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Abstract

We consider an exchange economy with two commodities, of which one is a
good, which generates utility to all consumers, and the other is abad, which causes
disutility to all consumers. We look into “unlinked” allocations, that is, allocations
at which almost every consumer consumes either the good or the bad, but not
both, and ask under what conditions there exist unlnked and individually rational
allocations and also unlinked and envy-ffee alocations. We also examine efficient
and equilibrium allocations, taking special care of the cases where the so called
minimum condition is violated.

1Introduction

1.1 Overview of the Results
In this paper, we investigate unlinked allocations in an exchange economy with two com-
modities, of which one is agood, which generates utility to all consumers, and the other
is abad, which causes disutility to all consumers. While the good can be considered just
as any usual consumption good, the bad should be considered as garbage or toxic wastes.
The exchange economy may consist of infinitely many consumers, and an “unlinked” al-
location is, by definition, an allocation at which almost every consumer consumes either
the good or the bad, but not both.

The properties we explore on unlinked allocations are the individual rationality and
the envy-freeness. Propositions 4.2 shows that there exists an unlinked and individually
rational allocation if and only if the initial endowment allocation is unlinked. Moreover,
then, the initial endowment allocation is essentially the unique allocation that is both
unlinked and individually rational. Proposition 5.2 establishes analogous results for the
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envy-freeness. Since an equilibrium allocation is individually rational (and also envy-
free in terms of net demands), these results imply that there is no unlinked equilibrium
allocation unless the initial endowment allocation is unlinked.

We also look into efficient allocations in such an economy. It is well known that if
utility functions were to be strictly increasing in every commodity, the strong and weak
Pareto efficiency would be equivalent. On the other hand, as shown by Example 6.3, if
there are more than one bad, then the strong efficiency may indeed be more stringent
than the weak efficiency. We prove (Lemma 6.2) that in our setting of one good and
one bad, the equivalence between the two notions of efficiency still obtains, and acareful
analysis of unlinked allocations will turn out to be acritical step of the proof. Also,
at an unlinked allocation, since almost every consumer consumes only one of the two
commodities, the so called minimum income condition (or its generalization, the local
cheaper point condition)is likely to be violated. It is therefore necessary to distinguish
the notion of equilibrium from that of the so called quasi-equilibrium (or sometimes called
pseud0-equilibrium). We shall also provide an equivalent condition (Proposition 8.3) for
the existence of an unlinked quasi-equilibrium allocation.

1.2 Motivation
Geometrically speaking, an unlinked allocation is an allocation of which the distribution
of the consumers’ commodity bundles is concentrated on the axes bordering the non-
negative orthant. Why should we bother to investigate unlinked allocations in details,
given that their distributions appear rather unusual? There are at least three reasons
why our exploration is indeed worthwhile.

First, as will be established as Proposition 7.6 below, every unlinked allocation is
efficient as long as one commodity is agood and the other bad for everyone, regardless of
other specifications of utility functions or the number of consumers in the economy. Our
contention is that the one-good, one-bad setup is the benchmark model for the general
equilibrium analysis of bads; and that the efficiency of unlinked allocations is so “robust”
that they should merit special attention.

Second, as shown in Example 8and Proposition 9of Hara (2002), the unlinked al-
locations may be the only efficient allocations in an economy with an atomless space
of consumers. This implies, along with Proposition 4.2, that there is no equilibrium in
such an economy unless the initial endowment allocation is unlinked.l This pervasive
non-existence of an equilibrium is an disturbing fact, because the atomless space of con-
sumers is widely perceived as agood description of perfect competition, and should also
constitute abenchmark model for the analysis of efficient allocation of bads via the price
mechanism. The analysis of unlinked allocations in this paper clarifies the source of the
non-existence from the viewpoint of welfare economics.

Third, unlinked allocations have often been put aside when establishing some im-
$\mathrm{x}\mathrm{I}\mathrm{n}$ the example, there is no equilibrium at all even when the initial endowment allocation is unlinked,

due to its particular construction of utility functions, which violate the condition of Proposition 8.4. It is,
however, possible to modify the example so that there is an equilibrium whenever the initial endowment
allocation is unlinked.
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portant propositions in economics. One such instance is Proposition 4.3.6 of Mas-Colell
(1985), which establishes, under the assumption of monotone preference relations, the
uniqueness (up to positive multiplication) of the support price vecotr of every efficient,
linked allocation. Another is the irreducibility condition due to McKenzie $(1959, 1981)$ .
Indeed, one can prove that the irreducibility condition is not satisfied if $e$ is unlinked. On
the other hand, Propositions 8.2 shows that in Example 8of Hara (2002), there is an equi-
librium only if $e$ is unlinked. In our setting, therefore, there is no equilibrium whenever
the irreducibility condition is met. This is arather curious phenomenon given the vital
role played by the irreducibility condition to establish the existence of an $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{u}\mathrm{m}.2$

1.3 Organization of the Paper

The next section lays out our framework. Section 3gives aformal definition of an unlinked
allocation and an important lemma, which underlies the analysis of the paper. Sections 4
and 5deal with individually rational and envy-free allocations. Sections 6and 7deal with
efficiency and price supportability. Necessary and sufficient conditions for the existence
of equilibria are given in Section 8.

2Setup
The space of (names of) consumers is given by ameasure space $(A,\ovalbox{\tt\small REJECT}, \mu)$ with $0<\mu(A)<$
$\infty$ . Denote by 7the set of all real-valued functions defined on $X=R_{+}^{2}$ that are contin-
uous, quasi-concave, strictly increasing in the first coordinate, and strictly decreasing in
the second coordinate, endowed with the $C^{0}$ compact open topology. This is the space
of utility functions we shall consider in this paper. The interpretation is that there are
two commodities; the consumption set is the non-negative orthant; the first commod-
ity is agood; and the second commodity is abad. An (private ownership) economy is
characterized as apair of aBorel-measurable mapping $u$ : $Aarrow\Psi$ and an integrable

mapping $e$ : $Aarrow X$ with $\int_{A}e\in R_{++}^{2}$ . At this point and in the rest of this paper, the

measurability is meant to be with respect to 7and the Borel a-fields of $\psi$ and $X$ . The in-
terpretation is that the utility function $u(a)$ , which we also write $u_{a}$ , represents consumer
$a’ \mathrm{s}$ preference relation and $e(a)$ is his initial endowment vector. Notice that every con-
sumer’s endowments are non-negative for both commodities; the aggregate endowments
are strictly positive; but an individual consumer’s endowments in either commodity may
be zero.

Definition 2.1 Let $B\in\ovalbox{\tt\small REJECT}$ , then ameasurable mapping $f$ : $Barrow X$ is an allocation

within $B$ if it is integrable and satisfies $\int_{B}f=\int_{B}e$ . An allocation within $A$ is also

simply called an alocation.
$2\mathrm{T}\mathrm{h}\mathrm{e}$ existence of aquasi-equilibrium is even more starkly incompatible with the irreducibilty con

dition in our setting. The necessary and sufficient condition of Proposition 8.3 for the existence of an
unlinked pseudo equilibrium in terms of the initial endowment allocation is satisfied if and only if the
irreducibility condition is violated.
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Note that an allocation, by definition, satisfies the resource feasibility constraint, which
is met with the strict equality rather than the weak inequality $\int_{B}$ f $\leq\int_{B}e$ , to eliminate

the possibility of free disposal.

3Unlinked Allocations
The following definition is taken from Proposition 7.2.7 of $\mathrm{M}\mathrm{a}s$-Colell (1985).3

Definition 3.1 Let $B\in\ovalbox{\tt\small REJECT}$ and $f$ be an allocation within $B$ , then $f$ is unlinked if
$f(a)\not\in R_{++}^{2}$ for almost every $a\in B$ .

The following lemma implies that no unlinked allocation within any group of consumers
can be ParetO-improving for the group. It underlies the analysis of this paper.

Lemma 3.2 Let $B\in\ovalbox{\tt\small REJECT}$ and $f$ be an allocation within B. If $g$ is an unlinked allocation
within $B$ and $u_{a}(g(a))\geq u_{a}(f(a))$ for almost every $a\in B$ , then $g(a)=f(a)$ for almost
every $a\in B$ .

Proof of Lemma 3.2 By taking $B$ smaller if necessary, we can assume that $g(a)\not\in R_{++}^{2}$

and $u_{a}(g(a))\geq u_{a}(f(a))$ for every $a\in B$ .
Since $g$ is an unlinked allocation within $B$ , for every $a\in B$ , if $g_{2}(a)>0$ , then $g_{1}(a)=$

$0\leq f1(a)$ . Since $u_{a}(g(a))\geq u_{a}(f(a))$ , this implies that $g_{2}(a)\leq f_{2}(a)$ . This of course
holds when $g_{2}(a)=0$ . Thus $g_{2}(a)\leq f_{2}(a)$ for every $a\in B$ . Since $\int_{B}g_{2}=\int_{B}$ e2 $= \int_{B}f_{2}$ ,

this implies that $g_{2}(a)=f_{2}(a)$ for every $a\in B$ . Since $u_{a}(g(a))\geq u_{a}(f(a))$ , this implies
that $f_{1}(a)\geq g_{1}(a)$ for every $a\in B$ . As before, then, $g_{1}(a)=f_{1}(a)$ for every $a\in B$ . ///

4Individual Rationality
The following definition is standard.

Definition 4.1 An allocation $f$ is individually rational if $u_{a}(f(a))\geq u_{a}(e(a))$ for almost
every $a\in A$ .

The first application of Lemma 3.2 is the following lemma.

Proposition 4.2 There exists an individually rational, unlinked allocation if and only
if $e$ is unlinked. Moreover, if $f$ is an individually rational, unlinked allocation, then
$f(a)=e(a)$ for almost every $a\in A$ .

$3\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ are apparently many predecessors of this definition. Also, Definition 4.3.5 of Mas-Colell (1985)
is more explicit but less suited to our analysis because he assumed differentiabilty of utility functions
while we do not
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Proof of Proposition 4.2 By Lemma 3.2, if f is an individually rational, unlinked
allocation,

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}_{1}f(a)=e(a)$
for almost every a $\in A$ . Thus, such an allocation does

$\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{e}\mathrm{d}///$

exists if and only if e is unlinked.

5Envy-Freeness
We consider the envy-free property with respect to net demands.

Definition 5.1 An allocation $f$ is envy-free if there exists a $B\in\ovalbox{\tt\small REJECT}$ such that $\mu(A)=$

$\mu(B)$ and for every $a\in B$ and every $b\in B$ , if $e(a)+(f(b)-e(b))\in X$ , then
$u_{a}(e(a)+(f(b)-e(b)))\leq u_{a}(f(a))$ .

The definition states that at an envy-free allocation, almost no consumer can get
strictly better off by receiving the net demands that another consumer receives.

Proposition 5.2 There exists an envy-free, unlinked allocation if and only if $e$ is un-
linked. Moreover, if $f$ is an envy-free, unlinked allocation, then $f(a)=e(a)$ for almost
every $a\in A$ .

Proof of Proposition 5.2 Suppose that $f$ is an envy-free, unlinked allocation and
define

$A_{1}=\{a\in A|f_{1}(a)>e_{1}(a)\}$ ,
$A_{2}=\{a\in A|f_{2}(a)>e_{2}(a)\}$ .

Then $\mu(A_{1}\cap A_{2})=0$ because $f$ is unlinked. Suppose that $\mu(A_{1})>0$ and $\mu(A_{2})>0$ ,
then

$\mu(A_{1}\cap(A\backslash A_{2}))=\mu(A_{1}\backslash (A_{1}\cap A_{2}))=\mu(A_{1})>0$ ,
$\mu((A\backslash A_{1})\cap A_{2})=\mu(A_{2}\backslash (A_{1}\cap A_{2}))=\mu(A_{2})>0$ .

But the consumers $a\in(A\backslash A_{1})\cap A_{2}$ would envy those $a\in A_{1}\backslash (A_{1}\cap A_{2})$ and hence $f$

could not be envy-free. We must thus have either $\mu(A_{1})=0$ and $\mu(A_{2})=0$ . If $\mu(A_{1})=0$ ,

then $f_{1}(a)\leq e_{1}(a)$ for almost every $a\in A$ and, since $\int_{A}f_{1}=\int_{A}e_{1}$ , $f_{1}(a)=e_{1}(a)$ for

almost every $a\in A$ . Then, by the envy-free property, $f_{2}(a)=e_{2}(a)$ for almost every
$a\in A$ . Thus $f(a)=e(a)$ for almost every $a\in A$ . We can analogously show that the same
conclusion is obtained also when $\mu(A_{2})=0$ .

We have thus shown that if $f$ is an envy-free, unlinked allocation, then $f(a)=e(a)$
for almost

$\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}a\in \mathrm{i}\mathrm{n}A\mathrm{h}$

This
$\mathrm{p}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{e}$

if $e$ is unlinked.
$\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}$ $\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{l}$

the only envy-free
$///\mathrm{a}\mathrm{n}\mathrm{d}$

unlinked allocation; otherwise, there is no envy-free, unlinked allocation.
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6Efficiency
In the presence of abad, it is helpful to distinguish two notions of efficient allocations.

Definition 6.1 An allocation is (strongly) efficient if there is no allocation $g$ such that
$u_{a}(g(a))\geq u_{a}(f(a))$ for almost every $a\in A$ and there exists a $B\in\ovalbox{\tt\small REJECT}$ such that $\mu(B)>0$

and $u_{a}(g(a))>u_{a}(f(a))$ for every $a\in B$ . It is rneakly efficient if there is no allocation $g$

such that $u_{a}(g(a))>u_{a}(f(a))$ for almost every $a\in A$ .

It is well known that the two notions of efficiency are equivalent with each other if
utility functions are strictly increasing in every commodity. This equivalence is still valid
in our present setting of one good and one bad.

Lemma 6.2 An allocation is strongly efficient if and only if it is weakly efficient.

Proof of Lemma 6.2 It is sufficient to prove that if there exists aweak improvement
$g$ on an allocation $f$ , then there also exists astrong improvement on $f$ . Define

$B=\{a\in A|u_{a}(g(a))>u_{a}(f(a))\}$ ,
$C=\{a\in A|g(a)\in R_{++}^{2}\}$

If $\mu(B\cap C)>0$ , then it is possible to $\mathrm{r}\mathrm{e}$-distribute small amounts of the good from
$B\cap C$ to $A\backslash B$ to obtain astrong improvement on $f$ . Since $\mu(C)>0$ by Lemma 3.2, if
$\mu(B\cap C)=0$ , then $\mu((A\backslash B)\cap C)>0$ . We shall construct another weak improvement
$h$ on $f$ in the following manner. For each $a\in(A\backslash B)\cap C$ , let $k(a)\in R_{++}^{2}$ be asufficiently
short vector such that consumer $a$ is indifferent between $f(a)$ and $f(a)-k(a)$ . We can then

transfer $\int_{C}k$ to $B$ so that, even after the transfers, every consumer $a\in B$ is strictly better

off than at $f$ . Denote the resulting allocation by $h$ , then $h$ is still aweak improvement on
$f$ and, if $B$ and $C$ are defined for $h$ in place of $g$ as above, then $h$ satisfies $\mu(B\cap C)>0$ .
Then, just as before, we can construct a strong improvement on $f$ by transferring small
amounts of the good ffom $B$ to $A\backslash B$ . ///

As there is no need to distinguish the two notions of efficiency, we refer to them simply
as “efficiency” in the rest of this paper.

We show by means of an example that the equivalence would no longer hold if there
were more than two types of bads.

Example 6.3 Let $A=\{1,2,3\}$ , $\ovalbox{\tt\small REJECT}$ be the power set of $A$ , and $\mu$ be the counting measure.
In this example, assume that there are three commodities, of which the first one is agood
and the others are bads. More specifically, define $u_{a}(x)=x_{1}-x_{2}^{2}-x_{3}^{2}$ and $e(a)=(1,1,1)$
for each $a\in A$ . Also define an allocation $f$ by

$f(a)=\{$

(0, 2, 1) for $a=1$ ,
(0, 1, 2) for $a=2$ ,
(3, 0, 0) for $a=3$ .
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Then f is weakly efficient because the consumer a $=3$ cannot be made strictly better
off. But f is not strongly efficient because the marginal rates of substitution between the
two bads are not equated between consumers a $=1$ and a $=2$ .

7Supportability
Two versions of price supportability are given below. By aprice vector, we shall always
mean anon-zero vector in $R^{2}$ .

Definition 7.1 An allocation $f$ is strongly supportable by aprice vector $p$ if for almost
every $a\in A$ and every $x\in X$ , $p\cdot$ $x>p\cdot f(a)$ whenever $u_{a}(x)>u_{a}(f(a))$ . It is weakly
supportable by $p$ if for almost every $a\in A$ and every $x\in X$ , $p\cdot x\geq p\cdot f(a)$ whenever
$u_{a}(x)>u_{a}(f(a))$ .

For each consumer $a$ , we shall refer to the utility maximization condition for strong
supportability as the strong utility maximization condition and the utility maximization
condition for weak supportability as the weak utility maximization condition. The above
notion of weak supportability has been considered as part of definitions of apseud0-
equilibrium or quasi-equilibrium in Hildenbrand (1968), Mas-Colell, Whinston, and Green
(1995, Definition $16.\mathrm{D}.1$), Hurwicz and Richter (2001), and probably many others. As
they have pointed out, with the locally non-satiation assumption on utility functions, then
the weak utility maximization condition is equivalent to the cost minimization condition,
that is, for every $x\in X$ , if $u_{a}(x)\geq u_{a}(f(a))$ , then $p\cdot x\geq p\cdot$ $f(a)$ . Given this, we see
that, for each consumer $a\in A$ , the weak utility maximization condition is equivalent to
the strong utility maximization condition if $p \cdot f(a)>\inf\{p\cdot x|x\in X\}$ , that is, the so
called minimum income condition is met. We thus obtain the following lemma.

Lemma 7.2 If an allocation $f$ is weakly supportable by a price vector $p$ and if $p\cdot$ $f(a)>$
$\inf\{p\cdot x|x\in X\}$ for almost every $a\in A$ , then $f$ is strongly supportable by the same price

vector $p$ .

The following lemma is aconsequence of the one-good, one-bad assumption.

Lemma 7.3 If an allocation is weakly supportable by a price vector $p$, then $p_{1}>0$ and
$p_{2}\leq 0$ . If it is strongly supportable by $p$, then $p_{2}<0$ .

Proof of Lemma 7.3 Suppose that an allocation $f$ is weakly supportable by $p$ . Then
there exist a $B\in\ovalbox{\tt\small REJECT}$ such that $\mu(B)>0$ and $f_{2}(a)>0$ for every $a\in B$ . If $p_{2}>0$ , then the
weak utility maximization condition for $a\in B$ would be the strong utility maximization
condition, but it could then not be met because the second commodity is abad. We must
thus have $p_{2}\leq 0$ . Of course, if $p_{1}<0$ , then the weak utility maximization condition
would be the strong maximization condition for every consumer, which could then not be
met because the first commodity is agood. We thus have $p_{1}\geq 0$ . Given $p_{2}\leq 0$ and $p\neq 0$ ,
if $p_{1}=0$ , then $p_{2}<0$ , and again the weak utility maximization condition would be the
strong maximization condition for every consumer, which could not be met because the
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first commodity is agood. Thus $p_{1}>0$ . The first part of this lemma is thus established.
If

$p_{2}=0,\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{c}\mathrm{n}\mathrm{h}$

utility maximization condition would not be met by any a
$\in B///\cdot$

The second part thus follows.

The following lemma is, in asense, converse to Lemma 7.3.

Lemma 7.4 If an allocation is weakly supported by a price vector $p$ with $p_{2}<0$ , then it
is strongly supported by $p$ .

This follows from Lemma 7.2 and $\inf\{p\cdot x|x\in X\}=-\infty$ if $p_{2}<0$ . The two lemmas
together imply that aweakly supportable allocation is strongly supportable if and only if
there exists aweakly supporting price vector for which the bad has anegative price.

Since strong and weak efficiency are equivalent by Lemma 6.2, by combining the first
and second welfare theorems, we obtain the following equivalence.

Theorem 7.5 An allocation is efficient if and only if it is weakly supportable.

Proof of Theorem 7.5 The proof is so standard that we only give asketch. The only
point worth making is that the following standard argument is valid even when the utility
functions are decreasing in the bad.

If $f$ is an allocation weakly supportable by aprice vector $p$, then, since $\int_{A}f\in R_{++}^{\mathit{2}}$ ,

there exists a $B\in\ovalbox{\tt\small REJECT}$ such that $\mathrm{f}\mathrm{i}(\mathrm{B})>0$ and $p \cdot f(a)>\inf\{\{p\cdot x|x\in X\}$ for every $a\in B$ .
Thus the weak utility maximization condition is indeed the strong utility maximization
condition for every $a\in B$ . Now, if there were to exist astrong improvement $g$ on $f$ , then
$p\cdot$ $g(a)\geq p\cdot$ $f(a)$ for almost every $a\in A$ and $p\cdot g(a)>p\cdot f(a)$ for almost every $a\in B$ .
This is acontradiction. Hence $f$ is efficient, by Lemma 6.2.

Suppose conversely that $f$ is efficient. Define acorrespondence $\Phi$ of $A$ into $X$ by

$\Phi(a)=\{x\in X|u_{a}(x)>u_{a}(f(a))\}$ . Then the integral $\int_{A}\Phi\subseteq X$ is non-empty (as, for
example, $a\vdasharrow f(a)+(1,0)$ is an integrable selection of (I) $)$ and convex because $\Phi(a)$ is

convex for every $a\in A^{4}$. Moreover, by efficiency, $\int_{A}e\not\in\int_{A}$ (D. Thus, there is aprice

vector $p$ that supports $\int_{A}\Phi$ at $\int_{A}e$ . Then $f$ is weakly supportable by $p$. ///

It is of course well known (as exemplified by Figure $16.\mathrm{D}.2$ of Mas-Colell, Whinston,
and Green (1995) $)$ that strong supportability does not necessarily follow from efficiency.

The last lemma of this subsection is the weak supportability of unlinked allocations.

Proposition 7.6 Every unlinked allocation is weakly supportable by a price vector $p$ with
$p_{1}>0$ and $p_{2}=0$ , and thus efficient.
The first part is straightforward. Efficiency follows from Theorem 7.5. As mentioned in
the introduction, in an economy with an atomless space of consumers, the converse may
be the case as well.

$4\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}$ Hildenbrand (1974, D.II. 2) for details
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8Equilibrium
Definition 8.1 An allocation $f$ is astrong equilibrium allocation if there exists aprice
vector $p$ such that $f$ is strongly supportable by $p$ and

$p\cdot e(a)=p\cdot f(a)$ (1)

for almost every $a\in A$ . It is aweak equilibrium allocation if there exists aprice vector $p$

such that $f$ is weakly supportable by $p$ and (1) holds.

The strong equilibrium allocation is commonly known simply as an equilibrium $\mathrm{a}11\triangleright$

cation, but we opt for adding the adjective “strong” to distinguish it from aweak equi-
librium allocation. The weak equilibrium concept coincides with the pseud0-equilibrium
and quasi-equilibrium referred to in Section 7, but we call it an “weak” equilibrium for
simplicity. Even if the equality is replaced by aweak inequality $\geq$ , the condition would
still be equivalent in our setup, because the utility functions are strictly increasing in the
good.

Based on the previous results, we first give anecessary condition for the existence
of an unlinked strong equilibrium allocations. It implies that astrong equilibrium must
necessarily be the essentially n0-trade equilibrium.

Proposition 8.2 If there eists an unlinked strong equilibrium allocation, then $e$ is un-
linked. Moreover, if $f$ is a strong equilibrium unlinked allocation, then $f(a)=e(a)$ for
almost every $a\in A$ .

This follows from Proposition 4.2 or 5.2, because every strong equilibrium allocation
is efficient, individually rational, and envy-free.

Next, we give an equivalent condition for the existence of an unlinked weak equilibrium
allocation.

Proposition 8.3 There exists an unlinked weak equilibrium allocation if and only if
$\mu(\{a\in A|e_{1}(a)=0\})>0$ . Moreover, then, an unlinked allocation $f$ is a weak equi-
librium allocation if and only if $f1(a)=e_{1}(a)$ for almost every $a\in A$ .

In words, there exists an unlinked weak equilibrium allocation if and only if there is
apositive proportion of consumers not endowed with the good. Since $f$ is unlinked, the
above proposition implies that $f_{2}(a)=0$ for almost every $a\in A$ with $e_{1}(a)>0$ . That is,
the burden of consuming the bad is borne exclusively by the poor consumers who are not
endowed with the good at all.

Proof of Proposition 8.3 Define $B=\{a\in A|e_{1}(a)=0\}\backslash$ . Suppose that $f$ is an
unlinked weak equilibrium allocation. If it also astrong equilibrium allocation, then,
by Proposition 8.2, $e$ is unlinked and $f(a)=e(a)$ for almost every $a\in A$ . Thus, of
course, $f_{1}(a)=e_{1}(a)$ for almost every $a\in A$ , and $\mu(B)\geq\mu$ $(\{a\in A| \mathrm{e}(\mathrm{a}) >0\})$ $>0$ .
Suppose next that $f$ is not astrong equilibrium allocation. By Lemma 7.4, if $p$ is a
corresponding support price vector, then $p_{1}>0$ and $p_{2}=0$ . For almost every $a\in B$ ,
$p_{1}f_{1}(a)=p\cdot f(a)=p\cdot \mathrm{e}(\mathrm{a})=p_{1}e_{1}(a)=0$. Thus $/\mathrm{i}(\mathrm{a})=0=\mathrm{e}(\mathrm{a})$ . For every $a\not\in B$ with
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$e_{1}(a)>0$ , the weak utility maximization condition is equivalent to the strong one; and
the latter implies that $\mathrm{f}\mathrm{i}(\mathrm{a})=\mathrm{e}\mathrm{i}(\mathrm{a})$ . Thus $\mathrm{f}\mathrm{i}(\mathrm{a})--e_{1}(a)$ for almost every a $\in A$ . Since $f$

is linked, this implies that $\mu(B)\geq\mu(\{a\in A|f_{2}(a)>0\})>0$.
Conversely, suppose that $\mu(B)>0$ . Define an allocation f by

$f(a)=\{$

$(e_{1}(a), 0)$ if $a\in A\backslash B$ ,

(0, $\frac{1}{\mu(B)}\int_{A}e_{2}$) if $a\in B$ .

Then $f$ is an unlinked weak equilibrium allocation under $p=(1,0)$ . Finally, if $\mu(B)>0$

and $f$ is an unlinked allocation such that $f_{1}(a)=e_{1}(a)$ for almost every $a\in A$ , then it is
aweak equilibrium allocation under the price vector $p=(1,0)$ , where almost every con-
sumer $a\not\in B$ satisfy the strong utility maximization condition and almost every consumer
$a\in B$ satisfy the weak utility maximization condition merely because $p\cdot$ $e(a)=0$. ///

While Proposition 8.3 gives anecessary and sufficient condition for aweak equilibrium
allocation to exist, Proposition 8.2 gives only anecessary condition for astrong equilibrium
allocation to exist. We now offer asufficient condition, which is in terms of the support
prices of the initial endowment allocation $e$ .

Since every $v\in \mathrm{Y}$ is continuous, strictly increasing in the first coordinate, and quasi-
concave, for every $x\in X$ , there exists aprice vector $p$ that supports the at-least-as-
good-as set $\{y\in X|v(y)\geq v(x)\}$ , and $p_{1}>0$ for every such price vector $p$ . Denote by
$\cup--(v, x)$ the set of aU price vectors $p$ that support $\{y\in X|v(y)\geq v(x)\}$ and let $\Gamma(v, x)=$

$\{-p_{2}/p_{1}|p\in\underline{=}(v, x)\}$ . Then $\Gamma(v, x)$ is an interval that is non-empty and bounded from
above. So let $\gamma(v, x)=\sup\Gamma(v, x)\geq 0$ . Then $\gamma(v, x)$ is the amount of the good necessary
to be given to the consumer having utility function $v$ in order to (marginally) keep him
equally well off when he is given an additional unit of the bad. In particular, for every
$v\in Y$ , every $x\in X\backslash R_{++}^{2}$ , and price vector $p$ , we have $p\cdot y\geq p\cdot x$ for every $y\in X$

with $v(y)>v(x)$ if and only $\mathrm{i}\mathrm{f}-p_{2}/p_{1}\leq\gamma(v, x)$ . We can now state the condition for the
existence of an unlinked strong equilibrium allocation.

Proposition 8.4 There is an unlinked strong equilibrium allocation if and only if $e$ is an
unlinked allocation and the essential infimum of the function $a\vdash*\gamma(u(a), e(a))$ of $A$ into
$R_{+}$ is strictly positive.

In other words, there exists an unlinked strong equilibrium allocation if and only if $e$

is unlinked and there is astrictly positive lower bound on the marginal disutility, as
measured in terms of the good, evaluated at $e$ , across almost all consumers.

Proof of Proposition 8.4 If $e$ is unlinked and the the essential infimum of the function
$a-\rangle\gamma(u(a), e(a))$ is strictly positive, let $\delta$ be this positive number. We show that the
unlinked allocation $e$ is astrong equilibrium allocation under $p=(1, -\delta)$ . As pointed out
above, the weak utility maximization condition is then met at $e(a)$ under $p$ for almost
every $a\in A$ . But since $\inf\{p\cdot x|x\in X\}=-\infty$ , the strong utility maximization condition
is also met. Hence $e$ is astrong equilibrium allocation.
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Suppose conversely that $f$ is an unlinked strong equilibrium allocation, with acor-
responding strong equilibrium price vector $p$ . Then, by Proposition 8.2, $f=e$ almost
everywhere, and, by Lemma 7.3, $p_{1}>0$ and $p_{2}<0$ . By the strong utility maximization
condition, therefore, $-p_{2}/p_{1}\leq\gamma(u(a), e(a))$ for almost every $a\in A$ and the essential
infimum of the function $a-t\gamma(u(a), e(a))$ is greater than or equal $\mathrm{t}\mathrm{o}-p_{2}/p_{1}>0$ . ///
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