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ABSTRACT. In this article, we give three iterative methods for approximation
of fixed points of nonexpansive mappings in a Hilbert space. Then we discuss
weak and strong convergence theorems for nonlinear operators of accretive and
monotone type in a Hilbert space or a Banach space. In particular, we state
weak and strong convergence theorems for resolvents of m-accretive operators
and maximal monotone operators in a Banach space. Using these results, we
also consider the convex minimization problem of finding a minimizer of a
proper lower semicontinuous convex function in a Hilbert space or a Banach
space.

1. INTRODUCTION

We consider the following problem: Let fo, f1, f2, .- -, fm be convex continuous
functions of a Hilbert space H into R. Then, the problem is to find a z € C such
that

fo(2) = min{fo(z) : = € C}, (1)
where C = {z € H : fi(z) <0, fa(z) £ 0,..., fm(x) < 0}. Such a problem is called
the convex minimization problem. Let us define a function g : H — (—00,00] as

follows:
z), z¢€C,

00, z¢C.
Then, g is a proper lower semicontinuous convex function and a minimizer z € H
of g is a solution of the convex minimization problem (1). So, let g : H — (—o00, 0]
be a proper convex lower semicontinuous function. Consider a convex minimization
problem:
‘ min{g(z) : z € H}. (2)
For such a g, we can define a multivalued operator dg on H by

dg(z) = {z* € H : g(y) > g(z) + (&",y —2),y € H}

for all z € H. Such a 89 is said to be the subdifferential of g. A monotone operator
A C H x H is called maximal if its graph '

G(A) = {(z,y) : y € Az}

" is not properly contained in the graph of any other monotone operator. We know
that if A is a maximal monotone operator, then R(I + AA) = H for all A > 0. A
monotone operator A is also called m-accretive if R(I + AA) = H for all A > 0.
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So, we can define, for each positive ), the resolvent Jy : R(I + AA) — D(A) by
Jy = (I+AA)~1. We know that Jy is a nonexpansive mapping. If g : H — (—00, 00]
is a proper lower semicontinuous convex function, then dg is a maximal monotone
operator.

We know that one method for solving (2) is the proximal point algorithm first
introduced by Martinet [16]. The proximal point algorithm is based on the notion
of resolvent J,, i.e.,

I = argmin{g(z) + 2%\”2 —z|?:z€ H}.

The proximal point algorithm is an iterative procedure, which starts at a point
z; € H, and generates recursively a sequence {z,} of points z,+1 = J), Tn, Where
{\n} is a sequence of positive numbers; see, for instance, Rockafellar [26].

On the other hand, Halpern [6] and Mann [15] introduced the following iterative
schemes to approximate a fixed point of a nonexpansive mapping T of H into itself:

Tpt1 =T+ (1 —an)Tz,, n=1,2,...

and :

Tntl = QnZn + (1 —ap)Tz,, n=1,2,...,
respectively, where z; = ¢ € H and {a,} is a sequence in [0,1]. Recently, Nakajo
and Takahashi {18] also introduced an iterative scheme of finding a fixed point of
a nonexpansive mapping in a Hilbert space by using an idea of the hybrid method
in mathematical programming.

In this article, we first state three convergence theorems for nonexpansive map-
pings in a Hilbert space. They are convergence theorems of Halpern’s type, Mann’s
type and Nakajo-Takahashi’s type. Then, we prove a strong convergence theorem
of Halpern’s type and a weak convergence theorem of Mann’s type for inverse-
strongly-monotone mappings in a Hilbert space. In Section 6, we prove weak and
strong convergence theorems for resolvents of accretive operators in a Banach space.
In Section 7, we consider the strong convergence of a sequence defined by resolvents
of maximal monotone operators in a Banach space. Using these results, we also
discuss the convex minimization problem of finding a minimizer of a proper lower
semicontinuous convex function in a Hilbert space or a Banach space.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* denote the dual of E.
We denote the value of y* € E* at z € E by (z,y*). When {z,} is a sequence in
E, we dencte the strong convergence of {z,} to z € E by z, — z and the weak
convergence by £, — z. The modulus of convexity of E is defined by

o(9 = int {1~ L2 o <1y < 1,0 o1 2 )

for every € with 0 < € < 2. A Banach space E is said to be uniformly convex if
6(€) > 0 for every € > 0. If E is uniformly convex, then § satisfies that §(¢/r) > 0

=<0 oo(9)

for every z,y € E with ||z|| <, ||ly|| <r and ||z — y|| > €. Let C be a nonempty
closed convex subset of a uniformly convex Banach space E. Then we know that
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for any z € E, there exists a unique element z € C such that ||z — z|| < ||z — y|| for
all y € C. Putting z = Po(z), we call Po the metric projection of E onto C. The
duality mapping J from E into 2% is defined by

Jr = {z* € E*: (z,2") = ||z||* = |="|*}

foreveryz € E. Let U = {x € E: |z|| = 1}. The norm of E is said to be Gateaux
differentiable if for each z,y € U, the limit

o 2+ tyl = ] )

t—0 t
exists. In the case, E is called smooth. The norm of F is said to be uniformly
Géateaux differentiable if for each y € U, the limit (3) is attained uniformly for
z € U. It is also said to be Fréchet differentiable if for each z € U, the limit (3)
is attained uniformly for y € U. It is known that if the norm of E is uniformly
Gateaux differentiable, then the duality mapping J is single valued and uniformly
norm to weak* continuous on each bounded subset of E. A Banach space F is said
to satisfy Opial’s condition [20] if for any sequence {z,} C E, =, — y implies

liminf ||z, — y|| < liminf ||z, — z||
n—o00 n—o0

for all z € F with z # y. A Hilbert space satisfies Opial’s condition.

Let C be a closed convex subset of E. A mapping T: C — C is said to be
nonexpansive if |7z — Ty|| < ||z —y|| for all z,y € C. We denote the set of all fixed
points of T" by F(T'). A closed convex subset C of E is said to have the fixed point
property for nonexpansive mappings if every nonexpansive mapping of a bounded
closed convex subset D of C into itself has a fixed point in D. Let D be a subset
of E. We denote the closure of the convex hull of D by ¢oD.

Let I denote the identity operator on E. An operator A C E x E with domain
D(A) = {z € E: Az # 0} and range R(A) = |J{Az : z € D(A)} is said to be
accretive if for each z; € D(A) and y; € Ax;, i = 1,2, there exists j € J(x1 — z2)
such that (y; — y2,7) > 0. If A is accretive, then we have

21 — 22|| < flz1 — 22 + r(y1 — y2)ll

for all r > 0. An accretive operator A is said to satisfy the range condition if
D(A) C N> R(I +rA). If A is accretive, then we can define, for each r > 0, a
nonexpansive single valued mapping J,: R(I + rA) — D(A) by J, = (I + rA)™L.
It is called the resolvent of A. We also define the Yosida approximation A, by
A; =-(I - J.)/r. We know that A,z € AJ.x for all z € R(I +rA) and ||A,z|| <
inf{|lyll : y € Az} for all z € D(A) N R(I + rA). We also know that for an
accretive operator A satisfying the range condition, A=10 = F(J;) for all r > 0.
An accretive operator A is said to be m-accretive if R(I +rA) = E for all r > 0.
A multi-valued operator A: E — 2E" with domain D(A) = {z € E : Az # 0} and
range R(A) = [U{Az : z € D(A)} is said to be monotone if (z; — z2,y1 —y2) > 0
for each z; € D(A) and y; € Az;, i = 1,2. A monotone operator A is said to be
maximal if its graph G(A) = {(z,y) : ¥ € Az} is not properly contained in the
graph of any other monotone operator. The following theorems are well known;
see, for instance [32]. :

Theorem 1. Let E be a reflezive, strictly convez and smooth Banach space and let
A: E — 2% be a monotone operator. Then A is mazimal if and only if R(J+rA) =
E* for allT > 0.
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Theorem 2. Let E be a strictly convex and smooth Banach space and let z,y € E.
If{x —y,Jz — Jy) =0, thenz = y.

By Theorem 1, a monotone operator A in a Hilbert space H is maximal if and
only if A is m-accretive.

3. APPROXIMATING FIXED POINTS OF NONEXPANSIVE MAPPINGS

There are three iterative methods for approximation of fixed points of nonex-
pansive mappings in a Hilbert space which are related to the problem of finding a
minimizer of a convex function.

Halpern [6] introduced the following iterative scheme to approximate a fixed
point of a nonexpansive mapping in a Hilbert space. For the proof, see Wittmann
[36] and Takahashi [32].

Theorem 3 ([36]). Let C be a closed convezr subset of a Hilbert space H and let T
be a nonezrpansive mapping of C into itself that F(T) is nonempty. Let P be the
metric prijection of H onto F(T). Let x € C and let {z,} be a sequence defined by
1 =z and

Tnt1 =0nZ+ (1 —an)Tz,, n=12,.

where {an} C [0,1] satisfies

lim o, =0, Zan—oo and Z|an+1——an|<oo

n—00
n=1 n=1

Then, {x,} converges strongly to Pz € F(T).

Mann [15] also introduced the iterative scheme for finding a fixed point of a

nonexpansive mapping. For the proof, see Takahashi [32].

Theorem 4 ([15]). Let C be a closed convez subset of a Hilbert space H and let
T be a nonezpansive mapping of C into itself such that F(T') is nonempty. Let P
be the metric projection of H onto F(T). Let z € C and let {x,} be a sequence
defined by 1 = x and

Tpsl = OnTn + (1 —an)Tz,, n=12,...,

where {z,} C [0,1] satisfies

o<
0<a,<1and Zan(l-—an)=oo
n=1
Then, {z,} converges weakly to z € F(T'), where z = limp—c0 PZn.
Recently, Nakajo and Takahashi [18] proved the following theorem for nonex-
pansive mappings in a Hilbert space by using an idea of the hybrid method in
mathematical programming.

Theorem 5 ([18]). Let C be a closed convez subset of a Hilbert space H and let T
be a nonezpansive mapping of C into itself such that F(T) is nonempty. Let P be
the metric projection of H onto F(T). Let z; =x € C and

Yn = QnTn + (1 - an)Txna
Cn={2€C:|lys — 2| < llzn — 2|},
Qn={2€C:(zp — 2,71 — zp) > 0},
Tn+l1 = PC.;ﬂQ,.(xl)a n= 112a ey
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where {an} C [0,1] satisfies lim inf,, o a, < 1 and P, @, @S the metric projection
of H onto C, N Qn. Then, {z,} converges strongly to Pz, € F(T).

Shioji and Takahashi [27] extended Theorem 3 to that of a Banach space whose
norm is uniformly Gateaux differentiable. Let C and D be closed convex subsets
of a Banach space E and let D be a subset of C. Then, a mapping P of C onto D
is called sunny if

P(Pz +t(z — Px)) = Pz
whenever Px + t(x — Pz) € C forz € C and t > 0.

Theorem 6 ([27]). Let E be a uniformly conver Banach space with a uniformly
Gdteaur differentiable norm. Let C be a nonempty closed convezx subset of E and
let T be a nonexpansive mapping of C into itself such that F(T) is nonempty. Let
{an} be a sequence of real numbers such that

o0 [o o]
0<a,<1, lim a, =0, Zan = 00, and Z |on+1 — an| < oo.
e n=1 n=1
Suppose 1 =z € C and {z,} is given by
Tntl1 =+ (1 —an)Tz,, n=12,....

Then, {z,} converges strongly to Px € F(T), where P is a unique sunny nonez-
pansive retraction of C onto F(T).

Reich [22] extended also Mann’s result to that of a Banach space whose norm is

Fréchet differentiable.
Theorem 7 ([22]). Let C be a closed convez subset of a uniformly convez Banach
space E with a Fréchet differentiable norm, let T : C — C be a nonezpansive

mapping such that F(T) is nonempty, and let {on} be a real sequence such that
0<an<land 2 an(l —ap)=o. Ifr; =€ C and

Tny1 =onTzn+ (1 —op)zn, n=12,...,

then {z,} converges weakly to a fized point of T.

Problem. Is a Hilbert space in Theorem 5 replaced by a uniformly convex and
smooth Banach space?

4. APPROXIMATING SOLUTIONS OF VALIATIONAL INEQUALITIES

Let C be a closed convex subset of a Hilbert space H. Then, a mapping A of C
into H is called inverse-strongly-monotone if there exists a positive real number o
such that

(z -y, Az — Ay) > a|| Az — Ay|?
for all z,y € C; see [4] and [14]. For such a case, A is called o-inverse-strongly-
monotone. If a mapping T of C into itself is nonexpansive, then A =1 —T is %-
inverse-strongly-monotone and F(T") = VI(C, A); for example, see [8]. A mapping
A of C into H is called strongly monotone if there exists a positive number n such
that
(@ -y, Az — Ay) > n|iz — y||”

for all z,y € C. In such a case, we say that A is n-strongly monotone. If A is
n-strongly monotone and k-Lipschitz continuous, i.e., |Az — Ay| < k|jz — y|| for all
z,y € C, then A is J%-inverse-strongly-monotone; see [14]. Let f be a continuously
Fréchet differentiable convex function H and let V f be the gradient of f. If Vf is
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i—Lipsc‘hitz continuous, then Vf is an a-inverse-strongly-monotone mapping of C
into H; see [1]. We also have that for all z,y € C and A > 0,

I = M)z — (I — AA)y|* = [|(z - y) — A(Az — Ay)|I
= ||lz - y|* — 2(z — y, Az — Ay) + \*| Az — Ay||*
< llz — gl + AMA ~ 20) | Az ~ Ay|*.
So, if A < 2a, then I — M\A is a nonexpansive mapping of C into H.
Theorem 8 ([7]). Let C be a closed convez subset of a Hilbert space H. Let A be
an a-invese-strongly-monotone mapping of C into H and let S be a nonezpansive
mapping of C into itself such that F(S) N VI(C, A) # ¢. Let z1 =z € C and let
{zn} be a sequence defined by
Zpt1 = onZ + (1 — ay)SPe(zn — AnAzy,), n=12,...,

where {an} C [0,1) and {A,} C [a,b] C (0, 2c) satisfy

o0 o0 [o o]
lim o, =0, E Qy = 00, E |on+1 — an| < 00, and E [An+1 — An| < 00.
—
neo n=1 n=1 n=1

Then, {z} converges strongly to z = Pp(s)nvic,a)T-

Theorem 9 ([34]). Let C be a closed convex subset of a Hilbert space H. Let A be
an a-inverse-strongly-monotone mapping of C into H and let S be a nonezpansive
mapping of C into itself such that F(S)N VI(C,A) # ¢. Let x; =z € C and let
{zn} be a sequence defined by

Tnt1 = 0nZn + (1 — ap)SPc(zn — AMAz,), n=12,...,
where {an} and {\.} satisfy |
0<c<ap<d<land0<a<,<b<2a.
Then, {zn} converges weakly to z € F(S)n VI(C, A).

5. PROXIMAL POINT ALGORITHMS IN HILBERT SPACES

We consider two proximal point algorithms for sloving (2) in Section 1, with
parameters {r,}, starting at an initial point z; in a Hilbert space H.
Theorem 10 ([9]). Let H be a Hilbert space and let A C H x H be a mazimal
monotone operator. Let xy = z € H and let {z,} be a sequence defined by
ZTnt1 = anZT+ (1 —an)dr, zn, n=1,2,...,

where {a,} C [0,1] and {r,} C (0, 00) satisfy

[o o]
lim o, =0, E anp =00 and lim r, = co.
n—00 1 n—oo

n=

If A710 # ¢, then {z,} converges strongly to Px € A~0, where P is the metric
projection of H onto A~10. ‘

Theorem 11 ([9]). Let H be a Hilbert space and let A C H x H be a marimal
monotone operator. Let z; =z € H and let {z,} be a sequence defined by

$n+1 = QnZn + (]- - an)Jrnxn, n= 1, 2, ooy
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where {an} C [0,1] and {r,} C (0,00) satisfy oy, € [0, k] for some k with0 < k <1
and limy, oo Tn = 00. If A710 # ¢, then {z,} converges weakly to v € A~10, where
v = limy 00 PZn and P is the metric projection of H onto A~10.

Using Theorems 10 and 11, we obtain the following theorems.
Theorem 12 ([9]). Let H be a Hilbert space and let f : H — (—00,00] be a lower

semicontinuous proper convex function. Let x; = x € H and let {x,} be a sequence
defined by

$n+1 = an$+ (1 - an)Jrnxn, n= 1, 2,. .oy
. 1
Jy, Ty, = arg min {f(z) + FHz - :z:n||2 1z € H} ,
n

where {an} C [0,1] and {rn,} C (0,00) satisfy

o o]
lim a, =0, E a, =00 and lim r, = oco.
n—o0 1 n—o00

n=

If (0f)~10 # @, then {zn} converges strongly to v € H, which is the minimizer of
f nearest to x. Further
1 - an

f(@ny1) — f(v) < an(f(z) = f(v)) + ™

Theorem 13 ([9]). Let H be a Hilbert space and let f : H — (—00,00] be a lower
semicontinuous proper convez function. Let x; = x € H and let {zn} be a sequence
defined by

1 razn — vl JruZn — Zall-

Tpt1 = OnTn + (1 —0p)Jr, Tn, n=1,2,...,
1
Jr Tp = argmin {f(z) + 2—7:—112 —z,]?:z€ H} )
n

where {an} C [0,1] and {r,} C (0,0) satisfy an, € [0, k] for some k with0 <k <1
and limy, 00 T, = 00. If (Bf)~10 # @, then {z,} converges weakly to v € H, which
is a minimizer of f. Further

f(@at1) — F(v) S an(f(zn) — f(v)) +

l_an

" | JrZn — || IraZn — T |-

Solodov and Svaiter [29] also proved the following strong convergence theorem.

Theorem 14 ([29]). Let H be a Hilbert space and let A C H x H be a mazimal
monotone operator. Let x € H and let {z,} be a sequence defined by

le =T € Ha
1
n

VHo={z€H: (2~ yn,va) <0},
an-{rl = PH;;nW,,zla n ='112’- v

where {r,} is a sequence of positive numbers. If A~10 # ¢ and liminf,, o Tn > 0,
then {z,} converges strongly to Ps-1x1.
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6. CONVERGENCE THEOREMS FOR ACCRETIVE OPERATORS

In this section, we study a strong convergence theorem of Halpern’s type for
accretive operators in a Banach space. We need the following lemma for the proof
of our theorem.

Lemma 15 ([35]). Let E be a reflevive Banach space whose norm is uniformly
Giéteauz differentiable and let A C E x E be an accretive operator which satisfies
the range condition. Suppose that every weakly compact convez subset of E' has the
fized point property for nonerpansive mappings. Let C be a nonempty closed convex
subset of E such that D(A) C C C (.o R(I +1A). If A710 # 0, then the strong
lim; .o Jiz eTists and belongs to A0 for allz € C.

See also Reich [23]. Using this result, we prove the following theorem. The proof
is mainly due to Wittmann [36] and Shioji and Takahashi [27].

Theorem 16 ([10]). Let E be a uniformly convexr Banach space with o uniformly
Giéteauz differentioble norm, let A C E x E be an accretive operator which satisfies
the range condition, and let C be a nonempty closed conver subset of E such that
D(A) C C C (Voo RUI+TA). Letz; = z € C and let {zn} be a sequence generated
by

Tn+1 = nZ+ (1 —op)Jy, Tn, n=1,2,...,
where {a,} C [0,1] and {r,} C (0, 00) satisfy

o0
lim a, =0, E an =00 and lim r, = oo.
n—oo 0 n—oo

n=

If A~10 # 0, then {z,} converges strongly to an element of A-10.
As a direct consequence of Theorem 16, we have the following:
Theorem 17. Let E be a uniformly convez Banach space with a uniformly Géteauzr

differentiable norm and let A C E x E be an m-accretive operator. Letz, =z € E
and let {x,} be a sequence generated by

mn-{»l = anm + (1 - an)Jr"mn, n= 1, 2, caey
where {an} C [0,1] and {r,} C (0,00) satisfy

o0
lim a, =0, E o, = 00 and lim r, = oo.
n—o00 0 n—o00

n=

If A"10 # 0, then {z,} converges strongly to an element of A7,

Next, we prove a weak convergence theorem for Mann’s type for accretive oper-
ators in a Banach space. Before proving the theorem, we need the following two
lemmas.

Lemma 18 ([3]). Let C be a closed bounded convex subset of a uniformly convex
Banach space E and let T be a nonexpansive mapping of C into itself. If {zn}
converges weakly to z € C and {z, — Tz,} converges strongly to 0, then Tz = z.
Lemma 19 ([22]). Let E be a uniformly convez Banach space whose norm is
Fréchet differentiable, let C be a nonempty closed convex subset of E and let
{To,T1, Tz, ..} be a sequence of nonezpansive mappings of C into itself such that
Moo F(Tn) is nonempty. Let x € C and Sp = TpnTp—1-+-To foralin =1,2,....
Then the set (owoC0{Smz : m > n} NU consists of at most one point, where
U= n:°=0 F(Tn)-
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For the proof of Lemma 19, see Takahashi and Kim [33]. Now we can prove the
following weak convergence theorem.

Theorem 20 ([10]). Let E be a uniformly convex Banach space whose norm is
Fréchet differentiable or which satisfies Opial’s condition, let A C E X E be an
accretive operator which satisfies the range condition, and let C be a nonempty
closed convex subset of E such that D(A) C C C [\,5oR(I +71A). Letzy =z €C
and let {z,} be a sequence generated by :

Znt1 = AnZn + (1 — o)y, Zn, n=1,2,...,
where {an} C [0,1] and {r,} C (0,00) satisfy

limsupa, <1 and liminfr, > 0.
n—oo n—oo

If A~10 # 0, then {z,} converges weakly to an element of A~10.
As a direct consequence of Theorem 20, we have the following:

Theorem 21. Let E be a uniformly conver Banach space whose norm is Fréchet
differentiable or which satisfies Opial’s condition and let A C E x E be an m-
accretive operator. Let x1 = z € E and let {z,} be a sequence generated by

Tnt1l = nZn + (1 —an)dr, Zn, n=1,2,...,
where {an} C [0,1] and {r,} C (0,00) satisfy

limsupay, <1 and liminfr, > 0.
n—oo n—oo

If A=10 # @, then {z,} converges weakly to an element of A~10.

7. CONVERGENCE THEOREMS FOR MAXIMAL MONOTONE OPERATORS

In this section, we study strong convergence theorems for resolvents of maximal
monotone operators in a Banach space. Let E be a uniformly convex and smooth
Banach space and let A be a maximal monotone operator from E into E* such that
A~10 # ¢. For x € E and r > 0, we consider the following equation

0 € J(z, — z) + rAz,.

By Theorems 1 and 2, this equation has a unique solution z,. We denote J, by
z, = Jyz and such J,, » > 0 are called resolvents of A. Now, we extend Solodov
and Svaiter’s result [29)].

Theorem 22 ([19]). Let E be a uniformly conver and smooth Banach space and let
A be a mazimal monotone operator from E into E* such that A=10 # ¢. Suppose
{zn} is the sequence generated by

le €EFE,

Yn = Jrnmm

SH,={2€ E: (y, — 2,J(zp — yn)) > 0},
W, ={z€ E:(z, — z,J(z1 — T,)) = 0},
(Zn+1 = PH,aw, %1, n=1,2,...,

where {r,,} is a sequence of positive numbers. If A=10 # ¢ and liminf, o ™n >0,
then {z,} converges strongly to P4-10z;.
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Next, we establish another extension of Solodov and Svaiter’s result [29]. Before
establishing it, we give a definition. Let E be a reflexive, strictly convex and smooth
Banach space. The function ¢: E X E — (—00,00) is defined by

¢(z,y) = llzl* - 2(z, Jy) + lylI?

for z,y € E. Let C be a nonempty closed convex subset of E and let x € E. Then
there exists a unique element z¢ € C such that

é(xo,z) = inf{d(z2,z) : z € C}. (4)

So, if C is a nonempty closed convex subset of a reflexive, strictly convex and
smooth Banach space E and = € FE, we define the mapping Q¢ of E onto C by
Qczx = x¢, where 1o is defined by (4). It is easy to see that in a Hilbert space, the
mapping Q¢ is coincident with the metric projection.

Theorem 23 ([11]). Let E be a uniformly convez and uniformly smooth Banach
space and let A be a mazimal monotone operator from E into E* such that A~10 #
¢. Let Qp = (J +1A)"YJ for allT > 0 and let {z,} be the sequence generated by

rxl € E,

Yn = anzna

SHy={z€ E:(z2—yn,Jzn — Jyn) <0},
Wo={2€ E:{(z—1zp,Jz1 — Jx,) <0},

(Zn+1 = QH.nw, Z1, n=1,2,...,

where {r,} is a sequence of positive numbers such that liminf, ..o 70 > 0. Then,
{zn} converges strongly to Q 4-1071.

Recently, Kohsaka and Takahashi [12] proved a strong convergence theorem of
Halpen’s type for maximal monotone operators in a Banach space.

Theorem 24 ([12]). Let E be a smooth and uniformly convex Banach space and
let A C E x E* be a mazimal monotone operator. Let Q, = (J +rA)~1J for all
r > 0 and let {z,} be a sequence defined as follows:

1=z € FE,
Tnp1 = J HanJz+ (1 — an)JQr.2,), n=12,...,
where {a,} C [0,1] and {r,} C (0,00) satisfy

o0
lim oy =0, E an, =00 and lim r, = oo.
n—o0 1 n—od

n=

If A=10 # ¢, then {z,} converges strongly to Q 4-10Z.

Probelm. If E and E* are uniformly convex Banach spaces, does Theorem 11 hold
for maximal monotone operators A C E x E*?

We can apply Theorems 22, 23 and 24 to find a minimizer of a convex function
f. Let E be a real Banach space and let f : E — (—o00, 00| be a proper convex
lower semicontinuous function. Then the subdifferential 8f of f is as follows:

of(z)={veE*: fly) = f(z)+(y—=zv),Vye E}, VzeE.
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Theorem 25 ([19]). Let E be a uniformly convez and smooth Banach space and let
f:E — (—00,00] be a proper conver lower semicontinuous function. Assume that
{rn} C (0,00) satisfies liminf, 0o Tn > 0 and let {x,} be the sequence generated

by

r11?1 cFE

Yn = argmin,ep{f(z) + 5%:”3 - xn”z},
{Hy,={2€ E: (yp — 2z,J(xn — yn) = 0},
W, ={z€ E:{z, - z,J(z1 — zn)) > 0},
(Tn+l = Py,.ow,z1, n=12,....

If (8f)~10 # @, then {z,} converges strongly to the minimizer of f nearest to z,.

Proof. Since f : E — (—o00,00] is a proper convex lower semicontinuous function,
by Rockafellar [24], the subdifferential 3f of f is a maxmal monotone operator. We
also know that

. 1
Yn = arg Izlélg {f(z) + 5;;1—“7. - xn”z}

is equivalent to
1
0e af(yn) + T_J(yn - xn)'
n
So, we have

0 € J(yn — xn) +00f(yn).
Using Theorem 22, we get the conclusion. a

Theorem 26 ([11]). Let E be a uniformly conver and uniformly smooth Banach
space and let f : E — (—00,00] be a proper conver lower semicontinuous function.
Assume that {rp} C (0,00) satisfies liminf, oo Tn > 0 and let {z,} be the sequence
generated by

r.'L'l eFE

Yn = argmingep{f(2) + 5%;"2”2 - Fl:(za Jza)}s
0=vp, + Fl,:(‘]yn — Jx,), vn € 3f(yn),
H,={z€ E:(z—yn,v,) <0},

Wo={z€ E: {2z —zn,JT1 — JT,,) <0},

(Tnt+1 = QH.ow,T1, n=12,....

If(of )"103'é ¢, then {z,} converges strongly to the minimizer of f nearest to x;.
Proof. We also know that

. 1 1
Yn = argmin {f(z) + §r—n|lzli2 - ;;(z, an)}
is equivalent to
1 1
0€8f(yn) + —Jyn — —JZn.
Tn Tn

So, we have v, € 3f(yy) such that 0 = v, + %(Jyn — Jz,). Using Theorem 23,
we get the conclusion. O

Using Theorem 24, we get the following theorem.
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Theorem 27 ([12]). Let E be a smooth and uniformly convex Banach space and
let f: E — (—00,00] be a proper lower semicontinuous convez function such that
(0f)~10 is nonempty. Let {z,} be a sequence defined as follows:

ry=z€kKE,

. 1 1
Yn = argmin {f(y) + 5;ﬂ—||y|l2 - ;,:(y, J:cn)} ;
ZTns1 =J HanJz + (1 —an)dys), n=12,...,
where {a,} C [0,1] and {r,} C (0,00) satisfy

lim a, =0, E o, =00 and lim r, = oo.
n—oo 1 n—oo
e

Then, {z,} converges strongly to Qs5)-10Z.
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