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On the Fundamental Solutions of Linear Fuchsian Partial
Differential Equations

Toshiaki SAITO (R FHH)
Department of Mathematics, Sophia University ( F%8A - #T)

Abstract

Without any assumption on the characteristic exponents, we give fundamental solutions of linear
Fuchsian partial differential equations.

1. Introduction and Main result.

Let C be the set of complex numbers, t € C, z = (z3,...,2,) € C*, N={0,1,...}, m € N* = N— {0},
a = (ai,...,an) € N*. Let A be a polydisc centered at the origin of C; x C? and set Ag = AN {t = 0}.
Let a;(t,z) (j + |a] <m, j < m) be holomorphic functions defined on A satisfying the following

(1.1) a;,a(0,2) =0 on A if |a| > 0.
We consider a Fuchsian partial differential operator

(1.2) P= (t%)er > ajalt,z) (t%)j (%)a

j+laj<m
j<m

and the following linear partial differential equation
(1.3) Pu=0.

This operator P in (1.2) was introduced by M. S. Baouendi and C. Goulaouic [1], they proved a Cauchy-
Kowalevsky type theorem and a Holmgren type theorem. Also, H. Tahara [2] has investigated the
structure of singular solutions of Pu = 0.

Now, let us introduce
i) R(C\ {0}) the universal covering space of C \ {0},
ii) S(e) ={t e R(C\{0}); 0 <|t| <e},
iii) Dp={zxeC |z;)<L,i=1,...,n},

iv) O the set of functions u(t,z) satisfying the following:
there are € > 0 and L > 0 such that u(t,z) is holomorphic on S(¢) x Dy,

v) Opg the set of germs of holomorphic functions at z = 0 and it is the same

as C{z} the ring of convergent power series in z,
vi) The polynomial algebra in ¢ with the coefficients in a ring K is denoted by K|[y],
vii) O(D) the set of holomorphic functions on. D.
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YYye Seu X
C\z)=2"+ Z a;o(0,z)M.
j<m
This polynomial in X is called the characteristic polynomial of P. We denote by Ai(z),...,Am(z) the
roots of the equation

C(\z)=0.
These A (z), . - -, Am(z) are called the characteristic exponent functions of P. Now, let us recall the result
in [2].
Theorem 1.1 ([H. Tahara (1979)]). If the condition
(L4) X(0) —X(0) ¢Z {0} for1<i#j<m

is satisfied, there are holomorphic functions E;(t,z,y) (i=1,...,m) on
Q= {(taxay) € S(E) X Dp x Dy; ltl < Mlx‘l ’_yilm’ i= 1,...,’”}

for some € >0, L >0, and M > 0 which satisfy the following properties:
(1) For any pi(z) € Og (i =1,...,m) the function u(t,z) defined by

(1.5) u(t,) = Y § Bty u)es(u)dy
i=1

is an O-solution of Pu = 0. _
(I1) Conversely, if u(t,z) is an O-solution of Pu = 0, then u(t, ) is ezpressed in the form (1.5) for some
pi(r) €0y =1,...,m).

Here, the meaning of the integration in (1.5) is as follows:

}{Ei(tvz’y)%(y)dy = /r /r Ei(t,z,y)pi(y)dy1 - dyn
1 n
and for i = 1,...,n, I'; denotes the circle

{y:i € G |yi — x| = si}

with an orientation of counter clock-wise in the y;-plane. Let ¢;(z) be a holomorphic function on Dp.
Since E;(t,z,y) is holomorphic with respect to y;-variable on

{y,- € (—'A%)“ < los —wis Iy <L},

1
(‘—13) < s; < L.

H. Tahara called such functions E;(t,z,y) (i = 1,...,m) a fundamental system of solutions (or funda-
mental solutions) of (1.3) in @. It should be noted that if we denote by S the set of all O-solutions of
(1.3) the map defined by

(1.6) & (O™ —— S
w w

(P15--sm) Z}[Ei(t,w, y)ei(y)dy
. i=1

we take the radius s; so that

is an isomorphism. In the case where the condition (1.4) is not satisfied, the construction of fundamental
solutions of (1.3) in © seemed to be very complicated and it remained as unsolved problem. About two
decades later, T. Mandai [3] proved the following theorem without any assumption on the characteristic
exponents of P. The following theorem is his result:
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Theorem 1.2 ([T. Mandai (2000)]). Without any assumption on the characteristic exponents of P,
we can construct an isomorphism

(1.7) T (Og)™ — S
\ w

(1.1 Pm) ZKi[%]-

i=1

T. Mandai called this map a solution map of (1.3) in ©. The construction of K;[p;] is very elegant,
but still the construction of fundamental solutions as in (1.6) has remained as unsolved problem. In this
paper we will solve this problem. The following is the main theorem of this paper.

Theorem 1.3 (Main result). Without any assumption on the characteristic exponents, we can construct
holomorphic functions E;(t,z,y) {i=1,...,m) on

Q= {(t,z,y) € S(e) x Dy x Dy; [t| < M|z; —g:|™, i=1,...,n}

for some € >0, L >0, and M > 0 such that the K;[p;] (i = 1,...,m) in Theorem 1.2 are expressed in
the form

Ki[wi]=A /r Ei(t,z,y)ei(y)dys - - - dyn
1 n

for any vi(z) € Op.

2. A key proposition to the proof of the main theorem.

We begin by introducing some notation and definition that will be used throughout this work. We
define the indicial polynomial of P is

Cu) =™+ ) a;0(0,0)4
j<m
and a characteristic exponent of P is a root of the equation C(u) = 0. Let uy,...,uq be the distinct

characteristic exponents, and let r; (j = 1,...,d) be the multiplicity of u;. Then, for each j = 1,...,d,
we can take a domain S; in C enclosed by a simple closed curve 7; such that

pi €85 (1<j<d)

and

and
C(A+1,0) #0 for every A € (U;Ll(gj \ {#;})) and every v € N

where S denote the closure of S. Thus, if we take L > 0 sufficiently small, then we have
C(A +v,z) # 0 for every € Dr, every A € (Ug'=1'y,-) , and every v € N,

For every x € Dy, above condition implies that the number of the roots of C(A,z) = 0 in §; is ;. Then,
there exists monic polynomials B;(A, z) such that

d
c(x) =[] Bi(A\ =)
j=1

where Bj(\,z) = (A=A (2))--- (A= Ap (7)), B2(A,z) = (A= Arp (@) - (A= Ary 1m0 (2)) .., Bj( Ay 2) =
(A= Argetrj_41(2)) - (A = Ay ooty (7)) and Bj(A,x) € O(D)[A] (1 £j < d). For 0 < L < 1 we set

QL={(z,y) e C* xC |zi| < L, |ys| < L, zi # 95, 1 =1,...,n}
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and for (z,y) € C* x C* we write
1/’L(x,y) = mln{L - lxila lxz — y’ila 1= 19' "an}'
Then, we see that
0<vyr(z,y) <1 forany (z,y) € QL.

Here, we will have a review of T. Mandai (3]. The following theorem is his result:

Theorem 2.1. For any g, (z) € Op and for 1 < j < d and 1 < k < r;, there exists a unique solution
K;x(t,z,)) € O({t =0} x Dy, x (US_17;)) of the equation

C()\,z) - 8% B;(\ ) - @3.k(Z) 2

P(K;k(t,z, ) = B;(\2)

And the function
1
Kjklpjk] = 51;] K; k(t,x, \)t*dA

i
is an O-solution of Pu = 0.
Moreover, we have a linear isomorphism
U: (O)" — S
w

]

(‘Pj.k)i sd T ZZK',k[‘PJ’,k]-

d
7 j=1lk=1
This result will be useful later. We now consider the following partial differential equation:
%t B;(\y) - C(A, z)th
(27|'i)"Bj (As y)(yl - xl) toe (y‘n - xn) '

The above equation is essence of our construction and we will prepare the following proposition:

(2.1) P(F;k(t, z,y, M) =

Proposition 2.2. For 1 < j < d and 1 < k < rj, the equation (2.1) has a unique holomorphic solution
F:j,k(ta z,Y, A) on

tl
Q= (t,x,y,N\); (z,y) €, Xe (U1 d-———| <M}
{( z,¥,A); (,9) L ( ,_1’)’:) an L@ y™

for some L >0 and M > 0.

By using this proposition, we can prove the Theorem 1.3.

3. Sketch of the proof of Proposition 2.2.

We still need to show the Proposition 2.2. To avoid confusion, we write 3 instead of j in (1.2). By
expanding ag,q(t, ) into Taylor series in ¢t and using (1.1), the equation (2.1) is reduced to the form

C (tgt—,:r) (Fjxlt,z,y, A)t*)

(3.1) . == Z Zaﬂ,a,p(z)t” (t%)ﬂ (;—I)a Fjx(t,z,y, M)t

B+|ajgmp21
B<m

6’;33- (A y) - C(A, .’L‘)t’\
@mi)"B;(Ay) (1 — 1) -+ - (Yn — Tn)’




where ag,q.5(z) € O(Dy) for some L > 0. Let us find a formal solution of (3.1) of the form
ijtzy, ZFJ’“’(I Yy A
Then (3.1) is reduced to the following recursive formula:

C(A +v, z)F',k,U (IL‘, Y, ’\)

a (23
(3.2) =— Y Y apas@)(r+9)° (%) Fjk,q(T,y,A)
B+|a|<m pte=v
g<m  p21
forv=12,...,
8%B;(),
(33) Ei,k,O(x7 Y, A) = 2 J( y)

(2ri)*Bi(Ay)(y1 —21) (Y — Tn)
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It follows from (3.2) and (3.3) that the equation (3.1) has a unique formal solution Fjk(t,z,y,A) =
3% 0 Fikw(z,y, A)t*. From now on, we will investigate the domain of convergence of Fix(t,z,y, A).

Now, we may assume:

() |ag,a,p(2)| < bg,ap on Dy for any (8, p);

(b) 351 06,0,0t" € C{t} for any (8, a);

(c) There is a positive constant kg such that

|C(A+ v,z)| > ko(v +1)™ on (U;Ll'yj) x Dy forv=0,1,2,..
Moreover, we write
J= max [}
AE(Uf1 )

The following lemma will play an important role later.

Lemma 3.1. If F(z,y) is holomorphic on Q1 and the following estimate holds:

A
&
'F(xay)l = ¢L(x1 y)c on QL

for some A >0 and { > 0, then we have

OF A1+ )e
o] < e om

fori=1,....n
By using this lemma and (3.3), we have

a\* B
(3.4) \(a) Fjko(z,y, A)' < AESATE

on Qf x (U‘J’.'=1 v;) for any |a| < m, for some B > 0.

For any fixed (z,y) € O, we consider the following linear equation with respect to G = G(¢,z,y):

_ koB
kG = on (x y)ntm
(3.5) b,g ap m
— - (J+1)™P(e(n+m)) G
Yr(z,y)™ ,y) ﬂ+|§|:< PZI Yi(z,y)™r-D ( )

p<m



It is obvious that the above equation has a unique holomorphic solution

G =) Gz, e C{t}.
1=0
By using (3.5), we have
€1
(3.6) Gi(z,y) =

"/}L (I, y)n+(l+1)m

for some ¢; > 0. Here, we note the following proposition.

Proposition 3.2. For any |o| <m, 1 <j<d, and 1 <k < rj, the following inequality holds:

[(%)a Fikn(,9, A)) < (v+ 1)l (e(n+m))"Gu(z,y)

on 0 x (U;Ll'yj) forv=0,1,2,....

By applying (3.4) and (3.6) we then obtain this proposition. This proposition implies that (e(n+ m))mG
is a majorant series of Fjx(t,,y, ). From (3.5) and (3.6), we see that the domain of convergence of G
includes €'. Consequently, F; x(t,z,y, A) is holomorphic on €. This proves the Proposition 2.2. Now, we
remark in [2], if A;(0) — A;(0) ¢ Z for 1 < i # j < m holds, then the author has constructed fundamental
solutions E;(t,z,y) = K;(t,z,y)t%® (1 < j < m) by using partial differential equations

C(\i(y), z)th W
2mi)r(yr — 1) - (Yn — Tn)

(3.7 P(K;(t,z,y)th @) =

for 1 < j < m. First we note the following result in [2].

Lemma 3.3. If the characteristic exponents of P do not differ by integer, the equation (3.7) has a unique
holomorphic solution K;(t,z,y) on

{(t,z,y) eCx C* x C*; |t| <, |zi| < L, lys| < L, |t| < M|zi —9i|™, i=1,...,n}
for somee >0, L >0, and M > 0.
If we admit this lemma, the following proposition is proved immediately.

Proposition 3.4. Under the situation in Lemma 3.3, then our fundamental solutions E;jt,z,y) 1 <
j € m) in Theorem 1.3 coincide with the ones in Theorem 1.1.
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