delta}\delta^{\mathrm{j}/q}|\zeta|^{\mathrm{j}/q}/[j/q]!$ for $j=1,2$, $\cdots$ ,
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(2) there exists apositive constant $C$ such that

(3.3) $\sup_{\Gamma}|a_{j}(z, \zeta)|\leq C^{j/q+1}|\zeta|^{\mathrm{j}/q}[-j/q]!$ for $j=0,$ $-1,$ -2, $\cdots$ .

We will find the solution operator of type

$U(w, \zeta)=\sum 0U_{j}(w, \zeta)$

$j=-\infty$

$= \sum 0w^{-1+\neq_{+\Gamma}}.u_{j}(\zeta)$

$\mathrm{j}=-\infty$

for the microdifferential equation

(3.4) $L(w, D_{w}, \zeta)U(w, \zeta)=(\sum_{k=0}^{m}\gamma_{k}(w, D_{w}, \zeta)D_{w}^{m-k})U(w,\zeta)$

$= \sum_{k=0}^{m}\{\sum_{j=-\infty}^{0}\gamma_{jk}(w, D_{w},\zeta)\}D_{w}^{m-k}\cdot U(w,\zeta)$ ,

where $\gamma k$ is defined as (2.4).
For this aim, we construct the solution operator by the aid of an iteration scheme.
To begin with, we take apart of $D_{w}=0$ in $\gamma_{k}(w,D_{w},\langle)$ out of the operator

$L(w, D_{w}, \zeta)$ , that is, we set

(3.5) $L_{0}= \sum_{k=0}^{m}\gamma_{k}(w,0, \zeta)D_{w}^{m-k}$ .

We evaluate the rest of the equation defined above. Set

$R(w,$ $D_{w},()= \sum_{k=0}^{m}R_{k}(w, D_{w},\zeta)D_{w}^{m-k}$

$= \sum_{k=0j}^{m}\sum_{=-\infty}^{-1}R_{jk}(w, D_{w},\zeta)D_{w}^{m-k}$ .

Then the operator $R\mathrm{o}$ can be defined as

$R \mathrm{o}U=\sum_{j=-\infty}^{-1}(-\epsilon+l\sum_{0\leq k\leq m}\frac{1}{s!}(\partial_{\tau}^{\epsilon}R_{lk})(w, 0, \zeta)\partial_{w}^{m-\mathrm{k}+\epsilon}U_{p}(w, \zeta))+\mathrm{p}=j$ ’

where $\tau$ is the symbol of $D_{w}$ . This $R\circ U$ becomes aformal symbol of order
-1/(\lambda +1). Hence we can show the convergence of the microdifferential operator
$R\circ U$ by using asuitable formal norm.

We have an algorithm of the iteration scheme of successive approximation process
by the following:

(3.6) $\{$

$L_{0}U_{0}=0$ ,
$L_{0}U_{-\mathrm{p}-1}=-R\circ U_{-p}$ $(p=0,1, 2, \cdots)$ .
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This process is reduced to the equation

$( \sum_{k=0}^{m}\gamma_{k}^{0}(w, \partial_{z})\partial_{w}^{m-k}+R(w, \partial_{w}, \partial_{z}))U(w, \partial_{z})=0$ ,

where $\gamma_{k}^{0}(w, \zeta)=\gamma_{k}(w,0,\zeta)$ .
It is possible to show the convergence of the operator by formal norms as in

$[\mathrm{K}\mathrm{t}\mathrm{S}]$ .

Example 3.3. The Schrodinger equation with alarge parameter of Airy type

$(D_{x}^{2}-\zeta^{2}x)u(x, \zeta)=0$

becomes the hypergeometric differential equation by the transformations considered
in section 2.
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